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References. Here is a list of useful general references, which is by no means
exhaustive.

• For set theory: Halmos [14], Munkres [20, Chapter 1].
• For category theory: Mac Lane [17].
• For calculus: Apostol [1, 2], Ghorpade-Limaye [12], Marsden, Tromba,

Weinstein [18].
• For analysis: Rudin [24], Pugh [22], Browder [8], Munkres [20]. Also
useful are Apostol [3], Simmons [26], Tao [28, 29].

• For geometry on surfaces: Pressley [21], Thorpe [30], do Carmo [9].
• For manifolds and differential forms: do Carmo [10], Boothby [6],

Morita [19], Lee [15], Spivak [27].
• Wikipedia is a good online source for getting a birds-eye-view of many
concepts discussed in these notes. Blogs are also useful.

Pick a book that suits you. To understand the subject matter, it is not
necessary to understand each and every sentence written in a particular book.

Remarks on the conditional. Consider the statements.

(1) If A, then B.
(2) If not B, then not A.
(3) If B, then A.
(4) If not A, then not B.

Statements (1) and (2) imply each other. Similarly, statements (3) and
(4) imply each other.

Statements (1) and (3) are converses of each other. It is possible that one
is true, while the other is false. Similarly, statements (2) and (4) are converses
of each other.

Avoid/minimize usage of the symbol =⇒ . Note very carefully:

• The statement “A =⇒ B.” means “If A, then B.”.
• The statement “A. =⇒ B.” means “A. Hence B.”.

The two are different. If we write using =⇒ , then the two statements only
differ in a fullstop which can be easily missed. So it is better not to use it.

Now appreciate the difference in the statements.

• A =⇒ B. =⇒ C. Better to say: A implies B. Hence C.
• A. =⇒ B. =⇒ C. Better to say: A. Hence B. Hence C.
• A. =⇒ B =⇒ C. Better to say: A. Hence B implies C.

The terms ‘necessary condition’ and ‘sufficient condition’ also appear of-
ten in mathematical writing. Their precise relation to a conditional is as
follows. Let us go back to the statement ‘If A, then B.’ Here B is a necessary
condition for A, while A is a sufficient condition for B.

Pattern of mathematical writing. While writing mathematics, one makes
use of some technical constructs. They are as follows, and usually appear in
the order given below.

• Definitions,
• Lemmas, Propositions,
• Theorems,
• Corollaries,
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• Examples.

Many times, in mathematical discovery, it is the right definition that one
is searching for to explain a bunch of phenomena that are known/believed to
be true.

Pattern of mathematical learning. Many times, it is hard to immediately
comprehend a definition. So one goes ahead, and reads the subsequent lem-
mas, theorems, examples. Then one again goes back to the definition followed
by the lemmas and so on. This time round, things makes more sense. Then
we repeat this process again, and again. Eventually everything makes sense.
This process is called “rote learning” which is seeped in the indian tradition
of learning.



Part I

Functions of one real variable



CHAPTER 1

Sets and functions

1.1. Sets

Sets are the building blocks of modern mathematics. We recall them
briefly, focussing on number systems, particularly on the set of real numbers.

1.1.1. Sets. A set consists of elements. Let us begin with a couple of exam-
ples of sets.

• A = set of dogs in iitb campus,
• B = set of students in MA 105.

You can write down many similar examples.

1.1.2. Number systems. Now let us look at some standard sets related to
number systems.

(1) N = {0, 1, 2, 3, . . .} = set of natural numbers
(2) N+ = {1, 2, 3, . . .} = set of positive natural numbers
(3) Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } = set of integers
(4) Q = {m/n : m,n ∈ Z, n ̸= 0} = set of rational numbers
(5) R = set of real numbers
(6) R \Q = set of irrational numbers

Lemma 1.1. There is no rational number whose square is 2.

Proof. Suppose (p/q)2 = 2, that is, p2 = 2q2 for some integers p, q such that
q ̸= 0, and p and q have no common factor. Now 2 divides p2, and hence also
divides p. So p = 2r for an integer r. Then 2q2 = p2 = (2r)2 = 4r2, and so
q2 = 2r2. Now 2 divides q2, and hence also divides q. Thus 2 is a common
factor of p and q, which is a contradiction. □

The above result motivates the consideration of number systems which
are larger than Q such as R.

Remark 1.2 (Algebraic structures). There is no formal definition of a
number system. However, the above considerations led to abstract concepts
such as monoids, groups, rings, fields (in the later part of the nineteenth
and early part of the twentieth century). For example, Z is an example of a
ring, while Q and R are examples of fields. For more details, see Artin [4],
Dummit-Foote [11].

1.1.3. Set of real numbers. It is customary to represent the set of real
numbers R as a line as follows.

0 1 2
√
2

4
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Elements of R are points on the line. Have we filled all the “holes” in the
line? The set of rational numbers does not achieve this goal, but we believe
that the set of real numbers does. There are two standard ways to pass from
Q to R, namely,

• Dedekind cuts,
• Cauchy sequences.

These two constructions were made in the nineteenth century around
1870. Note:

√
2 ∈ R.

1.1.4. Properties of R. We mention that the set of real numbers satisfies
the following properties.

• algebraic properties (related to addition and multiplication).
• order properties (related to greater than and less than).
• completeness property.
• archimedean property (implied by completeness property).

The archimedean property says that for any x ∈ R, there is a natural
number n ∈ N such that n > x.

Let us use this property to prove that between any two distinct real
numbers, there is a rational number and an irrational number:

Lemma 1.3. Let a, b ∈ R with a < b. Then there is r ∈ Q and s ∈ R \ Q
such that a < r, s < b.

Proof. Let us do this in two steps.

(i) Let [x] denote the integer part of x, that is, x − 1 < [x] ≤ x. Pick
n > 1

b−a , and put m = [na] + 1. Then a < m
n < b. Now take r := m/n.

(ii) Using item (i), find r ∈ Q such that a +
√
2 < r < b +

√
2. Then

a < r −
√
2 < b. Now take s := r −

√
2.

□

1.1.5. Intervals. We say I ⊆ R is an interval if a, b ∈ I and a < x < b , then
x ∈ I. Some standard examples of intervals are given below. For a ≤ b ∈ R,
define

(a, b) := {x ∈ R : a < x < b} and [a, b] := {x ∈ R : a ≤ x ≤ b}.
These are the open interval and closed interval, respectively, from a to b. See
illustrations below.

Similarly, define

(a,∞) := {x ∈ R : a < x} and [a,∞) := {x ∈ R : a ≤ x},
and

(−∞, b) := {x ∈ R : x < b} and (−∞, b] := {x ∈ R : x ≤ b}.
Note: The empty set ∅ and R are also intervals.

Observe:
∞⋂
n=1

(a, b+
1

n
) = (a, b] and

∞⋃
n=1

[a, b− 1

n
] = [a, b).
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Puzzle 1.4. A man has no money, but fortunately he has a silver bar which
is 31 inches long. So he enters into the following agreement with his landlord
for paying his March rent. He will pay one inch of his silver bar for each of
the 31 days of March. The question is: What is the minimum of pieces he
can cut his silver bar into in order to fulfil this requirement?

The silliest thing would be to cut the bar into 31 pieces and pay one piece
each day. A better way to start would be to have 2 one inch pieces and a 3
inch piece, so that he can pay the first two days with the one inch pieces, and
on the third day he can give the 3 inch piece and take back the 2 one inch
pieces. He can use these to pay off the fourth and fifth days as well.

Puzzle 1.5. A shopkeeper has a single weight of 40 kilos. One day, his son
mistakenly drops it on the floor, and it breaks into 4 pieces. The shopkeeper
is very angry but his clever son shows him that with these 4 pieces, he can
weigh on his balance any item whose weight is an integer between 1 to 40
(both inclusive). What are these 4 weights?

1.2. Functions

When we talk of sets, we also need to talk of ways to relate them. This
is the notion of a function. We focus mainly on real-valued functions of a
real variable. We discuss bounded, monotone, convex functions. We also
informally recall many familiar examples; some of them are formalized later
in Section 5.3.

For functions of more than one real variable, see Section 6.2.

1.2.1. Functions between sets. We specify a function as f : A→ B. Here
A and B are sets. We say A is the domain of f , and B is the codomain of f .
To every element a ∈ A, we have f(a) = b ∈ B.

A

a

domain of f

B

f(a)

codomain of f

f

We write f(A) for the image of f . It is the set of values taken by f . It is
a subset of B.

For f : A→ B and g : B → C, define composite function g◦f : A→ C by

(g ◦ f)(a) := g(f(a))

for a ∈ A.

A

a

domain of f

B

f(a)

codomain of f
= domain of g

C

g(f(a))

codomain of g

f g
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1.2.2. Graph of a function. The graph of f : A→ B is the subset of A×B
defined by

{(a, f(a)) : a ∈ A}.
A schematic illustration is shown below.

A

B

a

f(a)
(a,f(a))

1.2.3. Functions between real numbers. If the codomain of f is R, that
is, f : A→ R, then we say f is real-valued. For example,

• for A = set of dogs in iitb campus, consider f(a) = weight of dog a,
• for B = set of students in MA 105, consider f(B) = IQ of student b.

We will mainly deal with functions f whose domain is A ⊆ R. For
functions on intervals, consider

f : [0, 1] → R, f(x) = x2 + 5,

g : [0, 1] → (3, 10), g(x) = x2 + 5.

Note very carefully: f and g are different functions because their codomains
are different!

1.2.4. Absolute value function. An important real-valued function on R
is the absolute value function. It is defined by

f : R → R, f(x) = |x|,
the absolute value of x. Its graph is shown below.

x

y

The absolute value function satisfies the following properties.

(i) |x| ≥ 0 with equality iff x = 0. Thus, the image of f is [0,∞).
(ii) |x| = |−x|.
(iii) |xy| = |x||y|.
(iv) −|x| ≤ x ≤ |x|.
(v) |x+ y| ≤ |x|+ |y|. This is known as the triangle inequality.

1.2.5. Sine and cosine functions. The graphs of the functions f(x) = sinx
and f(x) = cosx are shown below.

x

y

x

y
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The graph of the function f(x) = sin(1/x), for x > 0, is shown below.

x

y

(For clarity, we have stretched the x-axis.) The graph oscillates rapidly as it
approaches the y-axis.

The graph of the function f(x) = x sin(1/x), for x > 0, is shown below.

x

y

The graph oscillates exactly as before, but now the amplitude of the oscilla-
tions goes to zero as it approaches the y-axis.

1.2.6. Exponential and logarithm functions. The graphs of the func-
tions f(x) = ex and f(x) = log x are shown below.

x

y

x

y

1.2.7. Integer part function. The integer part [x] of a real number x is
the greatest integer which is less than or equal to x. For example, [.5] = 0,
[2] = 2, [2.1] = 2. The graph of the integer part function f(x) = [x] is shown
below.

x

y
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1.2.8. Polynomial functions. Polynomials in one variable are functions
which are finite linear combinations of 1, x, x2 and so on. Each polynomial
has a degree. Polynomials of

• degree zero are constants p(x) = c,
• degree one are linear functions p(x) = ax+ b with a ̸= 0,
• degree two are quadratic functions p(x) = ax2 + bx+ c with a ̸= 0,

and so on.
The graph of a degree one polynomial (linear) looks as follows.

The graph of a degree two polynomial (quadratic) looks as follows.

The graph of a degree three polynomial (cubic) looks as follows.

The graph of a degree four polynomial (quartic) looks as follows.

For each degree, we have drawn two graphs depending on the sign of the
leading coefficient. Also, the above pictures show the generic case. They may
degenerate in specific cases. For example, compare the graph of f(x) = x3

with the left picture shown above for a cubic.

1.2.9. Bounded and monotone functions. There are properties which a
given function may or may not have. For example, for a function f , we can
ask whether f is injective (into) or surjective (onto) or bijective (into and
onto). Some other important properties are listed below.

Definition 1.6. A function f : A→ R is

(i) bounded above if there is a real number M (upper bound) such that

f(x) ≤M

for x ∈ A,
(ii) bounded below if there is a real number M (lower bound) such that

M ≤ f(x)

for x ∈ A,
(iii) bounded if it is bounded above and bounded below, that is, if there are

real numbers M1,M2 such that

M1 ≤ f(x) ≤M2

for x ∈ A.
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A bounded function can be visualized as follows.

x

y

M1

M2

The global maximum of f is its least upper bound, and the global mini-
mum of f is its greatest lower bound. By completeness property of R, these
necessarily exist, but they may not be attained at any point of A.

Definition 1.7. Let I be an interval, and let f : I → R. We say f is

(i) (monotonically) increasing on I if for x1, x2 ∈ I,

x1 < x2 =⇒ f(x1) ≤ f(x2).

(ii) (monotonically) decreasing on I if for x1, x2 ∈ I,

x1 < x2 =⇒ f(x1) ≥ f(x2).

(iii) monotonic on I if it increasing on I, or it is decreasing on I.

We use the terms strictly increasing and strictly decreasing if the inequal-
ities ≤ and ≥ above can be replaced by < and >.

Note: The constant function f(x) = 3 is both increasing and decreasing,
but it is not strictly increasing or strictly decreasing.

1.2.10. Convex functions.

Definition 1.8. For I an interval, let f : I → R be a function.

(i) f is convex if for p < q in I and t ∈ (0, 1),

f(tp+ (1− t)q) ≤ tf(p) + (1− t)f(q).

We use the term strictly convex if the above inequality is strict.
(ii) f is (strictly) concave if −f is (strictly) convex. This can also be defined

directly by reversing the inequality.
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The different points involved in the definition of a convex function are
illustrated below.

p tp + (1 − t)q q

f(p)

tf(p) + (1 − t)f(q)

f(q)

In geometric terms, a function f is convex if the chord joining any pair of
points (p, f(p)) and (q, f(q)) on the graph of f lies on or above the graph of
f . This is illustrated below.

x

y

Exercise 1.9. Show: The convexity condition can be equivalently written
as: For any p < x < q in I,

f(x) ≤ f(p) +
f(q)− f(p)

q − p
(x− p).

For strict convexity, we replace ≤ by < above. For (strictly) concave, we use
≥ and >.

The graph of a typical convex function on R is shown below on the left.
The graph of a function on R which is convex but not strictly convex is shown
below on the right. A concrete example is the absolute value function.

x

y

x

y

Mention convex sets, and the fact that a convex set in R is the same as an

interval.



CHAPTER 2

Sequences

2.1. Sequences

We introduce sequences of real numbers, and define the notion of conver-
gence of such a sequence. We connect convergence to the property of being
monotone and bounded. This is related to completeness property of R.

2.1.1. Sequences.

Definition 2.1. A sequence of real numbers is a function f : N+ → R from
the set of positive integers to the set of real numbers.

Put f(n) = an. Thus specifying the function f is the same as specifying

a1, a2, a3, . . . .

We shall use the notation {an} for short. We call an the n-th term of the
sequence.

Example 2.2. Here are a few sample examples of sequences.

(1) an = 1/n.

1, 1/2, 1/3, 1/4, . . .

(2) an = n.

1, 2, 3, 4, . . .

(3) an = (−1)n.

−1, 1,−1, 1, . . .

(4) an = n2.

1, 4, 9, 16, . . .

(5) an =
√
2.

√
2,
√
2,
√
2, . . .

This is a constant sequence.
(6) an = 2n.

2, 4, 8, 16, . . .

(7) a1 = 1, a2 = 1 and an = an−1 + an−2 for n ≥ 3.

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

This is the Fibonacci sequence.

12
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2.1.2. Visualizing a sequence. A sequence may be visualized on the real
line as follows by marking its terms a1, a2, a3, . . . .

a1 a2a3a4a5 a6

It may also be visualized as the graph of the function N+ → R. In the
picture below, we have marked the first 5 terms of the sequence.

1 2 3 4 5

a1

a2

a3

a4

a5

Remark 2.3. We make some remarks related to the notion of a sequence.

(1) A sequence is always infinite. For example,

a1, a2, a3, a4

which is a tuple of four real numbers is not a sequence.
(2) A sequence need not be given by an algebraic formula. For example,

we can define a sequence using the digits in the decimal expansion of√
2. We can also do something like

−1, 3, 4, 5, 2, 2, 2, 2, . . . ,

that is, the sequence is constant barring the first few terms.
(3) ∞ is not a real number. Thus,

−1, 2,∞, 1/5, . . .

is not a sequence. Similarly, { 1
n−1} does not define a sequence since it

is not defined at n = 1.
(4) The formula an = 1

n−5 does not define a sequence (since it is not defined

at n = 5).
(5) The following is not a sequence.

. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . . .

It arises from a function f : Z → R.
(6) An example of a sequence which contains each integer exactly once is

0, 1,−1, 2,−2, 3,−3, . . . .

(7) If {an} and {bn} are two sequences, then interleaving gives a third
sequence

a1, b1, a2, b2, a3, b3, a4, b4, . . .

For example, the sequence an = (−1)n arises by interleaving the con-
stant −1 sequence and constant 1 sequence.

Exercise 2.4. Construct a sequence which contains all rational numbers.
(One way is to use Cantor’s famous diagonalization argument.)
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2.1.3. Bounded and monotone sequences. We now define some proper-
ties which a given sequence may or may not have.

Definition 2.5. A sequence {an} of real numbers is

(i) bounded above if there is a real number M such that

an ≤M

for n ≥ 1,
(ii) bounded below if there is a real number M such that

M ≤ an

for n ≥ 1,
(iii) bounded if it is bounded above and bounded below, that is, if there are

real numbers M1,M2 such that

M1 ≤ an ≤M2

for n ≥ 1.

A bounded sequence can be visualized on the real line as follows.

a1 a2a3a4a5 a6M1 M2

Definition 2.5 is the special case A := N+ of Definition 1.6.

Definition 2.6. A sequence {an} of real numbers is

(i) (monotonically) increasing if

a1 ≤ a2 ≤ a3 ≤ . . . ,

(ii) (monotonically) decreasing if

a1 ≥ a2 ≥ a3 ≥ . . . ,

(iii) monotonic if it is either (monotonically) increasing or decreasing.

Exercise 2.7. For sequences in Example 2.2, which of the bounded and
monotone properties hold?

2.1.4. Convergence of sequences. Where is a sequence heading?

Definition 2.8 (ϵ–n0). Let {an} be a sequence of real numbers. We say
{an} is convergent if there is a ∈ R such that the following condition holds.

For every ϵ > 0, there is n0 ∈ N+ such that

|an − a| < ϵ

for n ≥ n0.

In this case, we say {an} converges to a, or a is the limit of {an}, and
write

lim
n→∞

an = a or an → a (as n→ ∞).

If a sequence does not converge, we say the sequence diverges or is diver-
gent.

Example 2.9. Let us look at convergence in some of our examples.
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(1) The sequence an = 1/n converges to 0, or equivalently,

lim
n→∞

1
n = 0.

Why? Let ϵ > 0. By archimedean property, there is n0 ∈ N+ such that
1
n0
< ϵ. Therefore,

|an − a| = | 1n | ≤
1
n0
< ϵ

for n ≥ n0.
(2) The sequence an = n does not converge, or equivalently, limn→∞ n does

not exist. (Use archimedean property.)
(3) The sequence an = (−1)n does not converge. (Take for example, ϵ =

1/2.)

Remark 2.10. We make some remarks related to the notion of convergence.

(1) Suppose we know the first 100 terms of a sequence satisfy the formula
an = 1/n. We cannot conclude from this that {an} converges. It does
not make sense to say {an} converges at n = 100.

(2) Suppose we know |an − 2| < 0.3 for n ≥ 100. This says that from a100
onwards, the sequence is confined to the interval (1.7, 2.3). However,
this does not imply that {an} converges.

(3) Suppose we know an = 1/n for n ≥ 100. Then an → 0 irrespective
of the values a1, a2, . . . , a99. In general, the convergence of a sequence
is unaltered if a finite number of its terms are replaced by some other
terms.

(4) Consider an = 1/n → 0. For ϵ = 1/10, the smallest n0 which works is
11. However, if n0 = 11 works, then so does any number > 11. Note
very carefully: The definition of convergence only requires us to find
one n0, not necessarily the smallest one. However, it is a good practice
to specify the smallest n0 for a given ϵ whenever possible.

(5) Many times, we will be dealing with two convergent sequences an → a
and bn → b at the same time. In such cases: For ϵ > 0, the sequence
{an} will have its n0, and {bn} will have its n0. By taking the larger
of the two, we will have an n0 which works for both.

2.1.5. Uniqueness of a limit. Let {an} be any sequence of real numbers.
Parvati says that {an} converges to 10, while Shankar says that {an} converges
to 20. Can both of them be right?

10 20

No. Give ϵ = 4 to both of them, and ask them to provide n0. Both cannot
succeed since the open intervals (6, 14) and (16, 24) are disjoint as shown in
the picture.

This argument generalizes to yield the following.

Lemma 2.11. Limit of a sequence of real numbers is unique whenever it
exists.

Proof. Let {an} be such a sequence. Suppose an → a and an → b with
a ̸= b. Take ϵ = |a− b|/2 > 0. Let n0 ∈ N+ be such that

|an − a| < ϵ and |an − b| < ϵ
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for n ≥ n0. Then

|a− b| ≤ |a− an0
|+ |an0

− b| < ϵ+ ϵ = |a− b|,
which is a contradiction. Hence a = b. □

2.1.6. Convergent implies bounded. We now relate convergence of a se-
quence to its property of being bounded.

Proposition 2.12. Let {an} be a sequence of real numbers. If {an} converges,
then it is bounded. Equivalently, if {an} is not bounded, then it does not
converge.

a

Proof idea. A finite set of real numbers is always bounded. The problem is
that a sequence contains infinitely many real numbers. But if {an} converges,
then some tail of this sequence lies in a finite neighborhood of the limit a. In
the above picture, only finitely many terms of the sequence will be outside
the blue interval. □

For example: The sequences {n}, {n2}, {2n} are not bounded, and hence
are divergent.

The converse of Proposition 2.12 is false. For example, take an = (−1)n.
This sequence is bounded but it does not converge.

2.1.7. Algebra of sequences. One can add two sequences, multiply two
sequences, scalar multiply a sequence (by a real number). These operations
are compatible with the notion of convergence in the following sense.

Lemma 2.13 (Limit theorems). Suppose an → a and bn → b are two
convergent sequences of real numbers. Then

(i) an + bn → a+ b,
(ii) ran → ra for r ∈ R,
(iii) anbn → ab,
(iv) 1/an → 1/a if a ̸= 0.

Proof. For item (i): Let ϵ > 0. Since an → a and bn → b, there is n0 ∈ N+

such that
|an − a| < ϵ/2 and |bn − b| < ϵ/2

for n ≥ n0. Now using triangle inequality,

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn − b| < ϵ/2 + ϵ/2 = ϵ

for n ≥ n0. Thus, an + bn → a+ b.
Proofs of items (ii), (iii), (iv) use similar ideas. □

Remark 2.14. For item (iv), strictly speaking, we must require an ̸= 0 for
1/an to make sense. However, since an → a and a ̸= 0, from some point on,
the an are indeed nonzero (and convergence of a sequence is not affected if
we change finitely many of its terms).

Lemma 2.15 (Sandwich lemma). If an ≤ bn ≤ cn, and an → a and
cn → a, then bn → a.
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Proof. Let ϵ > 0. Since an → a and cn → a, there is n0 ∈ N+ such that

a− ϵ < an < a+ ϵ and a− ϵ < cn < a+ ϵ

for n ≥ n0. Since an ≤ bn ≤ cn,

a− ϵ < bn < a+ ϵ

for n ≥ n0. □

Example 2.16. Let us illustrate the sandwich lemma.

(1) Let an = n3+3n2+2
n4+7n2+5 . Then an → 0 since

0 ≤ an ≤ 1
n + 3

n2 + 2
n4 → 0.

(2) Let an = 1
n sin( 1n ). Then an → 0 since

− 1
n ≤ an ≤ 1

n and 1
n → 0.

2.1.8. Completeness property. We now give two sufficient conditions for
a sequence to converge. This is a partial converse to Proposition 2.12.

Proposition 2.17. Let {an} be a sequence of real numbers. Then:

(i) If {an} is increasing and bounded above, then {an} is convergent.
(ii) If {an} is decreasing and bounded below, then {an} is convergent.

This result can be deduced using completeness property of R. Since we
have not discussed the latter, we take the above result for granted. Note:
Items (i) and (ii) imply each other by replacing a sequence by its negative.

Example 2.18. Let us illustrate the completeness property.

(1) The sequence an = 1/n is decreasing and bounded below by 0, hence
it converges.

(2) Let a1 = 1 and an = 3an−1+2
6 = 1

2an−1 +
1
3 for n ≥ 2. This sequence is

bounded below by 0. Is it decreasing? The first few values are a1 = 1,
a2 = 5/6, a3 = 3/4. Now

an ≤ an−1 ⇐⇒ 1
2an−1 +

1
3 ≤ an−1 ⇐⇒ 2

3 ≤ an−1

for n ≥ 2.
Note: a1 ≥ 2

3 . If an−1 ≥ 2
3 for some n ≥ 2, then an ≥ 1

2 (
2
3 )+

1
3 = 2

3 .

So by induction, an ≥ 2
3 for n ≥ 1. Hence {an} is decreasing. By

completeness property, {an} converges (say to a).
To compute a, we may proceed as follows. In an = 1

2an−1 +
1
3 , lhs

goes to a and rhs goes to 1
2a+

1
3 . So a = 1

2a+
1
3 , and hence a = 2

3 .

Exercise 2.19. Give an example of a sequence {an} of real numbers which
is strictly decreasing in absolute value, that is, |an| > |an+1| for n ≥ 1, but
which does not converge.

Remark 2.20. Proposition 2.17 fails for Q. For example, we can take the
sequence of rational numbers 1, 1.4, 1.41, 1.414, . . . arising from the decimal
expansion of

√
2. This sequence is increasing and bounded above by say the

rational number 1.5. But it does not converge in Q. What we are seeing here
is the fact that the set of rational numbers Q is not complete.
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2.1.9. Important limits. We mention a couple of important limits.

Lemma 2.21. Let a ∈ R. Then:

(i) If |a| < 1, then limn→∞ an = 0.
(ii) If a > 0, then limn→∞ a1/n = 1.

Proof. For item (i): The result is clear if a = 0. Let 0 < |a| < 1. Then
1
|a| > 1. Write 1

|a| = 1 + h for h > 0. Then

1

|a|n
= (1 + h)n = 1 + nh+ · · ·+ hn ≥ 1 + nh ≥ nh.

Therefore,

0 ≤ |a|n ≤ 1

nh
→ 0.

Result follows by sandwich lemma.
For item (ii): The result is clear if a = 1. Let a > 1. Then a1/n > 1.

Write a1/n = 1 + hn for hn > 0. Now a = (1 + hn)
n ≥ nhn. Therefore,

0 ≤ hn ≤ a
n . So hn → 0, and a1/n → 1. Finally, let 0 < a < 1. Then 1

a > 1.

So by previous case, ( 1a )
1/n → 1. Therefore, a1/n → 1. □

2.1.10. Convergence to infinity. Suppose a sequence {an} diverges. Then
it makes sense to ask whether {an} is converging to ∞ or −∞ as explained
below. We emphasize again that ±∞ are not real numbers.

Definition 2.22. Let {an} be a sequence of real numbers.

(i) We say {an} converges to ∞ or limn→∞ an = ∞ or an → ∞ if the
following condition holds. For every α ∈ R, there is n0 ∈ N+ such that
an > α for n ≥ n0.

(ii) We say {an} converges to −∞ or limn→∞ an = −∞ or an → −∞ if
the following condition holds. For every β ∈ R, there is n0 ∈ N+ such
that an < β for n ≥ n0.

For example: The sequence an = n2 → ∞ and an = −n3 → −∞. The
sequence an = (−1)nn is unbounded but does not converge either to ∞ or to
−∞.

Remark 2.23 (Metric spaces). We have focussed on sequences of real
numbers. More generally, a sequence can take values in any set A. However, to
define convergence, one needs a notion of distance in A. Such a set A is called
a metric space. For A = R, the distance is defined by dist(x, y) := |x − y|,
and convergence as in Definition 2.8. This example generalizes to A = Rm.
The case m = 2 is explained in Definition 6.10.



CHAPTER 3

Continuity

3.1. Continuity

The intuitive idea of a continuous function f is that the graph of f has
no “breaks”. We now formalize this notion.

3.1.1. Continuous functions.

Definition 3.1 (ϵ–δ). Let f : A → R. We say f is continuous at c ∈ A if
the following condition holds.

For every ϵ > 0, there is δ > 0 such that

|x− c| < δ =⇒ |f(x)− f(c)| < ϵ.

We say f is continuous on A if f is continuous at each point of A.

Example 3.2. Let us illustrate the notion of continuity.

(1) Let f(x) = x. Then f is continuous at all c ∈ R.
Take δ = ϵ.

(2) Let f(x) = 3x− 5. Then f is continuous at all c ∈ R.
Take δ = ϵ/3. Then |x− c| < δ implies

|(3x− 5)− (3c− 5)| = 3|x− c| < ϵ.

(3) Let f(x) = [x]. Then f is continuous at non-integer points and discon-
tinuous at integer points.

• c is a non-integer point. Pick δ > 0 which avoids the adjacent
integer points.

• c is an integer point. Give ϵ = 1/2. No choice of δ works.
(4) Consider the Dirichlet function

f : [0, 1] → R, f(x) =

{
1 if x ∈ Q,

0 if x ∈ R \Q.

It is discontinuous at all points. Give ϵ = 1/2. No choice of δ works
because in any open interval there is always a rational and an irrational
by Lemma 1.3.

Exercise 3.3. Let f : A → R be continuous at c ∈ A, and f(c) > 0. Then
there is an open interval I containing c such that f(x) > 0 for all c ∈ I.

19
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3.1.2. Algebra of continuous functions. One can add two functions, mul-
tiply two functions, scalar multiply a function (by a real number). These op-
erations are compatible with the notion of continuity in the following sense.

Lemma 3.4. Suppose f, g : A→ R are continuous at c ∈ A. Then so are

(i) f + g,
(ii) rf for r ∈ R,
(iii) fg,
(iv) 1/f if f(c) ̸= 0.

Proof. For item (i): Let ϵ > 0. Since f and g are continuous at c, there is
δ > 0 such that

|x− c| < δ =⇒ |f(x)− f(c)| < ϵ/2 and |g(x)− g(c)| < ϵ/2.

Now using triangle inequality,

|(f + g)(x)− (f + g)(c)| ≤ |f(x)− f(c)|+ |g(x)− g(c)| < ϵ/2 + ϵ/2 = ϵ.

Proofs of items (ii), (iii), (iv) use similar ideas. For item (iv): It suffices
to prove that the function 1/x is continuous, and use Lemma 3.5 below. □

Lemma 3.5. Let f : A→ B and g : B → R. If f is continuous at c ∈ A and
g is continuous at f(c) ∈ B, then the composite g ◦ f is continuous at c ∈ A.

Proof idea. Given ϵ > 0, pick δ′ > 0 using continuity of g at f(c). Now
taking δ′ > 0 as the ϵ, pick the required δ > 0 using continuity of f at c. □

As a consequence:

• polynomials in x such as p(x) = x2 and p(x) = 2x3 − 3x + 1 are
continuous,

• a rational function in x, that is r(x) = p(x)/q(x), where p and q are
polynomials, is continuous at c if q(c) ̸= 0,

• a function such as f(x) = x3 sin|x|+ cosx2 is continuous.

Example 3.6. Define f : R → R by

f(x) =

{
x sin(1/x) if x ̸= 0,

0 if x = 0.

Then f is continuous at c ̸= 0 since it is formed out of continuous functions.
Let us see what happens at c = 0. Given ϵ > 0, let δ = ϵ. Then |x − 0| <
δ =⇒ |f(x)− f(0)| ≤ |x| < δ = ϵ. Hence f is continuous at 0.

Exercise 3.7. Define f as above but with x sin(1/x) replaced by sin(1/x).
Show: f is not continuous at 0.

3.1.3. Characterization using sequences. We now characterize continu-
ity of a function using sequences. This forges a connection between Defini-
tion 3.1 and Definition 2.8.

Proposition 3.8. Let f : A → R. Then f is continuous at c ∈ A iff the
following condition holds.

For any sequence {xn} in A with xn → c, we have f(xn) → f(c).
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Proof. Suppose f is continuous at c ∈ A, and xn → c. We want to show
f(xn) → f(c). Let ϵ > 0. Continuity of f at c yields a δ. Using this δ, we
find a n0 for xn → c. Thus for n ≥ n0, we have |xn − c| < δ, and hence
|f(xn)− f(c)| < ϵ as required.

Conversely, suppose the condition holds. We prove f is continuous at c
by contradiction. So suppose f is not continuous at c. Then there is ϵ > 0 for
which no δ works. This gives a sequence xn → c for which |f(xn)− f(c)| > ϵ
for n ≥ 1. This is a contradiction. □

Example 3.9. Let us use Proposition 3.8 to show that certain functions are
not continuous at a point.

(1) Consider the integer part function f(x) = [x]. At c = 5, f(c) = 5. Let
xn = 5 − 1

n . Then xn → 5, but [xn] = 4 and so [xn] ̸→ 5. Thus, f is
not continuous at c = 5.

(2) Define

f(x) =

{
sin(1/x) if x ̸= 0,

r if x = 0.

Then f is continuous at c ̸= 0 since it is formed out of continuous
functions. Let us see what happens at c = 0. Let xn = 2

(2n+1)π . Then

xn → 0, but f(xn) = sin( (2n+1)π
2 ) = (−1)n does not converge. So f is

not continuous at c = 0, no matter what r is.

3.1.4. Further properties of continuous functions.

Theorem 3.10 (Intermediate value property). Let I be an interval, and
f : I → R be a continuous function. Let r ∈ R be such that f(x1) < r < f(x2)
for some x1 < x2 in I. Then there is x ∈ (x1, x2) such that f(x) = r.

The proof uses completeness property of R, and is omitted.

Example 3.11. Let us show that the function f(x) = x4+2x3−2 has a root
in (0, 1). Its graph is shown below. The red point is x = 1.

x

y

Since f is a polynomial, it is continuous. Now f(0) = −2 and f(1) = 1. So
by IVP, f attains every value between −2 and 1 in the interval (0, 1), and in
particular, the value 0.

Corollary 3.12. Let f : A → R be a continuous function, and I ⊆ A be an
interval. Then f(I) is an interval.

Exercise 3.13. Is there a continuous function from [0, 1] onto [2, 3]? onto
[2, 3] ∪ [4, 5]? onto (0,∞)? onto [−1, 1]?
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Corollary 3.14. Let f : I → R be continuous and injective. Then f is either
increasing or decreasing. Also, f−1 : f(I) → R is continuous.

Proof. Exercise. □

Let us use the above result to deduce the existence of the square root
function

g : [0,∞) → [0,∞), g(x) =
√
x.

Take f : [0,∞) → [0,∞) with f(x) = x2. This function is continuous and
injective. Also f([0,∞)) = [0,∞). Put g = f−1. The graph of f on (0, 2) and
of g on (0, 4) are shown below.

x

y

x

y

Theorem 3.15. Let f : [a, b] → R be continuous. Then f is bounded on
[a, b] and attains its global maximum and global minimum on [a, b]. Further,
f([a, b]) is a closed and bounded interval.

The proof is omitted.

Example 3.16. Let us see what can go wrong if the domain is an interval
but not a closed interval.

(1) Take f : (0, 1) → R with f(x) = 1
x . Then f is continuous but not

bounded.
(2) Take f : [0,∞) → R with f(x) = x. Then f is continuous but not

bounded.
(3) Take f : (0, 1) → R with f(x) = x. Then f is continuous and bounded,

but does not attain its global maximum or global minimum.

Exercise 3.17. Construct a continuous function f : R → R such that f takes
every value exactly three times.

Exercise 3.18. Define the function f : R → R by

(3.1) f(x) =

{
0 if x is irrational,

1/q if x = p/q in lowest terms.

Show: f is continuous at all irrational points, but discontinuous at all rational
points.

Puzzle 3.19. A pilgrim wants to go to a temple on the top of a mountain.
He starts from the bottom at 8 in the morning, and reaches the top at 12.
He stays there for a week. While coming down, he again starts at 8 in the
morning, and reaches the bottom at 11. Show that there is a time between
8 and 11 when the pilgrim was at the same point on the mountain while
ascending and descending.
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3.2. Limit of a function

3.2.1. Limit of a function. Let f : A → R and c ∈ R be such that there
is r > 0 with (c− r, c) ∪ (c, c+ r) ⊆ A. In other words, A contains all points
within distance r of c, except perhaps the point c.

Definition 3.20. We say limx→c f(x) exists if there is ℓ ∈ R such that for
every sequence {xn} in A with xn ̸= c and xn → c, we have f(xn) → ℓ.

In this case, we write

ℓ = lim
x→c

f(x),

and say f has a limit at c.

Example 3.21. Let us illustrate the notion of limit.

(1) Define f : R → R by

f(x) =

{
3x+ 5 if x ̸= 0,

1 if x = 0.

Let xn → 0, xn ̸= 0 for n ≥ 1. Then f(xn) = 3xn + 5 → 5. Hence
limx→0 f(x) = 5.

(2) Let f(x) = [x].
• Let xn = 5 + (1/n), so xn → 5. Also f(xn) = 5, so f(xn) → 5.
• Let xn = 5− (1/n), so xn → 5. Also f(xn) = 4, so f(xn) → 4.

Thus limx→5 f(x) does not exist.
(3) Let f(x) = sin(1/x) for x ∈ R \ {0}.

Let xn = 2
(2n+1)π , so xn → 0, but f(xn) = sin( (2n+1)π

2 ) = (−1)n

does not converge.
Thus limx→0 f(x) does not exist.

Remark 3.22 (ϵ–δ). Equivalently, similar to Definition 3.1 for continuity,
we say:

lim
x→c

f(x) = ℓ

if the following condition holds.

For every ϵ > 0, there is δ > 0 such that

0 < |x− c| < δ =⇒ |f(x)− ℓ| < ϵ.

It is possible to take this as a definition, and deduce Definition 3.20 as a
consequence.

3.2.2. Algebra of limits of functions. The operations of addition, mul-
tiplication, scalar multiplication on functions are compatible with the notion
of taking limits in the following sense.

Lemma 3.23 (Limit theorems). Suppose limx→c f(x) and limx→c g(x) ex-
ist. Then

(i)

lim
x→c

(f + g)(x) = lim
x→c

f(x) + lim
x→c

g(x),

(ii)

lim
x→c

rf(x) = r lim
x→c

f(x) for r ∈ R.
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(iii)

lim
x→c

(fg)(x) = (lim
x→c

f(x))( lim
x→c

g(x)),

(iv)

lim
x→c

( 1
f

)
(x) =

1

limx→c f(x)
(if denominator ̸= 0).

Proof. Follows from Lemma 2.13 for sequences. □

Lemma 3.24 (Sandwich lemma). If f(x) ≤ g(x) ≤ h(x), and limx→c f(x) =
ℓ and limx→c h(x) = ℓ, then limx→c g(x) = ℓ.

Proof. Follows from sandwich Lemma 2.15 for sequences. □

3.2.3. Continuity and limit. We say c ∈ R is an interior point of A ⊆ R
if there is r > 0 such that (c− r, c+ r) ⊆ A.

Proposition 3.25. Let f : A → R, and c be an interior point of A. Then f
is continuous at c iff limx→c f(x) exists and is equal to f(c).

Proof idea. We use characterization of continuity given by Proposition 3.8.
Forward implication is straightforward. For backward implication: Let xn →
c. Break {xn} into two subsequences: One contains terms not equal to c,
and other contains terms equal to c. Both subsequences, after applying f ,
converge to f(c). Hence, f(xn) → f(c), as required. (Ignore either of the two
subsequences if it is finite.) □

3.2.4. Left and right limits.

Definition 3.26. We build on Definition 3.20.

(i) We say limx→c− f(x) exists if there is ℓ ∈ R such that for every sequence
{xn} in A with xn < c and xn → c, we have f(xn) → ℓ. In this case,
we say f has a left limit at c.

(ii) We say limx→c+ f(x) exists if there is ℓ ∈ R such that for every sequence
{xn} in A with xn > c and xn → c, we have f(xn) → ℓ. In this case,
we say f has a right limit at c.

Proposition 3.27. We have: f has a limit at c iff f has a left limit and
right limit at c, and they are equal.

3.2.5. Types of discontinuities. Suppose f : A → R is discontinuous at
an interior point c ∈ A. Then one of the following happens.

• limx→c f(x) does not exist.
– Either left limit or right limit of f(x) at c does not exist (essential

discontinuity).
– Left and right limits of f(x) at c exist, but are not equal (jump

discontinuity).
• limx→c f(x) exists, but is not equal to f(c) (removable discontinuity).
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3.2.6. Convergence to and at infinity of a function. We mention that
it is possible to make sense of the limits

lim
x→∞

f(x) = ℓ, lim
x→−∞

f(x) = ℓ,

and also of
lim
x→c

f(x) = ∞, lim
x→c

f(x) = −∞.

The latter two can also be applied to left and right limits.
For example,

lim
x→∞

1

x
= 0, lim

x→−∞

1

x
= 0, lim

x→0+

1

x
= ∞, lim

x→0−

1

x
= −∞.

Remark 3.28 (Metric spaces). We build on Remark 2.23. Let X and Y
be metric spaces. It makes sense to define a continuous function f : X → Y
as in Definition 3.1, with |x − c| replaced by dist(x, c) (distance in X), and
|f(x)− f(c)| replaced by dist(f(x), f(c)) (distance in Y ). For the example of
f : R2 → R, see Definition 6.12.

An even more general context for continuous functions is that of topolog-
ical spaces (in which there is a qualitative rather than quantitative notion of
what it means for two points to be close to each other). For more details, see
Munkres [20, Chapter 2].



CHAPTER 4

Differentiability

4.1. Differentiability

The intuitive idea of a differentiable function f is that the graph of f
has tangents which are not vertical (that is, of finite slope). See illustration
below. We now formalize this notion.

x

y

f(x)

4.1.1. Differentiable functions. Let A ⊆ R, and c be an interior point of
A.

Definition 4.1. A function f : A→ R is differentiable at c if the limit

lim
h→0

f(c+ h)− f(c)

h

exists. We denote it by f ′(c), and call it the derivative of f at c.
Equivalently, a function f : A → R is differentiable at c if there is a real

number α such that

(4.1) lim
h→0

f(c+ h)− f(c)− αh

h
= 0.

In this case, we say α is the derivative of f at c. Note: One may also replace
h by |h| in the denominator in (4.1).

Example 4.2. Let us illustrate the notion of differentiability.

(1) Let f : R → R be a constant function. Then f is differentiable and
f ′(c) = 0 for all c ∈ R.

(2) Let f1, f2, f3 : R → R be

f1(x) = x, f2(x) = x2, f3(x) = x
2
3 .

Their graphs are shown below.

x

y

x

y

x

y
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We have:
• f1 is differentiable and f ′1(c) = 1 for all c ∈ R.
• f2 is differentiable and f ′2(c) = 2c for all c ∈ R.
• f3 is differentiable at c ̸= 0, but, it is not differentiable at 0 since

f3(0 + h)− f3(0)

h
=

1

h1/3

whose limit does not exist as h→ 0.
(3) Let f(0) = 0 and f(x) = x sin(1/x) for x ∈ R \ {0}. Then f is not

differentiable at 0 since

f(0 + h)− f(0)

h
= sin

( 1
h

)
whose limit does not exist as h→ 0.

4.1.2. Left and right derivatives. Let f : A→ R.
(i) Suppose c ∈ A is such that [c, c+ r) ⊆ A for some r > 0. If the limit

lim
h→0+

f(c+ h)− f(c)

h

exists, then we call it the right derivative of f at c, and denote it by
f ′+(c).

(ii) Suppose c ∈ A is such that (c− r, c] ⊆ A for some r > 0. If the limit

lim
h→0−

f(c+ h)− f(c)

h

exists, then we call it the left derivative of f at c, and denote it by
f ′−(c).

Lemma 4.3. If c is an interior point of A, then f : A → R is differentiable
at c iff f ′+(c) and f

′
−(c) both exist and are equal.

Example 4.4. Let f(x) = |x|. Then f ′−(0) = −1 and f ′+(0) = 1. Hence f is
not differentiable at 0.

4.1.3. Derivative function. Let us now focus on the case when the domain
of f is an interval I.

We say f : (a, b) → R is differentiable on (a, b) if f is differentiable at
every c ∈ (a, b). In this case, define

f ′ : (a, b) → R, c 7→ f ′(c).

We call f ′ the derivative of f . We make a similar definition when the domain
of f is (a,∞), (−∞, b), R.

We say f : [a, b] → R is differentiable on [a, b] if f is differentiable on
(a, b), and f ′+(a) and f

′
−(b) exist. In this case, define

f ′ : [a, b] → R, a 7→ f ′+(a), c 7→ f ′(c), b 7→ f ′−(b)

for c ∈ (a, b). We make a similar definition when the domain of f is [a, b),
(a, b], [a,∞), (−∞, b].
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4.1.4. Increment function.

Lemma 4.5 (Caratheodory lemma). A function f : A → R is differen-
tiable at an interior point c of A iff there is a function f1 : A → R which is
continuous at c such that

f(x)− f(c) = (x− c)f1(x)

for x ∈ A. Moreover, f ′(c) = f1(c).

We call f1 : A → R the increment function. Note very carefully: f1
depends on the point c.

Proof. We make use of Proposition 3.25.
Forward implication. Let f be differentiable at c. Define

f1(x) :=

{
f(x)−f(c)

x−c if x ∈ A \ {c},
f ′(c) if x = c.

Then f1 is continuous at c since limx→c f1(x) = f ′(c) = f1(c).
Backward implication. Let f1 be as stated. Then

lim
h→0

f(c+ h)− f(c)

h
= lim
h→0

f1(c+ h) = lim
x→c

f1(x) = f1(c)

since f1 is continuous at c. Hence f is differentiable at c. □

In other words, the increment function f1 keeps track of slopes of all
secants drawn from (c, f(c)). More precisely, f1(x) is the slope of the line
segment joining (c, f(c)) to (x, f(x)) for x ̸= c, and f1(c) is the slope of the
tangent line at (c, f(c)).

x

y

c

Corollary 4.6. If f is differentiable at c, then f is continuous at c.

Proof. Let f be differentiable at c. Using Caratheodory Lemma 4.5, write

f(x) = f(c) + (x− c)f1(x).

Since f1 is continuous, so is f by Lemma 3.4. Alternatively,

lim
x→c

f(x) = lim
x→c

f(c) + (x− c)f1(x) = f(c)

by Lemma 3.23. Now use Proposition 3.25. □

Remark 4.7. If f is not continuous at c, then it is not differentiable at c.
For example: The function f(x) = [x] is not continuous at 5, hence it is not
differentiable at 5.



4.1. DIFFERENTIABILITY 29

The converse of Corollary 4.6 is false. For example: The function f(x) =
|x| is continuous at 0, but it is not differentiable at 0.

Remark 4.8. Here is an alternative way to phrase Caratheodory lemma. A
function f : A → R is differentiable at an interior point c of A iff there is a
real number α such that

f(c+ h) = f(c) + αh+ ϵ(h)h

where ϵ(h) is defined for small h, and ϵ(h) → 0 as h→ 0. Moreover, f ′(c) = α.

4.1.5. Algebra of differentiable functions. The operations of addition,
multiplication, scalar multiplication on functions are compatible with the no-
tion of differentiability in the following sense.

Lemma 4.9. Suppose f, g : A→ R are differentiable at c ∈ A. Then

(i) f + g is differentiable at c, and

(f + g)′(c) = f ′(c) + g′(c),

(ii) rf is differentiable at c, and

(rf)′(c) = rf ′(c)

for r ∈ R,
(iii) fg is differentiable at c, and

(fg)′(c) = f ′(c)g(c) + f(c)g′(c),

(iv) 1/f is differentiable at c, and

(1/f)′(c) =
−f ′(c)
f(c)2

if f(c) ̸= 0.

Proof. For item (i): Write

f(x) = f(c) + (x− c)f1(x) and g(x) = g(c) + (x− c)g1(x).

Then
f(x) + g(x) = f(c) + g(c) + (x− c)[f1(x) + g1(x)].

Thus,
(f + g)(x) = (f + g)(c) + (x− c)(f1 + g1)(x).

Since f1 and g1 are both continuous at c, so is f1+g1. It serves as the increment
function for f + g at the point c. Thus by Caratheodory Lemma 4.5, f + g is
differentiable at c. Moreover,

(f + g)′(c) = (f + g)1(c) = (f1 + g1)(c) = f1(c) + g1(c) = f ′(c) + g′(c).

Proofs of items (ii), (iii), (iv) use similar ideas. □

Lemma 4.10 (Chain rule). Let f : A → B and g : B → R. Let c be an
interior point of A, and f(c) be an interior point of B. If f is differentiable
at c, and g is differentiable at f(c), then the composite g ◦ f : A → R is
differentiable at c, and

(4.2) (g ◦ f)′(c) = g′(f(c))f ′(c).

Proof. Exercise. □
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Example 4.11. Let φ(x) = (4x3 + 3)7 + 2. Define f(x) = 4x3 + 3 and
g(y) = y7 + 2. Then φ = g ◦ f . Hence,

φ′(c) = g′(f(c))f ′(c) = 7(4c3 + 3)6(12c2).

Lemma 4.12. Let f : (a, b) → (p, q) be continuous, and a bijection. Let f−1 :
(p, q) → (a, b) be the inverse function. Let f be differentiable at c ∈ (a, b),
and f ′(c) ̸= 0. Then f−1 is differentiable at f(c) ∈ (p, q), and

(f−1)′(f(c)) =
1

f ′(c)
.

Proof. Put g = f−1. Then φ = g ◦ f is the identity function on (a, b). By
the chain rule, 1 = φ′(c) = g′(f(c))f ′(c). Therefore, g′(f(c)) = 1/f ′(c). □

Draw a picture.

Example 4.13. Let us illustrate Lemma 4.12.

(1) Let

f : (−π
2
,
π

2
) → (−1, 1), f(x) = sin(x).

Then f is continuous and a bijection. Its inverse function is denoted
sin−1. Put f(c) = d. Thus,

(sin−1)′(d) = (f−1)′(d) =
1

f ′(c)
=

1

cos(c)
=

1√
1− sin2 c

=
1√

1− d2
.

(2) Fix a positive integer n ≥ 1. Let

f : (0,∞) → (0,∞), f(x) = xn.

Then f is continuous and a bijection. Put f(c) = d. Thus,

(f−1)′(d) =
1

f ′(c)
=

1

ncn−1
=

1

nd(n−1)/n
=

1

n
d(1/n)−1.

Remark 4.14. The derivative of a trigonometric function is again a trigono-
metric function. However, the derivative of an inverse trigonometric function
is algebraic involving rational functions and square roots. This is because the
relations among different trigonometric functions are algebraic, and usually
quadratic. For instance, in the above calculation of the derivative of sin−1,
we used the quadratic relation sin2 θ + cos2 θ = 1.

4.2. Maxima and minima

The derivative provide an effective tool to solve maxima and minima
(optimization) problems. Conversely, one can use these ideas to prove results
about the derivative such that the mean value theorem. This establishes a
clear connection between sign of the first derivative and increasing/decreasing
functions. Going one step further, there is a connection between sign of the
second derivative and convex/concave functions.
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4.2.1. Global and local maxima/minima. Let f : A→ R be a function.

Definition 4.15. We say:

(i) f has a global maximum at c if f(x) ≤ f(c) for x ∈ A. In this case,
f(c) is the least upper bound of f , and it is attained at c.

(ii) f has a global minimum at c if f(x) ≥ f(c) for x ∈ A. In this case, f(c)
is the greatest lower bound of f , and it is attained at c.

Definition 4.16. We say:

(i) f has a local maximum at c if there is δ > 0 such that |x−c| < δ implies
f(x) ≤ f(c).

(ii) f has a local minimum at c if there is δ > 0 such that |x−c| < δ implies
f(x) ≥ f(c).

Note: Global maximum (minimum) implies local maximum (minimum),
but the converse is false.

Note: A constant function has both a global maximum and a global
minimum at all points.

We say f has a global (local) extremum at c if it has either a global (local)
maximum at c, or a global (local) minimum at c.

4.2.2. Local maxima/minima: necessary condition.

Lemma 4.17. Let c be an interior point of A. If f : A→ R is differentiable
at c, and has either a local maximum or a local minimum at c, then f ′(c) = 0.

See illustrations below.

Proof. Suppose f has a local minimum at c. Thus, for small h, f(c+ h)−
f(c) ≥ 0.

h > 0 :
f(c+ h)− f(c)

h
≥ 0. Hence, f ′+(c) ≥ 0.

h < 0 :
f(c+ h)− f(c)

h
≤ 0. Hence, f ′−(c) ≥ 0.

Now f differentiable at c implies f ′+(c) = f ′−(c) = f ′(c) = 0.
Equivalently, we may argue using the increment function: f1(c + h) ≥ 0

for h > 0, and f1(c + h) ≤ 0 for h < 0. And f1(x) is continuous at c, so
f1(c) = 0.

We can make a similar argument when f has a local maximum at c. □

Remark 4.18. We make some remarks related to the above result.

(1) Let f : [−1, 1] → R with f(x) = x2. Then f has a local minimum at
the interior point 0, and indeed f ′(0) = 0 as claimed by Lemma 4.17.

(2) Let f : [0, 1] → R with f(x) = x. Then f has a local minimum at 0
and local maximum at 1. But f ′+(0) ̸= 0 and f ′−(1) ̸= 0. This does not
contradict Lemma 4.17 since 0 and 1 are not interior points.

(3) Let f : [−1, 1] → R with f(x) = x3. Then f ′(0) = 0, but f does not
have a local maximum or a local minimum at 0. Thus, the converse to
Lemma 4.17 is false.
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4.2.3. Rolle’s theorem and mean value theorem. We now discuss Rolle’s
theorem and the mean value theorem. The former is a special case of the lat-
ter. The latter is attributed to Lagrange.

Theorem 4.19 (Rolle’s theorem). Let f : [a, b] → R be such that

(i) f is continuous on [a, b],
(ii) f is differentiable on (a, b),
(iii) f(a) = f(b).

Then there is c ∈ (a, b) such that f ′(c) = 0.

See illustration below.

x

y

f(a) = f(b)

a b

Proof. We consider two cases.

• f is constant. Then f ′(c) = 0 for all c ∈ (a, b).
• f is not a constant. Then the global minimum of f is strictly smaller
than the global maximum of f . Since f is continuous, by Theorem 3.15,
both are attained on [a, b]. Both cannot be at a and b since f(a) = f(b).
Hence, there is c ∈ (a, b) such that f has either a global maximum
or a global minimum at c. Global maximum/minimum implies local
maximum/minimum, so by Lemma 4.17, f ′(c) = 0.

□

Example 4.20. Let us return to Example 3.11. We saw by IVP that the
function f(x) = x4 + 2x3 − 2 has a root in (0, 1). Now let us show that
f(x) = x4 + 2x3 − 2 has exactly one root in (0, 1).

Suppose there are two roots in (0, 1). Say f(a) = 0 = f(b) for 0 <
a < b < 1. Then by Rolle’s theorem, f ′(c) = 0 for some c ∈ (a, b). Now
f ′(x) = 4x3 + 6x2 = 2x2(2x+ 3) ̸= 0 for x ∈ (0, 1). This is a contradiction.

x

y

x

y

The graphs of f and f ′ are shown above. The red point is x = 1.

Theorem 4.21 (Mean value theorem). Let f : [a, b] → R be such that

(i) f is continuous on [a, b],
(ii) f is differentiable on (a, b).
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Then there is c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

See illustration below.

x

y

a

f(a)

b

f(b)

c

Proof. For x ∈ [a, b], define

F (x) := f(x)− f(b)− f(a)

b− a
(x− a).

Then F is continuous on [a, b], differentiable on (a, b) and F (a) = f(a) =
F (b). By Rolle’s theorem, there is c ∈ (a, b) such that F ′(c) = 0, that is,

f ′(c) = f(b)−f(a)
b−a . □

Remark 4.22 (Physical interpretation). Let f(t) denote the displace-

ment of a particle at time t for a ≤ t ≤ b. Then the average speed is f(b)−f(a)
b−a ,

and speed at time c is f ′(c). Thus, MVT says that there is a time c such that
the speed at time c equals the average speed.

Remark 4.23. Note very carefully: Rolle’s theorem and the mean value
theorem are results about the derivative, and make no direct reference to the
notions of minima and maxima. Then why are they in this section, and not
in Section 4.1? The reason is that the proof of Rolle’s theorem uses a result
about minima and maxima.

Rolle’s theorem is a corollary of the mean value theorem obtained by
imposing the additional hypothesis f(a) = f(b). Then why is it stated earlier
rather than later? The reason is that Rolle’s theorem is used in the proof of
the mean value theorem.

4.2.4. Mean value inequality.

Lemma 4.24. Let f : [a, b] → R be such that f is continuous on [a, b], and
differentiable on (a, b). If m ≤ f ′(x) ≤M for all x ∈ (a, b), then

m(b− a) ≤ f(b)− f(a) ≤M(b− a).

This is the mean value inequality.

Proof. This follows from Theorem 4.21 (MVT). □

Example 4.25. Fix n. Define f : [n, n + 1] → R by f(x) =
√
x. Then

f ′(x) = 1
2
√
x
. Moreover,

1

2
√
n+ 1

≤ f ′(x) ≤ 1

2
√
n
.



34 4. DIFFERENTIABILITY

Therefore, by the mean value inequality,

1

2
√
n+ 1

(n+ 1− n) ≤
√
n+ 1−

√
n ≤ 1

2
√
n
(n+ 1− n).

For n = 1, we get 1
2
√
2
≤

√
2 − 1 ≤ 1

2 . Therefore,
√
2 < 3

2 . To get a lower

bound, we use 1√
2
> 2

3 . So
1
2
2
3 <

√
2− 1 which yields 4

3 <
√
2. Thus,

4

3
<

√
2 <

3

2
.

4.2.5. Increasing and decreasing functions.

Lemma 4.26. Let f : [a, b] → R be such that f is continuous on [a, b], and
differentiable on (a, b).

(1) If f ′(x) = 0 for x ∈ (a, b), then f is constant on [a, b]. (Converse true).
(2) (i) If f ′(x) ≥ 0 for x ∈ (a, b), then f is increasing on [a, b]. (Converse

true).
(ii) If f ′(x) ≤ 0 for x ∈ (a, b), then f is decreasing on [a, b]. (Converse

true).
(iii) If f ′(x) > 0 for x ∈ (a, b), then f is strictly increasing on [a, b].

(Converse false).
(iv) If f ′(x) < 0 for x ∈ (a, b), then f is strictly decreasing on [a, b].

(Converse false).

Proof. These can be deduced from Theorem 4.21 (MVT). □

Example 4.27. Define f : R → R by f(x) = x(1 − x). Its graph is shown
below.

x

y

Then f ′(x) = 1− 2x. Thus, f ′(x) > 0 if x < 1
2 , and f

′(x) < 0 if x > 1
2 . So, f

is strictly increasing on (−∞, 12 ), and strictly decreasing on (12 ,∞).

4.2.6. Convex functions. Recall convex functions from Section 1.2.10. We
now relate them to differentiability.

Lemma 4.28. Let I be an interval and f : I → R be differentiable. Then

(i) f ′ is increasing on I iff f is convex on I.
(ii) f ′ is decreasing on I iff f is concave on I.
(iii) f ′ is strictly increasing on I iff f is strictly convex on I.
(iv) f ′ is strictly decreasing on I iff f is strictly concave on I.

Proof. See [12, Proposition 4.31]. Note: Items (i) and (ii) imply each other,
while items (iii) and (iv) imply each other. □
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An illustration of item (i) is shown below.

x

y

Note how the slopes of the tangents increase as we move from left to right.

Corollary 4.29. Let I be an interval and f : I → R be twice differentiable.
Then

(i) f ′′ ≥ 0 on I iff f is convex on I.
(ii) f ′′ ≤ 0 on I iff f is concave on I.
(iii) If f ′′ > 0 on I, then f is strictly convex on I.
(iv) If f ′′ < 0 on I, then f is strictly concave on I.

Example 4.30. This result gives a test for convexity as illustrated below.

(1) The function f(x) = x2 is strictly convex since f ′′(x) = 2 > 0 at all
points. Its graph is shown below on the left. The function f(x) = x4 is
convex since f ′′(x) = 12x2 ≥ 0. Its graph is shown below on the right.
In fact, it is strictly convex, even though the second derivative is not
strictly positive at all points.

x

y

x

y

(2) The exponential function f(x) = ex is strictly convex since f ′′(x) =
ex > 0. Its graph is shown below on the left. The logarithm function
f(x) = log x is strictly concave since f ′′(x) = −1/x2 < 0. Its graph is
shown below on the right.

x

y

x

y

4.2.7. Critical points and global maxima/minima. Let f : A→ R. An
interior point c of A is a critical point of f if either f is not differentiable at
c, or if f is differentiable at c and f ′(c) = 0.

Lemma 4.31. Let f : [a, b] → R be continuous. Then the global minimum
and global maximum of f are attained at points which are either critical points
of f or endpoints of [a, b].

Proof. Suppose f(c) is a global maximum. We consider two cases.

• c = a or c = b. Then c is an endpoint of [a, b].
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• c ∈ (a, b). We consider two subcases.
– f is not differentiable at c. Then c is a critical point of f .
– f is differentiable at c. Since f has a global maximum at c, it has

a local maximum at c. Hence f ′(c) = 0 by Lemma 4.17, and c is
a critical point of f .

The argument for a global minimum is similar. □

Thus, to find the global maximum and global minimum of f , we first find
the critical points of f . Then we evaluate f at these critical points, and at
endpoints of [a, b]. Among these values, the largest is the global maximum,
and smallest is the global minimum.

Example 4.32. Let f : [−1, 2] → R be defined by

f(x) =

{
−x if − 1 ≤ x ≤ 0,

2x3 − 4x2 + 2x if 0 ≤ x ≤ 2.

It is continuous everywhere. Its graph is shown below.

x

y

1
3 1 2−1

Observe

f ′(x) =

{
−1 if − 1 ≤ x < 0,

2(3x− 1)(x− 1) if 0 < x ≤ 2.

Note: f is not differentiable at x = 0. Also, f ′(x) = 0 iff x = 1
3 or x = 1. So

x = 0, 13 , 1 are the critical points. Let us tabulate f at the critical points, and
at the endpoints:

x −1 0 1
3 1 2

f(x) 1 0 8
27 0 4

Thus, we see f has global maximum 4 attained at x = 2, and f has global
minimum 0 attained at x = 0 and x = 1.

4.2.8. Local maxima/minima: sufficient conditions. Let f : A → R.
Let c be an interior point of A with (c− δ, c+ δ) ⊆ A.

Lemma 4.33 (First derivative test). Let f be differentiable on (c − δ, c)
and (c, c+ δ). Then:

(i) If f ′ ≥ 0 on (c − δ, c) and f ′ ≤ 0 on (c, c + δ), and f is continuous at
c, then f has a local maximum at c.

(ii) If f ′ ≤ 0 on (c − δ, c) and f ′ ≥ 0 on (c, c + δ), and f is continuous at
c, then f has a local minimum at c.
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Proof. For item (i): Since f ′ ≥ 0 on (c − δ, c), f is increasing on (c − δ, c).
Similarly, since f ′ ≤ 0 on (c, c+ δ), f is decreasing on (c, c+ δ). Finally, since
f is continuous at c, we deduce that f(c) ≥ f(x) for x ∈ (c− δ, c+ δ).

Argument for item (ii) is similar. □

Lemma 4.34 (Second derivative test). Let f be differentiable in an open
interval containing c, and twice differentiable at c.

(i) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.
(ii) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

Proof. For item (i):

f ′′(c) = lim
h→0

f ′(c+ h)− f ′(c)

h
= lim
h→0

f ′(c+ h)

h
< 0.

Thus, there is δ > 0 such that

f ′(c+ h) < 0 for 0 < h < δ,

and

f ′(c+ h) > 0 for − δ < h < 0.

So f has a local maximum at c by Lemma 4.33.
Argument for item (ii) is similar. □

4.2.9. Points of inflection. Let c be an interior point of an interval I, and
let f : I → R.

Definition 4.35. We say c is a point of inflection for f if for some δ > 0,

(i) either f is convex on (c− δ, c) and concave on (c, c+ δ),
(ii) or f is concave on (c− δ, c) and convex on (c, c+ δ).

See illustrations below. In the first two pictures, item (i) holds, while in
the next two pictures, item (ii) holds.

x

y

c
x

y

c

x

y

c
x

y

c

Remark 4.36. We make some remarks related to the notion of an inflection
point.

(1) There are two different kinds of inflection points, depending on whether
item (i) holds or item (ii) holds. However, we use the same terminology
for both. In the setting of maximum/minimum, we indeed use two
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different terminologies. To refer to them together, we use the term
extremum.

(2) The definition of inflection point c does not put any condition on f(c).
In particular, f is not required to be continuous or differentiable at c
(or at any other point).

(3) A linear function is both convex and concave, so every point of a linear
function is an inflection point.

Recall: We have related the notions of convexity and differentiability.
This leads to the following.

Lemma 4.37 (Derivative tests).

(i) Suppose f is differentiable in an open interval containing c, except pos-
sibly at c. Then c is a point of inflection for f iff f ′ is increasing on
(c− δ, c) and decreasing on (c, c+ δ), or vice versa, for some δ > 0.

(ii) Suppose f is twice differentiable in an open interval containing c, except
possibly at c. Then c is a point of inflection for f iff f ′′ ≥ 0 on (c−δ, c)
and f ′′ ≤ 0 on (c, c+ δ), or vice versa, for some δ > 0.

Proof. Item (i) follows from Lemma 4.28. Similarly, item (ii) follows from
Corollary 4.29. □

Example 4.38. Define f : R → R by f(x) = |x(1 − x)|. Its graph is shown
below. Compare with the graph in Example 4.27.

x

y

0 1

In the interval (0, 1), f ′(x) = 1 − 2x is strictly decreasing. In the intervals
(−∞, 0) and (1,∞), f ′(x) = 2x − 1 is strictly increasing. Thus, f is strictly
concave in (0, 1), and strictly convex in (−∞, 0) and (1,∞). It has inflection
points at 0 and 1.

Exercise 4.39. Check: f : R → R defined by f(x) = x|x| is strictly concave
in (−∞, 0) and strictly convex in (0,∞), and has a point of inflection at x = 0.

Lemma 4.40 (Necessary condition). Let f be twice differentiable at a
point of inflection c for f . Then f ′′(c) = 0.

Proof. The hypothesis implies that f is differentiable in an open interval
containing c. By Lemma 4.37, item (i), f ′ is increasing on (c − δ, c) and
decreasing on (c, c + δ), or vice versa, for some δ > 0. Let us assume the
former, the latter is similar. Since f ′ is differentiable at c, it is continuous at
c. So f ′ has a local maximum at c. Hence, by Lemma 4.17 applied to f ′, we
get f ′′(c) = 0. □

The condition f ′′(c) = 0 is not sufficient to have an inflection point. For
example: Take f(x) = x4. Then f ′′(0) = 0, and f has a local minimum at
x = 0 (not an inflection point).
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Lemma 4.41 (Sufficient condition). Suppose f is thrice differentiable at
c. If f ′′(c) = 0 and f ′′′(c) ̸= 0, then c is a point of inflection for f .

Proof. The hypothesis implies that f is twice differentiable in an open in-
terval containing c. Suppose f ′′′(c) < 0.

f ′′′(c) = lim
h→0

f ′′(c+ h)− f ′′(c)

h
= lim
h→0

f ′′(c+ h)

h
< 0.

Thus, there is δ > 0 such that

f ′′(c+ h) < 0 for 0 < h < δ,

and
f ′′(c+ h) > 0 for − δ < h < 0.

So f has a point of inflection at c by Lemma 4.37, item (ii).
The case f ′′′(c) > 0 is similar. □

Example 4.42. Take f(x) = x3. Then f ′′(0) = 0 and f ′′′(0) = 6 ̸= 0, and
hence f has an inflection point at x = 0.

However, the condition f ′′′(c) ̸= 0 is not necessary to have an inflection
point. For example: Take f(x) = x5. Then f ′′′(0) = 0, and yet f has an
inflection point at x = 0. We may also take f(x) = x. Then f ′′′(c) = 0 for all
c, and yet each c is an inflection point for f .

Table 4.1. Comparison of local extremum and inflection point.

local extremum for f at c inflection point for f at c

necesary condition f ′(c) = 0 (Lemma 4.17) f ′′(c) = 0 (Lemma 4.40)

sufficient condition
f ′(c) = 0 and f ′′(c) ̸= 0

(Lemma 4.34)
f ′′(c) = 0 and f ′′′(c) ̸= 0

(Lemma 4.41)

A comparison of local extremum and inflection point (under suitable dif-
ferentiability hypothesis) is shown in Table 4.1. An illustration of the same
is shown below.

f ′(c) = 0f is increasing f is decreasing

f ′′(c) ̸= 0f ′ ≥ 0 f ′ ≤ 0

f ′′(c) = 0f ′ is increasing f ′ is decreasing

f ′′′(c) ̸= 0f ′′ ≥ 0 f ′′ ≤ 0

Example 4.43. Let f : [−.1, 4.1] → R with f(x) = x3 − 6x2 + 9x + 1. Its
graph is shown below.

x

y

1 2 3 4
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Note:

f ′(x) = 3(x− 3)(x− 1), f ′′(x) = 6(x− 2), f ′′′(x) = 6.

It is easy to determine the intervals where f ′, f ′′, f ′′′ are positive, zero,
negative. Also, f(0) = 1, f(1) = 5, f(2) = 3, f(3) = 1, f(4) = 5. We deduce
that f has a local maximum at 1, a local minimum at 3, a point of inflection
at 2. Further, it has a global minimum at the left endpoint −.1, and a global
maximum at the right endpoint 4.1.

For any function f , it is easier to answer questions about its local max-
imum/minimum and inflection points if we have a general idea of how the
graph of f looks. In this regard, note that Example 4.43 fits into a class of
functions called polynomials. The graphs of polynomials are briefly discussed
in Section 1.2.8.

4.2.10. Asymptotes. There are three types of asymptotes to a function
f : A → R, namely, horizontal, vertical, oblique. Let us go over them one by
one.

(i) The line y = b is a horizontal asymptote to y = f(x) if

lim
x→−∞

f(x) = b or lim
x→∞

f(x) = b.

These correspond, respectively, to the two pictures below.

(ii) The line x = a is a vertical asymptote to y = f(x) if

lim
x→a−

f(x) = ±∞ or lim
x→a+

f(x) = ±∞.

These correspond, respectively, to the two pictures below. In both
cases, the limit is ∞. Similar pictures can be drawn when the limit is
−∞.

(iii) The line y = ax+ b is an oblique asymptote to y = f(x) if

lim
x→−∞

[f(x)− (ax+ b)] = 0 or lim
x→∞

[f(x)− (ax+ b)] = 0.

These correspond, respectively, to the two pictures below.



4.2. MAXIMA AND MINIMA 41

Example 4.44. Let f : R → R with f(x) = 1
1+x2 . Its graph is shown below.

x

y

1√
3

−1√
3

The line y = 0 is a horizontal asymptote. Note:

f ′(x) =
−2x

(1 + x2)2
and f ′′(x) =

2(3x2 − 1)

(1 + x2)3
.

The function f has a local maximum at 1. It is convex in the intervals
(−∞, −1√

3
) and ( 1√

3
,∞), and concave in the interval (−1√

3
, 1√

3
).

Example 4.45. Let f : R \ {−2} → R with f(x) = x2−1
x+2 . Its graph is shown

below.

x

y

Note:

f ′(x) =
(x+ 2 +

√
3)(x+ 2−

√
3)

(x+ 2)2
and f ′′(x) =

6

(x+ 2)3
.

We deduce:

• f is increasing on (−∞,−2 −
√
3) and (−2 +

√
3,∞), and decreasing

on (−2−
√
3,−2) and (−2,−2 +

√
3).

• f has a local maximum at −2−
√
3 and local minimum at −2 +

√
3.

• f is concave on (−∞,−2) and convex on (−2,∞).
• f has no point of inflection.
• The line x = −2 is a vertical asymptote, and y = x − 2 is an oblique
asymptote.



CHAPTER 5

Integration

5.1. Riemann integral

The intuitive idea of the integral of a function f is the area under the
graph of f . See illustration below. We now formalize this notion.

x

y
f(x)

5.1.1. Riemann integrable functions. Let a < b be real numbers, and
f : [a, b] → R be a bounded function. Let M be the global maximum of f ,
and m the global minimum of f . A partition P of [a, b] is a sequence of points

a = x0 < x1 < · · · < xn−1 < xn = b.

We write

P = {x0 < x1 < · · · < xn−1 < xn}.
The norm of partition P is defined as

∥P∥ := max{xi − xi−1 : 1 ≤ i ≤ n}.

For each 1 ≤ i ≤ n, let Mi be the global maximum of f on [xi−1, xi], and
mi the global minimum of f on [xi−1, xi]. Let

U(P, f) =

n∑
i=1

Mi(xi − xi−1) and L(P, f) =

n∑
i=1

mi(xi − xi−1).

We call U(P, f) the upper sum, and L(P, f) the lower sum. Then

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a).

Draw a picture.

Definition 5.1. A bounded function f : [a, b] → R is Riemann integrable if
there is a sequence {Pn} of partitions of [a, b] such that

U(Pn, f)− L(Pn, f) → 0 as n→ ∞.

42
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5.1.2. Riemann integral. Let f : [a, b] → R be Riemann integrable.

Proposition 5.2. There is a real number A such that

L(P, f) ≤ A ≤ U(P, f)

for every partition P of [a, b], and

lim
n→∞

L(Pn, f) = A = lim
n→∞

U(Pn, f)

for every sequence {Pn} of partitions of [a, b] with ∥Pn∥ → 0.

The proof uses the completeness property of R, and is omitted. We write∫ b

a

f(x) dx = A,

and call it the Riemann integral of f .

5.1.3. Riemann sums. For P a partition of [a, b], let

S(P, f) =

n∑
i=1

f(ci)(xi − xi−1)

where ci ∈ [xi−1, xi] for 1 ≤ i ≤ n. We call S(P, f) a Riemann sum. Note
very carefully: Along with P and f , a Riemann sum S(P, f) depends on the
choice of points ci.

Observe:
L(P, f) ≤ S(P, f) ≤ U(P, f).

In words, any Riemann sum lies between the lower and upper sums.

Proposition 5.3. Suppose

• f is Riemann integrable on [a, b],
• {Pn} is a sequence of partitions of [a, b] with ∥Pn∥ → 0,
• S(Pn, f) is any Riemann sum for Pn and f .

Then

S(Pn, f) →
∫ b

a

f(x) dx

as n→ ∞.

Proof. By Proposition 5.2, sequences L(Pn, f) and U(Pn, f) have the same

limit, namely,
∫ b
a
f(x) dx. Now apply sandwich Lemma 2.15 to L(Pn, f) ≤

S(Pn, f) ≤ U(Pn, f). □

5.1.4. Domain additivity.

Lemma 5.4. Let f : [a, b] → R be a bounded function, and let c ∈ (a, b).
Then f is Riemann integrable on [a, b] iff f is Riemann integrable on [a, c]
and on [c, b]. In this case,∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Proof. The proof is straightforward. For details, see [12, Proposition 6.7].
□

Convention:
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• For a = b, we set
∫ b
a
f(x) dx = 0.

• For b < a, we set
∫ b
a
f(x) dx = −

∫ a
b
f(x) dx.

5.1.5. Monotone functions. Recall monotonic functions from Definition 1.7.

Lemma 5.5. If f : [a, b] → R is monotonic, then f is Riemann integrable.

Draw a picture.

Proof. Let P = {x0 < x1 < · · · < xn−1 < xn} be a partition of [a, b].
Suppose f is increasing on [a, b]. Then Mi = f(xi) and mi = f(xi−1) for
1 ≤ i ≤ n. Hence

U(P, f)− L(P, f) =

n∑
i=1

(f(xi)− f(xi−1))(xi − xi−1) ≤ ∥P∥(f(b)− f(a)).

Now take any sequence {Pn} with ∥Pn∥ → 0. (For instance, Pn partitions
[a, b] into n equal parts.) Then

U(Pn, f)− L(Pn, f) ≤ ∥Pn∥(f(b)− f(a)) → 0 as n→ ∞.

So f is Riemann integrable.
The case when f is decreasing on [a, b] is similar. □

Example 5.6. Let us illustrate Lemma 5.5.

(1) The function f : [−1, 1] → R given by f(x) = x
2
3 is Riemann integrable.

To see this,
• f is decreasing in [−1, 0], and hence Riemann integrable on [−1, 0],
• f is increasing in [0, 1], and hence Riemann integrable on [0, 1].

By Lemma 5.4, f is Riemann integrable on [−1, 1].
(2) The integer part function f(x) = [x] on [a, b] is increasing, and hence

Riemann integrable.

5.1.6. Continuous functions.

Lemma 5.7. If f : [a, b] → R is bounded, and has at most finitely many
discontinuities, then f is Riemann integrable.

In particular, if f : [a, b] → R is continuous, then f is Riemann integrable.

Proof. We omit the proof. The idea is to use that any continuous function
on [a, b] is uniformly continuous. For details, see [1, Theorem 3.14] or [12,
Proposition 6.9, item (ii)]. □

Example 5.8. Let us illustrate Lemma 5.7.

(1) Any polynomial function p : [a, b] → R is continuous, and hence Rie-
mann integrable.

(2) The functions f : [a, b] → R with f(x) = sinx or f(x) = cosx are
continuous, and hence Riemann integrable.

(3) The function f : [−1, 1] → R given by f(x) = x
2
3 is continuous, and

hence Riemann integrable.
(4) The integer part function f(x) = [x] on [a, b] has only finitely many

discontinuities, and hence it is Riemann integrable.
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5.1.7. Algebra of Riemann integrable functions. The operations of ad-
dition, multiplication, scalar multiplication on functions are compatible with
the notion of Riemann integrability in the following sense.

Lemma 5.9. Suppose f, g : [a, b] → R are Riemann integrable. Then

(i) f + g is Riemann integrable, and∫ b

a

(f + g)(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

(ii) rf is Riemann integrable, and∫ b

a

(rf)(x) dx = r

∫ b

a

f(x) dx

for r ∈ R,
(iii) fg is Riemann integrable,
(iv) 1/f is Riemann integrable if there is δ > 0 such that |f(x)| ≥ δ for

x ∈ [a, b] (so that 1/f is bounded).

Proof. We omit the proof. See [12, Proposition 6.15]. □

5.1.8. Further properties of the Riemann integral.

Lemma 5.10. For a < b, suppose f, g : [a, b] → R are Riemann integrable.

• If f(x) ≤ g(x), then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx.

In particular:

• If f(x) ≥ 0, then
∫ b
a
f(x) dx ≥ 0.

Proof. The particular case is clear. We get the general case by applying the
particular case to g − f , and using Lemma 5.9. □

Lemma 5.11. Suppose f : [a, b] → R is Riemann integrable. Then so is |f |,
and moreover ∣∣∫ b

a

f(x) dx
∣∣ ≤ ∫ b

a

|f(x)| dx.

Proof. Observe: 0 ≤ U(P, |f |) − L(P, |f |) ≤ U(P, f) − L(P, f). Now apply
sandwich Lemma 2.15. □

The converse of Lemma 5.11 is false. In other words, |f | Riemann inte-
grable does not imply f Riemann integrable. For example, take f to be the
function

(5.1) f : [0, 1] → R, f(x) =

{
1 if x ∈ Q,

−1 if x ∈ R \Q.

It is not Riemann integrable because L(P, f) = −1 and U(P, f) = 1 for any
partition P of [0, 1]. In contrast, |f | is the constant function 1, so it is clearly
Riemann integrable.

Exercise 5.12. Define the function f : [0, 1] → R by

(5.2) f(x) =

{
0 if x is irrational,

1/q if x = p/q in lowest terms.
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Show: f is Riemann integrable and
∫ 1

0
f(x) dx = 0. This gives an example

of a Riemann integrable function with infinitely many points of discontinuity
(by Exercise 3.18).

5.1.9. Application: computing limits. It is possible to evaluate limits of
certain sequences by interpreting their terms as Riemann sums for a suitable
function over a suitable interval. Let us illustrate this principle.

Example 5.13. Suppose we want to find the limit of the sequence

an =

n∑
i=1

n

n2 + i2
.

For that, rewrite an as

an =
1

n

n∑
i=1

1

1 + ( in )
2
.

Now define

f : [0, 1] → R, f(x) =
1

1 + x2
.

Then f is decreasing, and f is continuous. So either by Lemma 5.5 or by
Lemma 5.7, f is Riemann integrable.

Now let Pn be the partition of [0, 1] defined by xi =
i
n for 0 ≤ i ≤ n.

Take ci =
i
n . The key observation is that an = S(Pn, f), the Riemann sum

for Pn and f . Since ∥Pn∥ → 0,

an = S(Pn, f) −→
∫ 1

0

1

1 + x2
dx = tan−1(x)

∣∣∣∣1
0

=
π

4
− 0 =

π

4
.

Thus, an → π
4 .

Remark 5.14 (Lebesgue integration). In these notes, we give several
applications of Riemann integration. But it also suffers from many drawbacks.
To overcome these, it has now been replaced by Lebesgue integration. The
main difference between the two is the following.

• To define Riemann integral of f , one divides the domain of f into small
pieces.

• To define Lebesgue integral of f , one divides the codomain of f into
small pieces. This necessitates the concept of a measure, and of mea-
surable spaces.

For more details on Lebesgue integration, see Royden [23, Chapters 3,4,5],
Rudin [25, Chapters 1,2,3]. For an exposition directed towards probability
theory, see Billingsley [5, Chapters 2 and 3].

5.2. Fundamental theorem of calculus

Differentiation and integration are inverse processes. This contains two
statements, namely,

∫
F ′ = F and (

∫
f)′ = f . The fundamental theorem of

calculus makes these two statements precise.
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5.2.1. FTC. Part I. This pertains to integration followed by differentiation.

Theorem 5.15. Let f be Riemann integrable on [a, b]. For x ∈ [a, b], define

(5.3) F (x) :=

∫ x

a

f(t) dt.

Then F is continuous on [a, b]. Moreover, if f is continuous at c ∈ [a, b], then
F is differentiable at c, and F ′(c) = f(c).

Proof. Let us prove the second part. So let f be continuous at c. By domain
additivity (Lemma 5.4),

F (c+ h)− F (c)

h
=

1

h

∫ c+h

c

f(t) dt.

Therefore,∣∣F (c+ h)− F (c)

h
− f(c)

∣∣ = ∣∣ 1
h

∫ c+h

c

f(t)− f(c) dt
∣∣

≤ 1

|h|
|h| max{|f(t)− f(c)| : |t− c| ≤ h}.

This goes to 0 as h→ 0 since f is continuous at c. □

Example 5.16. Let f : [0, 3] → R be the integer part function given by
f(x) = [x]. Now define F : [0, 3] → R by formula (5.3) with a = 0. It is a
piecewise linear function. The graphs of f and F are shown below.

x

f(x)

x

F (x)

Note very carefully: f is not continuous at 1 and 2. But F is continuous at
all points. However, F is not differentiable at 1 and 2.

Example 5.17. Let f : [−1, 1] → R be the absolute value function given
by f(x) = |x|. Now define F : [−1, 1] → R by formula (5.3) with a = −1.
Explicitly,

F (x) =

{
1−x2

2 if −1 ≤ x ≤ 0,
1+x2

2 if 0 < x ≤ 1.

The graphs of f and F are shown below.

x

y

x

y

Note very carefully: f is not differentiable at 0. However, f is continuous at
0, and hence F is differentiable at 0.
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5.2.2. FTC. Part II. This pertains to differentiation followed by integra-
tion.

Theorem 5.18. Let f be Riemann integrable on [a, b]. Let F be continuous
on [a, b], differentiable on (a, b), and F ′ = f on (a, b). Then

(5.4)

∫ b

a

f(x) dx = F (b)− F (a).

Proof. For P = {x0 < x1 < · · · < xn−1 < xn} a partition of [a, b],

F (b)− F (a) =

n∑
i=1

F (xi)− F (xi−1)

=

n∑
i=1

F ′(ci)(xi − xi−1)

=

n∑
i=1

f(ci)(xi − xi−1)

= S(P, f).

In the second step, we used mean value Theorem 4.21.
Thus, for P any partition, F (b)−F (a) equals a Riemann sum associated

to P and f . Now take any sequence {Pn} with ∥Pn∥ → 0. Then

F (b)− F (a) = S(Pn, f) −→
∫ b

a

f(x) dx

by Proposition 5.3. □

In view of Theorems 5.15 and 5.18, we get the following correspondence.

continuously
differentiable
functions

continuous
functions

d
dx∫

5.2.3. Integration by parts.

Proposition 5.19. Let f, g be differentiable on [a, b], and f ′, g′ be Riemann
integrable on [a, b]. Then

(5.5)

∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

Proof. Put h := fg. Then by chain rule, h′ = fg′+f ′g. Thus, h′ is Riemann
integrable by Lemma 5.9. Now integrate and use Theorem 5.18. □

5.2.4. Integration by substitution.

Proposition 5.20. Consider functions [α, β]
φ−→ [a, b]

f−→ R. Suppose
• φ is differentiable on [α, β],
• φ′ is Riemann integrable on [α, β],
• f is continuous on [a, b].
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Then (f ◦ φ)φ′ is Riemann integrable on [α, β], and

(5.6)

∫ φ(β)

φ(α)

f(x) dx =

∫ β

α

f(φ(t))φ′(t) dt.

Proof. Since f and φ are continuous, their composite f◦φ is continuous, and
hence Riemann integrable. By hypothesis, φ′ is Riemann integrable. Hence,
the product (f ◦ φ)φ′ is Riemann integrable.

Define F : [a, b] → R by

F (x) :=

∫ x

a

f(u) du.

Define H : [α, β] → R as the composite H = F ◦ φ. By chain rule and
Theorem 5.15,

H ′(t) = F ′(φ(t))φ′(t) = f(φ(t))φ′(t).

Integrating,∫ β

α

f(φ(t))φ′(t) dt =

∫ β

α

H ′(t) dt = H(β)−H(α)

= F (φ(β))− F (φ(α)) =

∫ φ(β)

φ(α)

f(x) dx.

We used Theorem 5.18 in the second step and in the last step. □

5.3. Defining functions using the Riemann integral

We can use the Riemann integral to construct functions of a real variable
such as log x, sinx, and so on, and prove their basic properties. Usually, these
functions are introduced informally; their graphs are recalled in Section 1.2.

5.3.1. Logarithmic function. Define the logarithmic function

log : (0,∞) → R
by

log x :=

∫ x

1

1

t
dt.

Note: f(t) = 1
t is continuous on (0,∞), and bounded on [1, x] or on [x, 1]

(depending on whether x ≥ 1 or x ≤ 1). So the Riemann integral exists by
Lemma 5.7.

Proposition 5.21. The log function satisfies the following properties.

(i)

log x > 0 for x > 1, log 1 = 0, log x < 0 for 0 < x < 1.

(ii) log is differentiable and (log)′(x) = 1/x.
(iii) log is strictly increasing and strictly concave.
(iv) log(xy) = log(x) + log(y) for x, y > 0.
(v) log x→ ∞ as x→ ∞, and log x→ −∞ as x→ 0+.
(vi) log is bijective.

Proof.

• Item (i) is clear since 1/t > 0.
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• For item (ii): Use Theorem 5.15.
• For item (iii):

(log)′(x) > 0 and (log)′′(x) = −1/x2 < 0.

Now use Lemma 4.26 and Corollary 4.29.
• For item (iv): Let f(x) = log(xy)− log(x), with y fixed. Then f ′(x) =

y
xy − 1

x = 0. Therefore, f is a constant function with f(1) = log(y).

Hence, log(xy) = log(x) + log(y). Alternatively, one can use substitu-
tion to show ∫ xy

y

1

t
dt =

∫ x

1

1

t
dt.

• For item (v): log 2n = n log 2 and log(1/x) = − log x.
• For item (vi): log is strictly increasing, and hence injective. By item
(v) and IVP, we see that it is also surjective.

□

5.3.2. Exponential function. Define the exponential function

exp : R → (0,∞)

as the inverse of the logarithmic function log : (0,∞) → R. Thus,
expx = y ⇐⇒ log y = x.

Proposition 5.22. The exp function satisfies the following properties.

(i)

expx > 0 for all x, exp 0 = 1.

(ii) exp is differentiable and (exp)′(x) = expx.
(iii) exp is strictly increasing and strictly convex.
(iv) exp(x+ y) = (expx)(exp y) for all x, y.
(v) expx→ ∞ as x→ ∞, and expx→ 0 as x→ −∞.
(vi) exp : R → (0,∞) is bijective.

Proof.

• Item (i) is clear.
• For item (ii): If x = log y, then (exp)′(x) = 1/(log)′(y) = y = expx.
• For item (iii): (exp)′x > 0 and (exp)′′x > 0.
• For item (iv): Applying exp to log(xy) = log(x) + log(y) yields xy =
exp(log(x)+log(y)). Now put log(x) = a and log(y) = b, to get exp(a+
b) = (exp a)(exp b).

• Items (v) and (vi) follow from corresponding properties of log.

□

Put e := exp(1). It is called the Euler number. Note: log e = 1.

5.3.3. Real powers of positive real numbers. Let a > 0. Define

ax := exp(x log a).

In particular,

ex = exp(x log e) = expx.

Thus ax = ex log a.



5.4. LENGTHS, AREAS, VOLUMES 51

5.3.4. Inverse trigonometric and trigonometric functions. Define

tan−1 : R → (−π
2
,
π

2
)

by

tan−1 x :=

∫ x

0

1

1 + t2
dt.

Note: f(t) = 1
1+t2 is continuous on R, and bounded on [0, x] or on [x, 0]

(depending on whether x ≥ 0 or x ≤ 0). So the Riemann integral exists by
Lemma 5.7. .

We can then establish properties of the function tan−1, namely,

• an expression for its derivative,
• that it is strictly increasing,
• that it is strictly concave on (−π

2 , 0) and strictly convex on (0, π2 ).

This is similar to how we established properties of log.
Next we can define the function

tan : (−π
2
,
π

2
) → R

as the inverse of tan−1, and establish its properties.
Once we have the tan function, we can use it to define the sin and cos

functions, and so on. For more details, see [12, Chapter 7].

5.4. Lengths, areas, volumes

We have an intuitive understanding of lengths, areas and volumes. How-
ever, it is important that we give formal definitions of these concepts. We
will do this in Chapter 8 when we study the Riemann integral in higher di-
mensions. However for the present, we proceed intuitively, and explain how
the Riemann integral (in one dimension) can be used to compute lengths of
curves, areas of plane regions or surfaces, volumes of solids.

5.4.1. Areas between curves. We discuss three cases of computing areas
between curves depending on the integration variable.

(1) Integration variable is x. Suppose f1, f2 : [a, b] → R are Riemann inte-
grable, and f1 ≤ f2. Let R be the region bounded by curves y = f1(x)
and y = f2(x) and lines x = a and x = b. See picture below.

x

y

f2(x)

f1(x)

a b

Then the area of R is

(5.7) Area(R) =

∫ b

a

(f2(x)− f1(x)) dx.

In the special case when f1 = 0, we get the area below the curve f2(x)
between x = a and x = b.
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(2) Integration variable is y. Suppose g1, g2 : [c, d] → R are Riemann inte-
grable, and g1 ≤ g2. Let R be the region bounded by curves x = g1(y)
and x = g2(y) and lines y = c and y = d. See picture below.

x

y

g2(y)

g1(y)

c

d

Then the area of R is

(5.8) Area(R) =

∫ d

c

(g2(y)− g1(y)) dy.

In the special case when g1 = 0, we get the area below the curve g2(y)
between y = c and y = d.

(3) Integration variable is angle θ. Suppose p1, p2 : [α, β] → R are Rie-
mann integrable, and p1 ≤ p2. Let R be the region bounded by curves
r = p1(θ) and r = p2(θ) and rays θ = α and θ = β. See picture below.

x

y

p2(θ)

p1(θ)

Then the area of R is

(5.9) Area(R) =
1

2

∫ β

α

(p2(θ)
2 − p1(θ)

2) dθ.

In the special case when p1 = 0, we get the area below the curve p2(θ)
between θ = α and θ = β.

For some worked out examples of formulas (5.7) and (5.8), see [1, Sec-
tion 2.3] or [12, Examples 8.1].

Example 5.23. Let R be the region between the circle r = 2 and spiral r = θ
for 0 ≤ θ ≤ π/2. See picture below.

x

y
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Then

Area(R) =
1

2

∫ π/2

0

(22 − θ2) dθ = π − π3

48
.

Note: θ < 2 for 0 ≤ θ ≤ π/2, that is, the spiral lies inside the circle.

Let us now consider a more general setup. We elaborate using item (1).
Suppose we want to find the area between arbitrary curves y = f1(x) and
y = f2(x). In this case, we separate the calculation in two parts, namely,

(5.10) Area(R) =

∫
f1≤f2

(f2(x)− f1(x)) dx+

∫
f2≤f1

(f1(x)− f2(x)) dx,

depending on which curve lies above the other.

5.4.2. Volumes of solids. Let D denote a solid. We discuss three methods
to compute its volume.

Slice method. Let A(x0) be the area of the slice of the solid D by the plane
perpendicular to the x-axis at x0. Then the volume of D is given by

(5.11) Vol(D) =

∫ b

a

A(x) dx,

assuming D lies between the planes x = a and x = b.

Example 5.24. Let us find the volume of the solid D enclosed by the cylin-
ders x2 + y2 = a2 and x2 + z2 = a2. Note:

−a ≤ x ≤ a and −
√
a2 − x2 ≤ y, z ≤

√
a2 − x2.

Thus, each slice is a square of side 2
√
a2 − x2. Therefore,

A(x) = (2
√
a2 − x2)(2

√
a2 − x2) = 4(a2 − x2).

Hence,

Vol(D) = 4

∫ a

−a
(a2 − x2) dx = 8

∫ a

0

(a2 − x2) dx = 8(a3 − a3

3
) =

16

3
a3.

Washer method. This is a special case of the slice method in which each slice
of D is a washer with inner radius r1, outer radius r2, and area π(r22 − r21).
See picture below.

r1

r2

It is a disc if r1 = 0, in which case, this method is called the disc method.
Let R be the region bounded by curves y = f1(x) and y = f2(x) (with

f1 ≤ f2) and lines x = a and x = b. Let D be the solid obtained by revolving
R about the x-axis. Then the volume of D is given by

(5.12) Vol(D) =

∫ b

a

π(f2(x)
2 − f1(x)

2) dx.

Remember in washer method: axis of revolution = variable of integration.
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Example 5.25. Let D be the circular cone of radius r and height h. Place
it so that the center of its base is at the origin, h is along the x-axis, and r is
along the y-axis.

Let R be the triangular region bounded by lines y = 0, y = r − rx
h and

x = 0. See picture below.

x

y

h

r

Then D is the solid obtained by revolving R about the x-axis. So

Vol(D) =

∫ h

0

πr2(1− x

h
)2 dx =

1

3
πr2h.

In this case, the slices are discs.

Example 5.26. As a variant of Example 5.25, let R be the triangular region
bounded by lines y = 1, y = 2− x

2 and x = 0. See picture below.

x

y

2

1

2

Let D be the solid obtained by revolving R about the x-axis. So

Vol(D) =

∫ 2

0

π[(2− x

2
)2 − 12] dx = π

∫ 2

0

(3− 2x+
x2

4
) dx

= π(3(2)− 2(2) +
2

3
) =

8π

3
.

In this case, the slices are no longer discs.

Shell method. Let R be the region bounded by curves y = f1(x) and y = f2(x)
(with f1 ≤ f2) and lines x = a and x = b. Let D be the solid obtained by
revolving R about the y-axis. Then the volume of D is given by

(5.13) Vol(D) =

∫ b

a

2πx(f2(x)− f1(x)) dx.

Remember in shell method: axis of revolution ̸= variable of integration.

Example 5.27. Let us go back to Example 5.25, and compute the volume
of the cone by the shell method. We place the cone as before, and integrate
along the y-axis. So we write the oblique line as x = h(1− y

r ). Thus,

Vol(D) =

∫ r

0

2πy [h(1− y

r
)] dy = 2πh

∫ r

0

y − y2

r
dy =

1

3
πr2h.
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Origin of washers and shells. Consider a vertical line segment L in the positive
quadrant of the xy-plane. In our setup, this is the portion between f1(x) and
f2(x) (for a fixed x).

• If L is revolved about the x-axis, then it produces an annulus of inner
radius f1(x) and outer radius f2(x).

• If L is revolved about the y-axis, then it produces a cylinder of radius
x and height f2(x)− f1(x).

Now thicken L in the x-direction so that it becomes a thin rectangle R with
a tiny breadth. In our setup, this is the portion between f1(x) and f2(x)
multiplied with dx (for a fixed x).

• If R is revolved about the x-axis, then it produces a thickened annulus
which is the same as a washer of thickness dx.

• If R is revolved about the y-axis, then it produces a thickened cylinder
which is the same as a shell of thickness dx.

Integrating along the x-axis yields the respective volume formulas (5.12) and
(5.13).

Shell vs washer, a picture perspective. Consider the thick cylinder shown in
the middle picture below, whose thickness and height are of comparable size.

• Suppose we keep the height the same, and make the thickness very
small, then we get the shell shown on the left.

• Suppose we keep the thickness the same, and make the height very
small, then we get the washer shown on the right.

shell shell or washer? washer

5.4.3. Arc length of a parametrized curve. Let

C : [a, b] → R2, C(t) = (x(t), y(t)),

where x(t) and y(t) are differentiable, and their derivatives are continuous on
[a, b]. Then the length of the curve C is given by

(5.14) ℓ(C) =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

Origin of the formula. Let s, t ∈ [a, b] be ‘close’ to each other. Then

x(s)− x(t) ≈ x′(t)(s− t) and y(s)− y(t) ≈ y′(t)(s− t).

Length of the line segment joining (x(s), y(s)) and (x(t), y(t)) is√
(x(s)− x(t))2 + (y(s)− y(t))2 ≈

√
x′(t)2 + y′(t)2 (s− t)
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which leads to (5.14). □

Special case. We highlight some special cases:

(1) Curve parameter t is the x variable.

C : [a, b] → R2, C(x) = (x, f(x)), ℓ(C) =

∫ b

a

√
1 + f ′(x)2 dx.

(2) Curve parameter t is the y variable.

C : [c, d] → R2, C(y) = (g(y), y), ℓ(C) =

∫ d

c

√
1 + g′(y)2 dy.

(3) Curve parameter t is the angle θ variable. The curve r = p(θ) can be
expressed as

C : [α, β] → R2, C(θ) = (p(θ) cos θ, p(θ) sin θ).

So

ℓ(C) =

∫ β

α

√
(p′(θ) cos θ − p(θ) sin θ)2 + (p′(θ) sin θ + p(θ) cos θ)2 dθ

=

∫ β

α

√
p(θ)2 + p′(θ)2 dθ.

Example 5.28. Consider the curve C(x) = (x, x2) for 0 ≤ x ≤ 1. By our
formula,

ℓ(C) =

∫ 1

0

√
1 + 4x2 dx =

1

2

∫ 2

0

√
1 + u2 du =

1

2

√
5 +

1

4
log(2 +

√
5).

Recall:
x∫
0

√
1 + t2 dt = 1

2 (x
√
1 + x2 + log(x+

√
1 + x2)).

Example 5.29 (Cycloid). Consider the curve r = p(θ) = 1 + cos θ for
0 ≤ θ ≤ π. See picture below.

x

y

By our formula,

ℓ(C) =

∫ π

0

√
(1 + cos θ)2 + (− sin θ)2 dθ

=

∫ π

0

√
2(1 + cos θ) dθ

= 2

∫ π

0

cos
θ

2
dθ

= 4.
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Fact: Formula (5.14) does not depend on the specific parametrization.
Let us illustrate this fact by a simple example. Parametrize the semicircle of
radius 1 between angles 0 and π in the standard way by

C : [0, π] → R, C(t) = (cos t, sin t).

Then

ℓ(C) =

∫ π

0

√
(− sin t)2 + (cos t)2dt =

∫ π

0

dt = π.

Now parametrize the same semicircle by

C ′ : [0, π/2] → R, C ′(t) = (cos 2u, sin 2u).

Then

ℓ(C ′) =

∫ π/2

0

√
(−2 sin 2u)2 + (2 cos 2u)2du = 2

∫ π/2

0

du = π.

5.4.4. Area of surface of revolution. Consider a curve

C : [α, β] → R2, C(t) = (x(t), y(t)),

and a line L given by the equation ax+ by+ c = 0 with a2 + b2 ̸= 0. Suppose
C does not cross L. The distance of point (x(t), y(t)) from L is given by

ρ(t) =
|a x(t) + b y(t) + c|√

a2 + b2
.

Let S be the surface generated by revolving C about L. Then

(5.15) Area(S) = 2π

∫ β

α

ρ(t)
√
x′(t)2 + y′(t)2 dt.

Special case. We highlight some special cases:

(1) Curve parameter t is the x variable. Let C be y = f(x) with x ∈ [a, b],
and L be the line y = 0. Then

Area(S) = 2π

∫ b

a

|f(x)|
√
1 + f ′(x)2 dx.

(2) Curve parameter t is the y variable. Let C be x = g(y) with y ∈ [c, d],
and L be the line x = 0. Then

Area(S) = 2π

∫ d

c

|g(y)|
√
1 + g′(y)2 dy.

(3) Curve parameter t is the angle θ variable. Let C be r = p(θ) with θ ∈
[α, β], and L be the line θ = γ. Then

Area(S) = 2π

∫ β

α

p(θ)|sin(θ − γ)|
√
p(θ)2 + p′(θ)2 dθ.

Example 5.30 (Surface area of a cone and frustum). The surface area
of a cone is πrℓ, where r is radius of the base, and ℓ is distance from the
vertex to any point on the base.

More generally, the surface area of a frustum is π(r1 + r2)ℓ, where r1 and
r2 are radii of the two bases, and ℓ is distance between their boundary circles.
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Let h be the height of the frustum. Thus, ℓ2 = h2 + (r2 − r1)
2. See picture

below.

r1
r2

h

ℓ

This area calculation fits into the special case of item (1) above. It is
given below.

Area(S) = 2π

∫ h

0

(
r1 +

x

h
(r2 − r1)

)√
1 +

(
r2 − r1
h

)2

dx

= 2π
ℓ

h

(
r1h+

h2

2h
(r2 − r1)

)
= π(r1 + r2)ℓ.

Example 5.31 (Surface area of a torus). Let 0 < b < a. Consider the
circle (x−a)2+y2 = b2 of radius b with center at (a, 0). We parametrize it as

C : [−π, π] → R2, C(θ) = (a+ b cos θ, b sin θ).

Let S be the surface generated by revolving C about the y-axis. It is called a
torus.

By formula (5.15),

Area(S) = 2π

∫ π

−π
(a+ b cos θ)

√
(−b sin θ)2 + (b cos θ)2 dθ

= 2πb

∫ π

−π
(a+ b cos θ) dθ

= (2πb)(2πa)

= 4π2ab.

We mention a theorem of Pappus. It says

(5.16) Area(S) = ℓ(C)× d,

where d is the distance travelled by the centroid of C. In Example 5.31,
ℓ(C) = 2πb. The centroid of C is at (a, 0), and it travels a distance of 2πa.
Thus, Area(S) = (2πb)(2πa) = 4π2ab.
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Functions of several real
variables



CHAPTER 6

Continuity

6.1. Real vector space

We take a very brief look at real vector spaces, and set up the required
terminology and notations. For a more thorough introduction, see [1, Chap-
ter 15], [2, Chapter 1].

6.1.1. Real vector space. Let R denote the set of real numbers. Any real
number is called a scalar.

Now fix a positive integerm. Let Rm denote the set consisting ofm-tuples

x = (x1, . . . , xm),

with each xi ∈ R, that is, each xi is a scalar. Any element x of Rm is called
a vector.

We can add vectors and scalar multiply them: For vectors x, y ∈ Rm and
scalar r ∈ R,

x+ y = (x1, . . . , xm) + (y1, . . . , ym) = (x1 + y1, . . . , xm + ym),

rx = r(x1, . . . , xm) = (rx1, . . . , rxm).

We refer to Rm as a vector space.

For m = 1, 2, 3, it is customary to visualize these vector spaces as follows.

x x

y

x

y

z

6.1.2. Dot product. For vectors x = (x1, . . . , xm) and y = (y1, . . . , ym),
define

x · y :=

m∑
i=1

xiyi.

The scalar x · y is called the dot product of x and y. For example, in R3,

(1, 2,−1) · (3,−1,−5) = 3− 2 + 5 = 6,

(1, 2,−1) · (3,−1, 5) = 3− 2− 5 = −4,

(1,−2,−1) · (3,−1, 5) = 3 + 2− 5 = 0.

Thus, the dot product can be positive, negative or zero. We say vectors x and
y are orthogonal if x · y = 0.

Lemma 6.1. The dot product on Rm satisfies the following properties. It is

60



6.1. REAL VECTOR SPACE 61

• bilinear, that is, it is linear in both coordinates:

(rx+ y) · z = r(x · z) + y · z
x · (ry + z) = r(x · y) + x · z.

• symmetric, that is, x · y = y · x,
• positive definite, that is,

x · x = x21 + · · ·+ x2m ≥ 0,

and x · x = 0 iff x = 0.

Proof. Exercise. □

Due to the above properties, we say the dot product defines an inner
product on Rm.

6.1.3. Norm. Define the norm or length of x = (x1, . . . , xm) by

∥x∥ :=
√
x · x =

√
x21 + · · ·+ x2m.

For example,

∥(1, 2,−1)∥ =
√
6.

Lemma 6.2. The norm on Rm satisfies the following properties.

∥0∥ = 0 and ∥x∥ > 0 if x ̸= 0,

∥x+ y∥ ≤ ∥x∥+ ∥y∥,
∥rx∥ = |r|∥x∥.

Proof. Exercise. □

Due to the above properties, we say Rm is a normed linear space. For
more details, see [16].

Note for carefully: For m = 1, norm is the same as absolute value, that
is, ∥x∥ = |x|.

6.1.4. Ball around a point. For x, y ∈ Rm, define the distance between x
and y to be

(6.1) dist(x, y) := ∥x− y∥.
Note how we used the linear structure of Rm to define distance. Properties
of norm above translate to familiar properties of distance.

For r > 0 and x0 ∈ Rm, define the open ball of radius r around the point
x0 by

B(x0, r) := {x ∈ Rm : ∥x− x0∥ < r}
= {x ∈ Rm : dist(x0, x) < r}.

It consists of all points x whose distance from x0 is strictly smaller than r.
This is illustrated below for m = 2.

r

x0
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You can imagine a similar picture for m = 3 consisting of points inside a
sphere of radius r with center x0. For m = 1, B(x0, r) is the same as the open
interval (x0 − r, x0 + r).

6.2. Functions of two real variables

We now focus on real-valued functions f of two real variables. Thus, we
write f : D → R, where D ⊆ R2.

6.2.1. Natural domain. To define a function f , we need to first specify its
domain. However, it is possible to start with a formula for f , and then figure
out all points where that formula makes sense. This is called the natural
domain of f .

For example, the natural domain of

f(x, y) =
√
4− x2 − y2

is

{(x, y) ∈ R2 : 4− x2 − y2 ≥ 0} = {(x, y) ∈ R2 : ∥(x, y)∥ ≤ 2}.

6.2.2. Interior and boundary points. A point (a, b) of R2 is an interior
point of D if there is r > 0 such that B((a, b), r) ⊆ D. That is, if there is an
open ball around (a, b) which lies inside D. In particular, an interior point of
D lies in D. Let IntD denote the set of interior points of D. We say D is an
open set if all points of D are interior points, that is, IntD = D.

A point (a, b) of R2 is a boundary point of D if B((a, b), r) intersects both
D and R2 \D for every r > 0. Note very carefully: A boundary point of D
may not lie in D. Let ∂D denote the set of boundary points of D. We say D
is a closed set if it contains all its boundary points, that is, ∂D ⊆ D.

Example 6.3 (Open and closed unit discs). Let D1 be the open unit
disc, and D2 be the closed unit disc. That is,

D1 := {(x, y) ∈ R2 : x2 + y2 < 1} and D2 := {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

See pictures below.

D1 D2

The interior points of both D1 and D2 are those strictly inside the unit circle.
The boundary points of both D1 and D2 are those on the unit circle. That
is,

∂D1 = {(x, y) ∈ R2 : x2 + y2 = 1} = ∂D2.

Thus, D1 is an open set, but not a closed set, while D2 is a closed set, but
not a open set.

One can also imagine a subset D in between D1 and D2 which contains
only a part of the boundary such as a semicircle. Then interior and boundary
points of D are the same as above, and it is neither open nor closed.

The analogues of D1, D2, D for m = 1 are

(a, b), [a, b], [a, b),
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respectively. The interval (a, b) is an open set, [a, b] is a closed set, while [a, b)
is neither open nor closed.

Example 6.4 (Open and closed rectangles). Let D1 be the open rectan-
gle (a, b) × (c, d). Let D2 be the closed rectangle [a, b] × [c, d]. See pictures
below.

D1 D2

The interior points of D1 and D2 are precisely those contained in D1. The
boundary points of bothD1 andD2 are those on the four sides of the rectangle.
Thus, D1 is an open set, but not a closed set, while D2 is a closed set, but
not a open set.

One may also consider more complicated shapes such as an annulus (with
two boundary circles), or a rectangle with a disc removed from its interior,
and so on.

6.2.3. Bounded region. We say D is bounded if there is a real number M
such that

∥(x, y)∥ ≤M

for (x, y) ∈ D. In other words, D is contained inside a closed disc of radius
M centered at the origin.

Exercise 6.5. A nice example of a closed and bounded set in R2 is the closed
unit disc. Another example is the closed rectangle [a, b]× [c, d].

• Give an example of a closed set in R2 which is not bounded.
• Give an example of a bounded set in R2 which is not closed.

6.2.4. Graph of a function. The graph of f : D → R is the subset of R3

defined by

{(x, y, f(x, y)) : (x, y) ∈ D}.

This is an example of a surface in R3.
There are many examples of functions of two real variables such as poly-

nomial functions, rational functions, and so on. The graph of the polynomial
function f(x, y) = x2 + y2 is shown below. It is called a paraboloid.

−4 −2 0 2 4 −5

0

5

0

20

40
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6.2.5. Level curves and contour lines. For c ∈ R, the level curve of f
corresponding to c is the subset of R2 defined by

{(x, y) ∈ D : f(x, y) = c}.

It consists of those points in the domain where f takes value c.

Example 6.6. Consider f(x, y) = x2 + y2 whose graph was drawn above.
The level curve for c > 0 is the circle centered at the origin and of radius

√
c.

Level curves become smaller and smaller as c decreases. The level curve for
c = 0 consists of a single point, namely, the origin. See picture below.

Now consider f(x, y) = 100− x2 − y2. Its graph is obtained by inverting
the previous graph and shifting it up by 100. It looks like the surface of a
mountain. Level curves are again circles. These are points on sea level where
the mountain has the same height. Now level curves become smaller and
smaller as c increases. The level curve for c = 100 consists of a single point,
namely, the origin. This corresponds to the peak of the mountain.

A more generic picture of level curves is shown below.

For c ∈ R, the countour curve of f corresponding to c is the subset of R3

defined by

{(x, y, f(x, y)) : (x, y) ∈ D, f(x, y) = c}.
It is the intersection of the graph of f and the horizontal plane z = c.

6.3. Sequences

We studied sequences of real numbers in Section 2.1. We now briefly
consider sequences in R2 following the same general ideas.

6.3.1. Sequences in R2.

Definition 6.7. A sequence in R2 is a function f : N+ → R2 from the set of
positive integers to the set of pairs of real numbers.

Put f(n) = (an, bn). Thus specifying f is the same as specifying

(a1, b1), (a2, b2), (a3, b3), . . . .

We shall use the notation {(an, bn)} for short. We call (an, bn) the n-th term
of the sequence.
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A sequence in R2 may be visualized as follows by marking its terms
(a1, b1), (a2, b2), (a3, b3), . . . .

(a1,b1)

(a2,b2)

(a3,b3)
(a4,b4)

(a5,b5)

(a6,b6)

6.3.2. Bounded sequences.

Definition 6.8. A sequence {(an, bn)} in R2 is bounded if there is a real
number M such that

∥(an, bn)∥ ≤M

for n ≥ 1.

Thus, a bounded sequence lies entirely in some disc of radius M . See
picture below.

(a1,b1)

(a2,b2)

(a3,b3)
(a4,b4)

The picture also shows the corresponding sequence {an} on the x-axis and
sequence {bn} on the y-axis. This ties with the result below.

Lemma 6.9. The sequence {(an, bn)} is bounded iff sequences {an} and {bn}
are both bounded.

Proof. Exercise. □

Note: We have not defined a monotone sequence in R2. In contrast to R,
there is no canonical linear order on R2.

6.3.3. Convergence of sequences.

Definition 6.10 (ϵ–n0). A sequence {(an, bn)} in R2 is convergent if there
is (a, b) ∈ R2 such that the following condition holds.

For every ϵ > 0, there is n0 ∈ N+ such that

∥(an, bn)− (a, b)∥ < ϵ

for n ≥ n0.
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Lemma 6.11. The sequence {(an, bn)} converges iff sequences {an} and {bn}
both converge. In this case,

lim
n→∞

(an, bn) = ( lim
n→∞

an, lim
n→∞

bn).

Proof. Use the inequalities

|u1|, |u2| ≤ ∥(u1, u2)∥ ≤ |u1|+ |u2|.
We leave further details as an exercise. □

6.4. Continuity

We studied continuity of functions f of a real variable in Section 3.1. We
now look at continuity of functions f of two real variables. Thus, we write
f : D → R, where D ⊆ R2. The intuitive idea remains the same, that is, the
graph of f has no “breaks”.

6.4.1. Continuous functions.

Definition 6.12 (ϵ–δ). Let f : D → R. We say f is continuous at (a, b) ∈ D
if the following condition holds.

For every ϵ > 0, there is δ > 0 such that

∥(x, y)− (a, b)∥ < δ =⇒ |f(x, y)− f(a, b)| < ϵ.

We say f is continuous on D if f is continuous at each point of D.

Draw picture.

6.4.2. Algebra of continuous functions.

Lemma 6.13. Suppose f, g : D → R are continuous at (a, b) ∈ D. Then so
are

(i) f + g,
(ii) rf for r ∈ R,
(iii) fg,
(iv) 1/f if f(a, b) ̸= 0.

Proof. The proof of item (i) is identical in form to the one that we gave for
Lemma 3.4, item (i). The main notational change is to replace |x− c| < δ by
∥(x, y)− (a, b)∥ < δ. □

Lemma 6.14. Let f : D → E and g : E → R. If f is continuous at (a, b) ∈ D
and g is continuous at f(a, b) ∈ E, then the composite g ◦ f is continuous at
(a, b) ∈ D.

As a consequence:

• polynomials in x and y such as p(x, y) = x2 + y2 and p(x, y) = 2x3y −
3x+ y + 1 are continuous,

• a rational function in x and y, that is r(x, y) = p(x, y)/q(x, y), where p
and q are polynomials, is continuous at (a, b) if q(a, b) ̸= 0,

• functions such as f(x, y) = x3 sin|y|+ cos(x2 + y) and f(x, y) = ex
2+xy

are continuous.

Example 6.15. Let us illustrate Definition 6.12.
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(1) Consider the function f : R2 → R defined by

f(x, y) =

{
x2y
x2+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Its graph is shown below.
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Then f is continuous at (a, b) ̸= (0, 0) since it is formed out of contin-
uous functions. It is also continuous at (0, 0). Why? We can estimate
as follows. ∣∣ x2y

x2 + y2
∣∣ = |x|

∣∣ xy

x2 + y2
∣∣ ≤ 1

2
|x| ≤ ∥(x, y)∥.

Given ϵ > 0, we can take δ = ϵ, yielding continuity at (0, 0).
(2) Consider the function f : R2 → R defined by

f(x, y) =

{
x3y
x4+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Its graph is shown below.
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Then f is continuous at (a, b) ̸= (0, 0) since it is formed out of contin-
uous functions. It is also continuous at (0, 0). Why?

6.4.3. Characterization using sequences.

Proposition 6.16. Let f : D → R. Then f is continuous at (a, b) ∈ D iff
the following condition holds.

For any sequence {(xn, yn)} in D with (xn, yn) → (a, b), we have f(xn, yn) →
f(a, b).

Proof. See [13, Proposition 2.22]. □

Example 6.17. Let us use Proposition 6.16 to show that certain functions
are not continuous at a point.
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(1) Consider the function f : R2 → R defined by

f(x, y) =

{
xy

x2+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

It is bounded by 1
2 . Its graph is shown below.
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0.5

It is identically zero on the x-axis and on the y-axis. Consider the
sequence {( 1n ,

1
n )}. It converges to (0, 0) along the line y = x. However,

the sequence {f( 1n ,
1
n )} converges to 1

2 which is not equal to f(0, 0).
Thus, f is not continuous at (0, 0). What happens if we approach
along the line y = mx?

(2) Consider the function f : R2 → R defined by

f(x, y) =

{
x2y
x4+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

It is bounded by 1
2 . Its graph is shown below.
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It is identically zero on the x-axis and on the y-axis. Consider the
sequence {( 1n ,

1
n2 )}. It converges to (0, 0) along the parabola y = x2.

However, the sequence {f( 1n ,
1
n2 )} converges to 1

2 which is not equal to
f(0, 0). Thus, f is not continuous at (0, 0). Note: If we approach along
the line y = mx, then f(x, y) indeed goes to 0.

6.4.4. Further properties of continuous functions. We say D is path
connected if for any points x, y ∈ D, there is a curve in D joining x and y.
We say D is convex if for any points x, y ∈ D, the line segment joining x and
y lies entirely in D.

A convex set is path connected. The converse is false. For example, an
annulus is path connected but not convex.

Proposition 6.18. Let f : D → R be a continuous function, and D be path
connected. Then f(D) is an interval.
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Proof. Given points (x1, y1) and (x2, y2) in D, join them by a path. In other
words, let

C : [α, β] → D, C(α) = (x1, y1), C(β) = (x2, y2).

Now apply IVP (Theorem 3.10) to the composite f ◦ C. □

Theorem 6.19. Let f : D → R be continuous, and D be closed and bounded.
Then f is bounded on D and attains its global maximum and global minimum
on D.

Proof. See [13, Proposition 2.25]. □

6.5. Limit of a function

6.5.1. Limit of a function. Let f : D → R and (a, b) ∈ R2 be such that
there is r > 0 with B((a, b), r) \ {(a, b)} ⊆ D. In other words, D contains all
points within distance r of (a, b), except perhaps the point (a, b).

Definition 6.20. We say lim(x,y)→(a,b) f(x, y) exists if there is ℓ ∈ R such that
for every sequence {(xn, yn)} in D with (xn, yn) ̸= (a, b) and (xn, yn) → (a, b),
we have f(xn, yn) → ℓ.

In this case, we write

ℓ = lim
(x,y)→(a,b)

f(x, y),

and say f has a limit at (a, b).

Remark 6.21 (ϵ–δ). Equivalently, similar to Definition 6.12 for continuity,
we say:

lim
(x,y)→(a,b)

f(x, y) = ℓ

if the following condition holds.

For every ϵ > 0, there is δ > 0 such that

0 < ∥(x, y)− (a, b)∥ < δ =⇒ |f(x, y)− ℓ| < ϵ.

It is possible to take this as a definition, and deduce Definition 6.20 as a
consequence.

6.5.2. Algebra of limits of functions.

Lemma 6.22 (Limit theorems). Suppose lim(x,y)→(a,b) f(x, y) and
lim(x,y)→(a,b) g(x, y) exist. Then

(i)

lim
(x,y)→(a,b)

(f + g)(x, y) = lim
(x,y)→(a,b)

f(x, y) + lim
(x,y)→(a,b)

g(x, y),

(ii)

lim
(x,y)→(a,b)

rf(x, y) = r lim
(x,y)→(a,b)

f(x, y) for r ∈ R.

(iii)

lim
(x,y)→(a,b)

(fg)(x, y) = ( lim
(x,y)→(a,b)

f(x, y))( lim
(x,y)→(a,b)

g(x, y)),
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(iv)

lim
(x,y)→(a,b)

( 1
f

)
(x, y) =

1

lim(x,y)→(a,b) f(x, y)
(if denominator ̸= 0).

Proof. Follows from Lemma 2.13 for sequences. □

6.5.3. Continuity and limit. We say (a, b) ∈ R2 is an interior point of
D ⊆ R2 if there is r > 0 such that B((a, b), r) ⊆ D.

Proposition 6.23. Let f : D → R, and (a, b) be an interior point of D.
Then f is continuous at (a, b) iff lim(x,y)→(a,b) f(x, y) exists and is equal to
f(a, b).

Proof. See [13, Proposition 2.48]. □



CHAPTER 7

Differentiability

7.1. Differentiability

We studied differentiability of functions f of a real variable in Section 4.1.
We now look at differentiability of functions f of two real variables. The
intuitive idea is that the graph of f has tangent planes instead of tangent
lines. See illustration below.

We also encounter the notions of partial derivatives, and the more general
directional derivatives, by restricting f to a line inside its domain.

7.1.1. Partial derivatives. Let D ⊆ R2. Let f : D → R, and (a, b) be
an interior point of D. The partial derivative of f wrt x at (a, b), denoted
fx(a, b), is defined by

(7.1) fx(a, b) := lim
h→0

f(a+ h, b)− f(a, b)

h

assuming this limit exists. It represents the rate of change in f in the x-
direction near (a, b).

Similarly, the partial derivative of f wrt y at (a, b), denoted fy(a, b), is
defined by

(7.2) fy(a, b) := lim
k→0

f(a, b+ k)− f(a, b)

k

assuming this limit exists. It represents the rate of change in f in the y-
direction near (a, b).

The partial derivatives fx and fy are also denoted by ∂f
∂x and ∂f

∂y , respec-

tively.
The gradient of f at (a, b), denoted ∇f(a, b), is defined by

(7.3) ∇f(a, b) := (fx(a, b), fy(a, b)).

Example 7.1. Let us illustrate the notion of partial derivative.

71
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(1) Let f(x, y) = x2 + y2. Then fx(a, b) = 2a and fy(a, b) = 2b. For
instance,

fx(a, b) = lim
h→0

(a+ h)2 + b2 − a2 − b2

h

= lim
h→0

2ah+ h2

h
= 2a.

This is similar to the calculation one does to show that f ′(x2) = 2x
from first principles.

(2) Let f(x, y) =
√
x2 + y2. Its graph is shown below. It is the surface of

a cone.
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Then f is continuous at (0, 0), but neither partial derivative exists at
(0, 0). This is because f(x, 0) = |x| and f(0, y) = |y|.

(3) Let f(x, y) = |x| + |y|. Its graph is shown below. It consists of four
quarter-planes glued together.
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Then f is continuous at (0, 0), but neither partial derivative exists at
(0, 0). This is again because f(x, 0) = |x| and f(0, y) = |y|.

(4) Let f(x, y) = |x| + y. Its graph is shown below. It consists of two
half-planes glued together.
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Then f is continuous at (0, 0). Now fx does not exist at (0, 0), but fy
does exist at (0, 0).
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(5) Let f(x, y) =

{
xy

x2+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0)
as in Example 6.17, item (1).

Then f is not continuous at (0, 0), but both partial derivatives exist at
(0, 0), with fx(0, 0) = fy(0, 0) = 0.

7.1.2. Directional derivatives. Let f : D → R, and (a, b) be an interior
point of D. Let u = (u1, u2) with ∥u∥ = 1. The directional derivative of f
along u at (a, b), denoted Duf(a, b), is defined by

(7.4) Duf(a, b) := lim
t→0

f(a+ tu1, b+ tu2)− f(a, b)

t
.

It represents the rate of change in f in the u-direction near (a, b).
Note:

D(1,0)f = fx, D(0,1)f = fy.

Also, D−uf = −Duf .

Example 7.2. Let f(x, y) = x2 + y2. Then fx(a, b) = 2a and fy(a, b) = 2b.
Let us compute the directional derivative of f at (a, b).

lim
t→0

(a+ tu1)
2 + (b+ tu2)

2 − a2 − b2

t
= lim
t→0

2atu1 + 2btu2 + t2u21 + t2u22
t

= 2au1 + 2bu2

= fx(a, b)u1 + fy(a, b)u2

= ∇f(a, b) · (u1, u2).

Thus, we see that Duf(a, b) is the dot product of ∇f(a, b) and (u1, u2). This
is not true in general. A sufficient condition is given in Lemma 7.4 below.

Remark 7.3. For a function f(x, y, z) of three variables, we have three partial
derivatives, namely, fx, fy, fz. Also, we have the directional derivative of f
along u at (a, b, c), denoted Duf(a, b, c), for u = (u1, u2, u3) with ∥u∥ = 1. It
is defined by

(7.5) Duf(a, b, c) := lim
t→0

f(a+ tu1, b+ tu2, c+ tu3)− f(a, b, c)

t
.

7.1.3. Differentiability. Let f : D → R, and (a, b) be an interior point of
D. We say f is differentiable at (a, b) if there is (α, β) ∈ R2 such that

(7.6) lim
(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b)− αh− βk√
h2 + k2

= 0.

We call the pair (α, β) as the total derivative of f at (a, b). Compare with the
one variable formulation in (4.1).

Lemma 7.4. Suppose f is differentiable at (a, b) with (α, β) as its total de-
rivative. Then

(i) fx(a, b) exists and equals α,
(ii) fy(a, b) exists and equals β,
(iii) Duf(a, b) exists and equals αu1 + βu2. That is,

(7.7) Duf(a, b) = ∇f(a, b) · u.

Note: Items (i) and (ii) are special cases of item (iii).
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Proof.

• For item (i), set k = 0 in (7.6).
• For item (ii), set h = 0 in (7.6).
• For item (iii), set h = tu1 and k = tu2 in (7.6).

□

Example 7.5. Let f(x, y) = x2 + y2. Then fx(a, b) = 2a and fy(a, b) = 2b.
Let us check that f is differentiable at (a, b).

lim
(h,k)→(0,0)

(a+ h)2 + (b+ k)2 − a2 − b2 − 2ah− 2bk√
h2 + k2

= lim
(h,k)→(0,0)

h2 + k2√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 = 0.

As a consequence, (7.7) holds, and we recover the observation in Example 7.2.

In pictorial terms, it is the two-dimensional limit in (7.6) which guarantees
the existence of the tangent plane to the graph of f at (a, b). It implies the
existence of the one-dimensional limits in (7.1), (7.2), (7.3) as we saw in
Lemma 7.4. Note very carefully: The converse is false, that is, the existence
of the one-dimensional limits do not impy the existence of the two-dimensional
limit. A sufficient condition for the latter is given in Proposition 7.10 below.

7.1.4. Pair of increment functions.

Lemma 7.6 (Caratheodory lemma). A function f : D → R is differen-
tiable at an interior point (a, b) of D iff there are functions f1, f2 : D → R
which are continuous at (a, b) such that

(7.8) f(x, y)− f(a, b) = (x− a)f1(x, y) + (y − b)f2(x, y)

for (x, y) ∈ D. Moreover,

∇f(a, b) = (f1(a, b), f2(a, b)).

Proof. See [13, Proposition 3.25]. □

We call (f1, f2) a pair of increment functions. Note very carefully: f1
and f2 depend on (a, b). Moreover, they are not necessarily unique. An
illustration (in slightly different notation) is given in Example 7.9 below. This
is in contrast to what happened in the one variable case in Caratheodory
Lemma 4.5.

Corollary 7.7. If f is differentiable at (a, b), then f is continuous at (a, b).

Proof. Let f be differentiable at (a, b). Using (7.8), write

f(x, y) = f(a, b) + (x− a)f1(x, y) + (y − b)f2(x, y)

Since f1 and f2 are continuous, so is f by Lemma 6.13. □

In pictorial terms, Corollary 7.7 says that if the graph of f has a break
at (a, b), then there is no hope of drawing a tangent plane at (a, b).

Here is an alternative way to phrase Caratheodory lemma.
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Lemma 7.8. A function f : D → R is differentiable at an interior point
(a, b) of D iff there are real numbers α, β such that

(7.9) f(a+ h, b+ k) = f(a, b) + αh+ β k + ϵ1(h, k)h+ ϵ2(h, k) k

where ϵ1(h, k) and ϵ2(h, k) are defined for small h, k, and ϵ1(h, k) → 0 and
ϵ2(h, k) → 0 as (h, k) → (0, 0). Moreover,

fx(a, b) = α and fy(a, b) = β.

Proof. To link (7.8) and (7.9), put

x = a+ h, y = b+ k, h = x− a, k = y − b,

f1(x, y) = α+ ϵ1(h, k), f2(x, y) = β + ϵ2(h, k).

The continuity claims about f1 and f2 link to the continuity claims about ϵ1
and ϵ2. □

Example 7.9. Using the calculation in Example 7.5: For f(x, y) = x2 + y2,

ϵ1(h, k)h+ ϵ2(h, k) k = h2 + k2.

So a possible choice is ϵ1(h, k) = h and ϵ2(h, k) = k. Another choice is
ϵ1(h, k) = h− k and ϵ2(h, k) = h+ k. Thus, we explicitly see that these two
functions are not unique.

Proposition 7.10 (Sufficient condition for differentiability). Let f :
D → R and (a, b) be an interior point of D. Suppose fx and fy exist in
B((a, b), r) for some r > 0, and are continuous at (a, b). Then f is differen-
tiable at (a, b).

Proof. By mean value Theorem 4.21,

f(a+ h, b)− f(a, b) = fx(c, b)h,

f(a+ h, b+ k)− f(a+ h, b) = fy(a+ h, d)k

for some c and d. Adding,

f(a+ h, b+ k)− f(a, b)

= fx(c, b)h+ fy(a+ h, d)k

= fx(a, b)h+ fy(a, b)k + [fx(c, b)− fx(a, b)]h+ [fy(a+ h, d)− fy(a, b)] k

= fx(a, b)h+ fy(a, b)k + ϵ1(h, k)h+ ϵ2(h, k) k

for some ϵ1(h, k) and ϵ2(h, k). These go to 0 as (h, k) → (0, 0) since fx and
fy are continuous at (a, b) by hypothesis. Now use Lemma 7.8 to deduce that
f is differentiable at (a, b).

For the equivalent argument using Caratheodory Lemma 7.6, see [13,
Proposition 3.33]. □

7.1.5. Algebra of differentiable functions.

Lemma 7.11. Suppose f, g : D → R are differentiable at (a, b) ∈ D. Then

(i) f + g is differentiable at (a, b), and

∇(f + g)(a, b) = ∇f(a, b) +∇g(a, b),



76 7. DIFFERENTIABILITY

(ii) rf is differentiable at (a, b), and

∇(rf)(a, b) = r∇f(a, b)
for r ∈ R,

(iii) fg is differentiable at (a, b), and

∇(fg)(a, b) = ∇f(a, b)g(a, b) + f(a, b)∇g(a, b),
(iv) 1/f is differentiable at (a, b), and

∇(1/f)(a, b) =
−∇f(a, b)
f(a, b)2

if f(a, b) ̸= 0.

Proof. We can employ Caratheodory Lemma 7.6, as we did in the proof of
the one variable case in Lemma 4.9. For details, see [13, Proposition 3.30]. □

A function g : R → R2 is the same as a pair of functions g1, g2 : R → R.
Write g = (g1, g2). Explicitly, g(t) = (g1(t), g2(t)). We say g is differentiable
at c if both g1 and g2 are differentiable at c.

Recall: g : R → R2 is the same as a parametrized curve in R2, where the
parameter varies over all of R. A familiar example is g(t) = (cos t, sin t).

Lemma 7.12 (Chain rule). Let

R g−→ R2 f−→ R.

Let g be differentiable at c, and f be differentiable at g(c) =: (a, b). Then the
composite f ◦ g is differentiable at c, and

(7.10) (f ◦ g)′(c) = fx(a, b)g
′
1(c) + fy(a, b)g

′
2(c).

Proof. Exercise. □

The chain rule (7.10) can be visualized in matrix notation as[
(f ◦ g)′(c)

]
=
[
fx(a, b) fy(a, b)

] [g′1(c)
g′2(c)

]
.

This can be written in short hand as[
(f ◦ g)′

]
=
[
fx fy

] [g′1
g′2

]
.

Example 7.13. Let f(x, y) = x2 + y2 and g(t) = (et, t). Then

(f ◦ g)(t) = f(et, t) = e2t + t2.

By chain rule,

(f ◦ g)′(t) = 2(et)et + 2t(1) = 2e2t + 2t.

In matrix notation,[
(f ◦ g)′(t)

]
=
[
2x 2y

] [et
1

]
=
[
2et 2t

] [et
1

]
= 2e2t + 2t.

As a variant, let f(x, y) = x2 + y2 and g(t) = (et, sin t). Then

(f ◦ g)(t) = f(et, sin t) = e2t + sin2 t.
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By chain rule,

(f ◦ g)′(t) = 2(et)et + 2 sin t(cos t) = 2e2t + 2 sin t cos t.

We leave it to you to write this in matrix notation.

Another way of writing or thinking about (7.10) is shown below.

(7.11)
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
.

Here t is the variable in the first R, (x, y) are the variables in the middle R2,
and w is the variable in the last R.

A function g : R2 → R2 is the same as a pair of functions g1, g2 : R2 → R.
Write g = (g1, g2). Explicitly, g(u, v) = (g1(u, v), g2(u, v)). We say g is
differentiable at (c, d) if both g1 and g2 are differentiable at (c, d).

Lemma 7.14 (Chain rule). Let

R2 g−→ R2 f−→ R.

Let g be differentiable at (c, d), and let f be differentiable at g(c, d) =: (a, b).
Then the composite f ◦ g is differentiable at (c, d), and

(7.12)
(f ◦ g)u(c, d) = fx(a, b)(g1)u(c, d) + fy(a, b)(g2)u(c, d),

(f ◦ g)v(c, d) = fx(a, b)(g1)v(c, d) + fy(a, b)(g2)v(c, d).

The chain rule (7.12) can be visualized in matrix notation as[
(f ◦ g)u(c, d) (f ◦ g)v(c, d)

]
=
[
fx(a, b) fy(a, b)

] [(g1)u(c, d) (g1)v(c, d)
(g2)u(c, d) (g2)v(c, d)

]
.

This can be written in short hand as[
(f ◦ g)u (f ◦ g)v

]
=
[
fx fy

] [(g1)u (g1)v
(g2)u (g2)v

]
.

Example 7.15. Let f(x, y) = x2 + y2 and g(u, v) = (u2 − v2, 2uv). Then

(f ◦ g)(u, v) = f(u2 − v2, 2uv) = (u2 − v2)2 + (2uv)2 = u4 + 2u2v2 + v4.

By chain rule,

(f ◦ g)u = 2(u2 − v2)(2u) + 2(2uv)(2v) = 4u(u2 + v2),

(f ◦ g)v = 2(u2 − v2)(−2v) + 2(2uv)(2u) = 4v(u2 + v2).

In matrix notation,[
(f ◦ g)u (f ◦ g)v

]
=
[
2x 2y

] [2u −2v
2v 2u

]
=
[
2(u2 − v2) 4uv

] [2u −2v
2v 2u

]
=

[
4u(u2 + v2)
4v(u2 + v2)

]
.
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Another way of writing or thinking about (7.12) is shown below.

(7.13)
∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
and

∂w

∂v
=
∂w

∂x

∂x

∂v
+
∂w

∂y

∂y

∂v
.

Here (u, v) are the variables in the first R2, (x, y) are the variables in the
middle R2, and w is the variable in the last R.

Remark 7.16 (Chain rule and matrix multiplication). In general, for
a map f : Rn → Rm, we write a m × n matrix, called the jacobian matrix,
whose entries consist of all possible partial derivatives. More precisely, write
f = (f1, . . . , fm). In the first row, we write the n partial derivatives of f1, in
the second row, we write the n partial derivatives of f2, and so on.

The matrix for the composite map

f ◦ g : Rn g−→ Rm f−→ Rp

is of size p × n. It is the product of the matrix for f of size p ×m with the
matrix for g of size m× n. This is how the chain rule works in general.

The special cases that we have seen before are tabulated below.

dimensions chain rule

n = 1, m = 1, p = 1 (4.2)

n = 1, m = 2, p = 1 (7.10)

n = 2, m = 2, p = 1 (7.12)

Remark 7.17 (Derivatives and linear maps). The general philosophy
of differential calculus is that derivative of a function f at a point x is a
linear map. (These linear maps vary with the point x.) The derivative of a
composite function f ◦g is the composite of the derivatives of f and g. This is
the chain rule. It amounts to writing a linear map as a composite of two linear
maps. Finally, a linear map can be represented by a matrix, and composite
of two linear maps is multiplication of the two corresponding matrices.

7.1.6. Geometric interpretation of the gradient. Let f : D → R be
differentiable at (a, b). Suppose ∇f(a, b) ̸= (0, 0). Then by (7.7),

Duf(a, b) = ∇f(a, b) · u = ∥∇f(a, b)∥ cos θ,

where θ ∈ [0, π] is the angle between the vectors ∇f(a, b) and u. Hence:

• Duf(a, b) is maximum when cos θ = 1, that is, θ = 0. Therefore, near

(a, b), f increases most rapidly in the direction u = ∇f(a,b)
∥∇f(a,b)∥ .

• Duf(a, b) is minimum when cos θ = −1, that is, θ = π. Therefore, near

(a, b), f decreases most rapidly in the direction u = − ∇f(a,b)
∥∇f(a,b)∥ .

• Duf(a, b) = 0 when cos θ = 0, that is, θ = π/2. Therefore, near (a, b),
the directions of no rate of change in f are those perpendicular to
∇f(a, b).

Suppose ∇f(a, b) = (0, 0). Then Duf(a, b) = 0 for all u. Hence, the rate
of change in f near (a, b) is zero in all directions.
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Example 7.18. Let f : R2 → R be given by f(x, y) = 100 − x2 − y2. Its
graph is shown below.

−2 −1
0

1
2−2

0

2

95

100

Then ∇f(a, b) = (−2a,−2b). In particular, ∇f(1, 1) = (−2,−2). Thus, on
the surface z = f(x, y) at the point (1, 1),

• the steepest ascent is in the direction (− 1√
2
,− 1√

2
),

• the steepest descent is in the direction ( 1√
2
, 1√

2
),

• zero rate of change are in the directions ±( 1√
2
,− 1√

2
).

Recall from Example 6.6 that level curves of f are circles round the origin.
The gradient is perpendicular to the level curves. Note that the peak of the
mountain is at the origin. The steepest ascent at any point (a, b) points
towards the origin. Now suppose you are standing on the mountain (that is,
on the graph of f) at the point (a, b, f(a, b)). If you are feeling energetic, then
you can take the steepest path and head straight towards the peak. If you
are feeling tired, then you can take it easy and follow a contour curve for a
while before starting your ascent.

7.1.7. Higher partial derivatives. Let f : D → R. Suppose fx and fy
exist at all points in D. This defines functions fx, fy : D → R. So we can
consider their partial derivatives. Put

fxx(a, b) := (fx)x(a, b), fxy(a, b) := (fx)y(a, b),

fyx(a, b) := (fy)x(a, b), fyy(a, b) := (fy)y(a, b).

Proposition 7.19 (Equality of mixed partials). Let f : D → R, and
(a, b) be an interior point of D. Suppose fx and fy exist on B((a, b), r) for
some r > 0. If either fxy or fyx exists on B((a, b), r) and is continuous at
(a, b), then the other exists at (a, b), and fxy(a, b) = fyx(a, b).

Proof. We omit the proof. See [13, Proposition 3.14]. □

Example 7.20. Let f : R2 → R be given by f(x, y) = sin(x2y). Then

fx(x, y) = 2xy cos(x2y) and fy(x, y) = x2 cos(x2y).

Hence,
fxy(x, y) = 2x cos(x2y)− 2x3y sin(x2y) = fyx(x, y).

7.2. Tangent plane to a surface

We know that the notion of derivative of a function f (of one variable)
allows us to write the equation of the tangent line to the graph of f at any
point on it. More generally, if a curve is defined implicitly as the zero set of a
function F (of two variables), then the partial derivatives of F , or equivalently,
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the gradient of F , allow us to write the equation of the tangent line at any
point on the curve.

Similarly, we can use partial derivatives of a function f (of two variables)
to write the equation of the tangent plane to the graph of f at any point on it.
More generally, if a surface is defined implicitly as the zero set of a function
F (of three variables), then the partial derivatives of F , or equivalently, the
gradient of F , allow us to write the equation of the tangent plane at any point
on the surface.

7.2.1. Tangent line to a curve. Consider the curve y = f(x). The tangent
line to this curve at the point (c, f(c)) is given by

(7.14) y − f(c) = f ′(c)(x− c).

Suppose the curve is defined implicitly by F (x, y) = 0. Let (a, b) be a
point on the curve, that is, F (a, b) = 0. Suppose ∇F (a, b) ̸= (0, 0). Then the
tangent line to the curve at (a, b) is given by

(7.15) Fx(a, b)(x− a) + Fy(a, b)(y − b) = 0.

Setting F (x, y) = y − f(x) recovers (7.14).

Example 7.21 (Circle). Consider the circle defined by F (x, y) = x2 + y2 −
1 = 0, and let (a, b) = ( 1√

2
, 1√

2
). Then ∇F (a, b) = (2a, 2b) = (

√
2,
√
2). The

tangent line at (a, b) is
√
2(x− 1√

2
) +

√
2(y − 1√

2
) = 0

which is the same as the line x+ y =
√
2. See picture below.

∇F

The gradient vector ∇F (a, b) is orthogonal to the tangent line at (a, b).

Example 7.22. Consider the curve defined by F (x, y) = y3 − x2 = 0. It is

the graph of the function y = x
2
3 . See Example 4.2, item (2) for a picture.

Let (a, b) = (0, 0). Then ∇F (a, b) = (−2a, 3b) = (0, 0). So the above method
fails.

7.2.2. Tangent plane to a surface. Consider the surface z = f(x, y). The
tangent plane to this surface at the point (a, b, f(a, b)) is given by

(7.16) z − f(a, b) = fx(a, b)(x− a) + fy(a, b)(y − b).

Suppose the surface is defined implicitly by F (x, y, z) = 0. Let (a, b, c) be
a point on the surface, that is, F (a, b, c) = 0. Suppose ∇F (a, b, c) ̸= (0, 0, 0).
Then the tangent plane to the surface at (a, b, c) is given by

(7.17) Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0.

Setting F (x, y, z) = z − f(x, y) recovers (7.16).
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Example 7.23 (Sphere). Consider the sphere defined by F (x, y, z) = x2 +
y2+z2−1 = 0, and let (a, b, c) = ( 1√

3
, 1√

3
, 1√

3
). Then∇F (a, b, c) = (2a, 2b, 2c) =

( 2√
3
, 2√

3
, 2√

3
). The tangent plane at (a, b, c) is

2√
3
(x− 1√

3
) + 2√

3
(y − 1√

3
) + 2√

3
(z − 1√

3
) = 0

which is the same as the plane x+ y + z =
√
3. See picture below.

∇F

The gradient vector ∇F (a, b, c) is orthogonal to the tangent plane at (a, b, c).

Example 7.24. Consider the surface defined by F (x, y, z) = ex + sin y −
cos z = 0. Then ∇F (0, 0, 0) = (1, 1, 0). Hence the tangent plane at (0, 0, 0) is

1(x− 0) + 1(y − 0) + 0(z − 0) = 0

which is the same as x+ y = 0.

7.3. Maxima and minima

We studied maxima and minima for functions of a real variable in Sec-
tion 4.2. We now extend these considerations to functions of two real variables.

7.3.1. Global and local maxima/minima. Let f : D → R be a function.

Definition 7.25. We say:

(i) f has a global maximum at (a, b) if f(x, y) ≤ f(a, b) for (x, y) ∈ D. In
this case, f(a, b) is the least upper bound of f , and it is attained at
(a, b).

(ii) f has a global minimum at (a, b) if f(x, y) ≥ f(a, b) for (x, y) ∈ D. In
this case, f(a, b) is the greatest lower bound of f , and it is attained at
(a, b).

Definition 7.26. We say:

(i) f has a local maximum at (a, b) if there is δ > 0 such that ∥(x, y) −
(a, b)∥ < δ implies f(x, y) ≤ f(a, b).

(ii) f has a local minimum at (a, b) if there is δ > 0 such that ∥(x, y) −
(a, b)∥ < δ implies f(x, y) ≥ f(a, b).

Note: Global maximum (minimum) implies local maximum (minimum),
but the converse is false.



82 7. DIFFERENTIABILITY

Example 7.27. Consider the function f : R2 → R defined by f(x, y) =
−x2 − y2. It has a global maximum at (0, 0). See left picture below.
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Similarly, the function f : R2 → R defined by f(x, y) = x2 + y2 has a global
minimum at (0, 0). See right picture above.

7.3.2. Saddle points. Let f : D → R be a function which is differentiable
at (a, b).

Definition 7.28. We say: f has a saddle point at (a, b) if the tangent plane
to z = f(x, y) at (a, b, f(a, b)) is horizontal (that is, z is constant), and for
every δ > 0 there are (x1, y1) and (x2, y2) with ∥(x1, y1) − (a, b)∥ < δ and
∥(x2, y2)− (a, b)∥ < δ such that

f(x1, y1) < f(a, b) < f(x2, y2).

In words, a saddle point for f is a point with a horizontal tangent plane
such that the surface in the neighborhood of that point does not lie entirely
on one side of the tangent plane.

Example 7.29. In each of the examples below the function f : R2 → R has
a saddle point at (0, 0).

(1) f(x, y) = x2 − y2.
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(2) f(x, y) = xy.
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(3) f(x, y) = x3 − 3xy2.

−4 −2 0 2 4 −5

0

5−200

0

200

(4) f(x, y) = xy(x2 − y2).

−4 −2 0 2 4 −5

0

5
−200

0

200

Draw plus-minus diagrams on the right.

7.3.3. Local maxima/minima: necessary condition.

Lemma 7.30. Let f : D → R, and (a, b) be an interior point of D. Then:

(i) If gradient ∇f(a, b) exists, and f has either a local maximum or a local
minimum at (a, b), then ∇f(a, b) = 0.

(ii) If directional derivative Duf(a, b) exists for some u, and f has either
a local maximum or a local minimum at (a, b), then Duf(a, b) = 0.

Proof. Item (ii) implies item (i) since partial derivatives are special cases of
the directional derivative. So let us prove item (ii). Put

g(t) := f(a+ tu1, b+ tu2)− f(a, b).

In particular, g(0) = 0. Then by hypothesis and formula (7.4),

g′(0) = lim
t→0

g(t)/t = Duf(a, b)

exists. Also by hypothesis, g has either a local maximum or a local minimum
at 0. So by Lemma 4.17, g′(0) = 0, that is, Duf(a, b) = 0. □

The converse of Lemma 7.30 is false. For example, for f(x, y) = x2 − y2,
we have ∇f(0, 0) = 0, but f does not have a local maximum or a local
minimum at (0, 0). In fact, it has a saddle point at (0, 0). Note very carefully,
we got an example in degree 2 itself. For higher degree examples, we can take
f(x, y) = x3 + y3, and so on, similar to what we do in the one variable case,
where the starting example is f(x) = x3.
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7.3.4. Local maxima/minima, saddle points: sufficient condition.
Let (a, b) be an interior point of D. Suppose f : D → R is such that second
order partial derivatives of f exist and are continuous in a neighborhood of
(a, b). Define the discriminant of f at (a, b) by

(7.18) ∆f(a, b) := fxx(a, b)fyy(a, b)− fxy(a, b)
2.

Equivalently,

(7.19) ∆f(a, b) = det

[
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

]
The above matrix is called the hessian matrix of f at (a, b).

Lemma 7.31 (Discriminant test). Suppose ∇f(a, b) = (0, 0). Then:

(i) If ∆f(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).
(ii) If ∆f(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).
(iii) If ∆f(a, b) < 0, then f has a saddle point at (a, b).

Proof. See [2, Theorem 9.7]. We provide a sketch. Write

f(x+ h, y + k) = f(x, y) + hfx + kfy +
1

2
[h2fxx + 2hkfxy + k2fyy] + . . . .

Since ∇f(a, b) = (0, 0),

f(a+ h, b+ k)− f(a, b) ≈ 1

2
[h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)].

Note: The discriminant of this quadratic in h and k is the negative of (7.19).
□

The discriminant test is inconclusive if ∆f(a, b) = 0.

Example 7.32. Let us illustrate Lemma 7.31.

(1) f(x, y) = 4xy − x4 − y4. Its graph is shown below.
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We compute:

fx(x, y) = 4y − 4x3 = 4(y − x3) and fy(x, y) = 4x− 4y3 = 4(x− y3),

fxx(x, y) = −12x2, fxy(x, y) = fyx(x, y) = 4, fyy(x, y) = −12y2.

Hence the discriminant of f is

∆f(x, y) = 144x2y2 − 16 = 16(9x2y2 − 1).
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Let us first find the points where the gradient of f is zero.

∇f(x, y) = (0, 0) ⇐⇒ y = x3 and x = y3 ⇐⇒ (x, y) = (0, 0), (1, 1), (−1,−1).

Now let us evaluate the discriminant of f at each of these three points.
• ∆f(0, 0) = −16 < 0. Thus, f has a saddle point at (0, 0).

• ∆f(1, 1) = 128 > 0 and fxx(1, 1) = −12 < 0. Thus, f has a local

maximum at (1, 1).
• ∆f(−1,−1) = 128 > 0 and fxx(−1,−1) = −12 < 0. Thus, f has

a local maximum at (−1,−1).
(2) f(x, y) = x4 + y4. Its graph is shown below.
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We compute:

fx(x, y) = 4x3 and fy(x, y) = 4y3,

fxx(x, y) = 12x2, fxy(x, y) = fyx(x, y) = 0, fyy(x, y) = 12y2.

The gradient of f is zero at (0, 0). The discriminant of f is ∆f(x, y) =
144x2y2. Thus, ∆f(0, 0) = 0, and the test is inconclusive. However, it
is clear that f has a local minimum at (0, 0).

(3) f(x, y) = x2 − y2. This is the same as Example 7.29, item (1).
We compute:

fx(x, y) = 2x and fy(x, y) = −2y,

fxx(x, y) = 2, fxy(x, y) = fyx(x, y) = 0, fyy(x, y) = −2.

The gradient of f is zero at (0, 0). Further, ∆f(0, 0) = −4 < 0. Thus,
f has a saddle point at (0, 0).

(4) f(x, y) = xy(x2 − y2). This is the same as Example 7.29, item (4).
We compute:

fx(x, y) = 3x2y − y3 and fy(x, y) = x3 − 3xy2,

fxx(x, y) = 6xy, fxy(x, y) = fyx(x, y) = 3x2 − 3y2, fyy(x, y) = −6xy.

The gradient of f is zero at (0, 0). Further, ∆f(0, 0) = 0, and the test
is inconclusive. However, f has a saddle point at (0, 0).

From the above examples, we observe that the maxima-minima-saddlepoint
test is inconclusive for functions such as f(x, y) = x4+y4 (involving high pow-
ers of x and y) since ∆f(0, 0) = 0. This is similar to the one variable case in
which the maxima-minima test is inconclusive for functions such as f(x) = x4

since f ′′(0) = 0.
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7.3.5. Critical points and global maxima/minima. Let f : D → R. An
interior point (a, b) of D is a critical point of f if either ∇f does not exist at
(a, b), or if ∇f exists at (a, b) and is equal to 0.

Lemma 7.33. Let D be closed and bounded, and f : D → R be continuous.
Then the global minimum and global maximum of f are attained at points
which are either critical points of f or boundary points of D.

Proof. The same argument as for Lemma 4.31 works. Suppose f(a, b) is a
global maximum. We consider two cases.

• (a, b) is a boundary point. Then we are fine.

• (a, b) is an interior point. We consider two subcases.

– ∇f does not exist at (a, b). Then (a, b) is a critical point of f .

– ∇f exists at (a, b). Since f has a global maximum at (a, b), it has

a local maximum at (a, b). Hence ∇f(a, b) = 0 by Lemma 7.30,
and (a, b) is a critical point of f .

The argument for a global minimum is similar. □

Example 7.34. Consider the rectangle D = [−2, 2]× [−2, 2], and

f : D → R, f(x, y) = 4xy − 2x2 − y4.

Its graph is shown below.

−2 −1
0

1
2−2

0

2

−40

−20

0

Note: D is closed and bounded, and f is continuous on D. We compute:

fx(x, y) = 4y − 4x and fy(x, y) = 4x− 4y3.

Thus,
∇f(x, y) = (0, 0) ⇐⇒ (x, y) = (0, 0), (1, 1), (−1,−1).

These are the critical points of f .
Now let us analyze f on the boundary of D.

• Let h(y) = f(2, y) = 8y−8−y4 for y ∈ [−2, 2]. Thus, h′(y) = 8−4y3 = 0
iff y = 21/3. Hence, we need to consider (2, 21/3), and also endpoints
(2,−2) and (2, 2).

• Let g(x) = f(x, 2) = 8x − 2x2 − 16 for x ∈ [−2, 2]. Thus, g′(x) =
8 − 4x = 0 iff x = 2. Hence, we need to consider (2, 2) and also the
other endpoint (−2, 2).

Due to the symmetry f(−x,−y) = f(x, y), we do not need to analyze the
other two sides separately.

(x, y) (0, 0) (1, 1) (2,−2) (2, 2) (2, 21/3)

f(x, y) 0 1 −40 −8 6× 21/3 − 8
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Thus, we see f has global maximum 1 attained at (x, y) = (1, 1) and (x, y) =
(−1,−1), and f has global minimum −40 attained at (x, y) = (2,−2) and
(x, y) = (−2, 2).

7.3.6. Contrained extrema. Let (a, b) be an interior point of D. Suppose
f, g : D → R is such that partial derivatives of f and g exist and are continuous
in a neighborhood of (a, b).

Lemma 7.35 (Lagrange multiplier). Let C = {(x, y) ∈ D : g(x, y) = 0},
the zero set of g. Suppose

(1) g(a, b) = 0,
(2) ∇g(a, b) ̸= (0, 0),
(3) the function f restricted to the curve C has a local extremum at (a, b).

Then ∇f(a, b) = λ∇g(a, b) for some real number λ.

Example 7.36. Let f(x, y) = xy and g(x, y) = x2 + y2 − 1. Thus, we solve
for

y = 2λx, x = 2λy, x2 + y2 − 1 = 0.

These imply 4λ2 = 1, thus 2λ = ±1. Thus, the points which solve the above
equations are

(± 1√
2
,± 1√

2
).

Note: ∇g ̸= (0, 0) on the unit circle. Also, the unit circle is closed and
bounded, so f attains its global maximum and global minimum on it. By
Lemma 7.35, these can only occur at the above four points. It is easy to
check:

• f has a global maximum of 1
2 at ( 1√

2
, 1√

2
) and (− 1√

2
,− 1√

2
),

• f has a global minimum of − 1
2 at (− 1√

2
, 1√

2
) and ( 1√

2
,− 1√

2
).

Puzzle 7.37. Consider a 10× 10 array of soldiers. Assume that each soldier
has a distinct height. From each column, locate the tallest soldier, and let P
denote the shortest soldier among these 10 soldiers. Similarly, from each row,
locate the shortest soldier, and let D denote the tallest soldier among these
10 soldiers. Who among P and D is taller, and who is shorter?



CHAPTER 8

Integration

8.1. Riemann integral on a rectangle

We studied integrability of functions f of a real variable in Section 5.1.
We now look at integrability of functions f of two real variables. The intuitive
idea of the integral of a function f is the volume under the graph of f . We
also encounter the notion of iterated integrals.

8.1.1. Riemann integrable functions. Let a < b and c < d be real num-
bers, and f : [a, b] × [c, d] → R be a bounded function. Let M be the global
maximum of f , and m the global minimum of f . A partition P of [a, b]× [c, d]
is defined by

a = x0 < x1 < · · · < xn−1 < xn = b,

c = y0 < y1 < · · · < yk−1 < yk = d.

The norm of partition P is defined as

∥P∥ := max{xi − xi−1, yj − yj−1 : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.
We think of P as a subdivision of the rectangle [a, b] × [c, d] into smaller
rectangles [xi−1, xi] × [yj−1, yj ]. An illustration with n = 4 and k = 3 is
shown below.

a=x0 x1 x2 x3 b=x4

c=y0

y1

y2

d=y3

M32

m32

For each 1 ≤ i ≤ n and 1 ≤ j ≤ k, letMij be the global maximum of f on
[xi−1, xi]×[yj−1, yj ], andmij the global minimum of f on [xi−1, xi]×[yj−1, yj ].
Let

U(P, f) =

n∑
i=1

k∑
j=1

Mij(xi − xi−1)(yj − yj−1),

L(P, f) =

n∑
i=1

k∑
j=1

mij(xi − xi−1)(yj − yj−1).

We call U(P, f) the upper sum, and L(P, f) the lower sum. Then

m(b− a)(d− c) ≤ L(P, f) ≤ U(P, f) ≤M(b− a)(d− c).

88
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Definition 8.1. A bounded function f : [a, b] × [c, d] → R is Riemann inte-
grable if there is a sequence {Pn} of partitions of [a, b]× [c, d] such that

U(Pn, f)− L(Pn, f) → 0 as n→ ∞.

8.1.2. Riemann integral on a rectangle. Let f : [a, b] × [c, d] → R be
Riemann integrable.

Proposition 8.2. There is a real number A such that

L(P, f) ≤ A ≤ U(P, f)

for every partition P of [a, b]× [c, d], and

lim
n→∞

L(Pn, f) = A = lim
n→∞

U(Pn, f)

for every sequence {Pn} of partitions of [a, b]× [c, d] with ∥Pn∥ → 0.

We write ∫∫
[a,b]×[c,d]

f(x, y) d(x, y) = A,

and call it the Riemann integral of f .

8.1.3. Riemann sums. For P a partition of [a, b]× [c, d], let

S(P, f) =

n∑
i=1

k∑
j=1

f(si, tj)(xi − xi−1)(yj − yj−1)

where si ∈ [xi−1, xi] for 1 ≤ i ≤ n and tj ∈ [yj−1, yj ] for 1 ≤ j ≤ k. We call
S(P, f) a Riemann sum.

Observe:

L(P, f) ≤ S(P, f) ≤ U(P, f).

In words, any Riemann sum lies between the lower and upper sums.

Proposition 8.3. Suppose

• f is Riemann integrable on [a, b]× [c, d],
• {Pn} is a sequence of partitions of [a, b]× [c, d] with ∥Pn∥ → 0,
• S(Pn, f) is any Riemann sum for Pn and f .

Then

S(Pn, f) →
∫∫

[a,b]×[c,d]

f(x, y) d(x, y)

as n→ ∞.

Proof. By Proposition 8.2, sequences L(Pn, f) and U(Pn, f) have the same
limit, namely,

∫∫
[a,b]×[c,d]

f(x, y) d(x, y). Now apply sandwich Lemma 2.15 to

L(Pn, f) ≤ S(Pn, f) ≤ U(Pn, f). □
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8.1.4. Monotone functions. Recall monotonic functions from Definition 1.7.

Lemma 8.4. If f : [a, b]×[c, d] → R is monotonic in each of the two variables,
then f is Riemann integrable.

Proof. The argument given for Lemma 5.5 generalizes. For details, see [13,
Proposition 5.12, item (i)]. □

Example 8.5. Let us illustrate Lemma 8.4. The function f(x) = [x] + [y] on
[a, b]× [c, d] is monotonically increasing in each of the two variables. So it is
Riemann integrable.

8.1.5. Continuous functions.

Lemma 8.6. If f : [a, b] × [c, d] → R is bounded, and has at most finitely
many discontinuities, then f is Riemann integrable.

In particular, if f : [a, b] × [c, d] → R is continuous, then f is Riemann
integrable.

Proof. See [2, Theorems 11.16 and 11.17] or [13, Proposition 5.12, item (ii)
and Lemma 5.41]. □

Example 8.7. Let us illustrate Lemma 8.6.

(1) Any polynomial function p : [a, b] × [c, d] → R such as p(x, y) = x2y +
3xy − 1 is continuous, and hence Riemann integrable.

(2) The functions f : [a, b]× [c, d] → R such as f(x, y) = sinxy or f(x, y) =
cosxy are continuous, and hence Riemann integrable.

(3) The functions with saddle points in Example 7.29 are continuous, and
hence Riemann integrable.

8.1.6. Fubini’s theorem. The next question is how does one evaluate a
double integral. For a single integral, we use FTC, Part II, that is, formula
(5.4). We will see this technique later when we develop FTC in higher di-
mensions in Chapter 9. (Evaluating limits of Riemann sums is a cumbersome
task even in one variable, so we do not pursue that line of thought.)

However, there is another way to evaluate a double integral. The idea is
to evaluate two single integrals one after the other as explained below.

Theorem 8.8. Let f : [a, b]× [c, d] → R be Riemann integrable.

(i) If
∫ d
c
f(x, y) dy exists for each x ∈ [a, b], then

∫ b
a

( ∫ d
c
f(x, y) dy

)
dx ex-

ists and equals
∫∫

[a,b]×[c,d]
f(x, y) d(x, y).

(ii) If
∫ b
a
f(x, y) dx exists for each y ∈ [c, d], then

∫ d
c

( ∫ b
a
f(x, y) dx

)
dy ex-

ists and equals
∫∫

[a,b]×[c,d]
f(x, y) d(x, y).

Proof. We omit the proof. See [13, Proposition 5.28]. □

If the hypotheses in both (i) and (ii) above hold, then∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫∫
[a,b]×[c,d]

f(x, y) d(x, y) =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

This holds, in particular, if f is continuous.
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Example 8.9. Let us illustrate Theorem 8.8.

(1) Let f : [0, 1] × [0, 1] → R be given by f(x, y) = (x + y)2. Its graph is
shown below.

0
0.2 0.4 0.6 0.8 1 0

0.5

1

0

2

4

Let us now compute the volume below this surface.∫∫
[0,1]×[0,1]

(x+ y)2 d(x, y) =

∫ 1

0

(∫ 1

0

(x+ y)2dx

)
dy

=

∫ 1

0

(x+ y)3

3

∣∣∣∣1
0

dy

=
1

3

∫ 1

0

[(1 + y)3 − y3] dy

=
1

12
(24 − 1− 1)

=
7

6
.

(2) Let f : [0, π]× [0, π] → R be given by f(x, y) = sin(x+ y). Its graph is
shown below.

0
1

2
3 0

2−1

0

1

Then ∫∫
[0,π]×[0,π]

sin(x+ y) d(x, y) =

∫ π

0

(∫ π

0

sin(x+ y) dy

)
dx

=

∫ π

0

[− cos(x+ π) + cosx] dx

= 2

∫ π

0

cosx dx

= 0.

This makes sense since part of the graph is above and part of it is below
the xy-plane.
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Special case. Suppose f : [a, b]× [c, d] → R is given by f(x, y) := φ(x)ψ(y)
for some Riemann integrable functions φ : [a, b] → R and ψ : [c, d] → R. Then

(8.1)

∫∫
[a,b]×[c,d]

φ(x)ψ(y) d(x, y) =

(∫ b

a

φ(x) dx

)(∫ d

c

ψ(y) dy

)
.

To prove (8.1),∫∫
[a,b]×[c,d]

φ(x)ψ(y) d(x, y) =

∫ b

a

( ∫ d

c

φ(x)ψ(y) dy
)
dx

=

∫ b

a

φ(x)
( ∫ d

c

ψ(y) dy
)
dx

=

(∫ b

a

φ(x) dx

)(∫ d

c

ψ(y) dy

)
.

Example 8.10. For real numbers r, s ≥ 0,∫∫
[a,b]×[c,d]

xrys d(x, y) =

(
br+1 − ar+1

r + 1

)(
ds+1 − cs+1

s+ 1

)

assuming 0 < a < b and 0 < c < d.

8.1.7. Application: computing limits. It is possible to evaluate limits of
certain sequences by interpreting their terms as Riemann sums. We illustrate
with an example:

lim
n→∞

1

n4

n∑
i=1

n∑
j=1

(i+ j)2 = lim
n→∞

1

n2

n∑
i=1

n∑
j=1

(
i

n
+
j

n
)2

=

∫∫
[0,1]×[0,1]

(x+ y)2 d(x, y)

=
7

6
.

8.2. Riemann integral in the plane

In Section 8.1, we looked at Riemann integral on the rectangle. Now we
consider Riemann integral on more general regions in the plane such as the
closed unit disc. This also allows us to formalize the notion of area of a region
in the plane.

8.2.1. Riemann integral on a general region. Let D be a bounded sub-
set of R2, and let f : D → R be a bounded function. Pick a rectangle
[a, b]× [c, d] containing D, and define

f∗ : [a, b]× [c, d] → R, f∗(x, y) :=

{
f(x, y) if (x, y) ∈ D,

0 otherwise.



8.2. RIEMANN INTEGRAL IN THE PLANE 93

We say f is Riemann integrable on D if f∗ is Riemann integrable on [a, b] ×
[c, d], and in this case, we define

(8.2)

∫∫
D

f(x, y) d(x, y) :=

∫∫
[a,b]×[c,d]

f∗(x, y) d(x, y).

This definition is independent of the choice of the rectangle containing D.

8.2.2. Algebra of Riemann integrable functions.

Lemma 8.11. Suppose f, g : D → R are Riemann integrable. Then

(i) f + g is Riemann integrable, and∫∫
D

(f + g)(x, y) d(x, y) =

∫∫
D

f(x, y) d(x, y) +

∫∫
D

g(x, y) d(x, y),

(ii) rf is Riemann integrable, and∫∫
D

(rf)(x, y) d(x, y) = r

∫∫
D

f(x, y) d(x, y)

for r ∈ R,
(iii) fg is Riemann integrable,
(iv) 1/f is Riemann integrable if there is δ > 0 such that |f(x, y)| ≥ δ for

(x, y) ∈ D (so that 1/f is bounded).

Proof. We omit the proof. See [13, Proposition 5.34]. □

In continuation of Example 8.10: By items (i) and (ii), Riemann integral
is linear, so we can now evaluate the Riemann integral of any polynomial in
x and y.

8.2.3. Elementary regions. Let φ1, φ2 : [a, b] → R be continuous such that
φ1 ≤ φ2, and define

(8.3) D := {(x, y) ∈ R2 : a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}.

Similarly, let ψ1, ψ2 : [c, d] → R be continuous such that ψ1 ≤ ψ2, and define

(8.4) D := {(x, y) ∈ R2 : c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}.

In both cases, we say D is an elementary region in R2.

Theorem 8.12 (Fubini’s theorem over elementary regions).

(i) For elementary region D of the form (8.3),∫∫
D

f(x, y) d(x, y) =

∫ b

a

( ∫ φ2(x)

φ1(x)

f(x, y) dy
)
dx.

(ii) For elementary region D of the form (8.4),∫∫
D

f(x, y) d(x, y) =

∫ d

c

( ∫ ψ2(y)

ψ1(y)

f(x, y) dx
)
dy.
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Proof. This follows from Fubini’s Theorem 8.8 over a rectangle. For in-
stance, ∫∫

D

f(x, y) d(x, y) =

∫∫
[a,b]×[c,d]

f∗(x, y) d(x, y)

=

∫ b

a

( ∫ d

c

f∗(x, y) dy
)
dx

=

∫ b

a

( ∫ φ2(x)

φ1(x)

f(x, y) dy
)
dx.

Here c and d are chosen so that c ≤ φ1(x) ≤ φ2(x) ≤ d. In the last step, we
improved the integration limits since f∗ is zero when y is not between φ1(x)
and φ2(x). □

Example 8.13. Consider f : D → R with f(x, y) = ex
2

and

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x}.

See picture below.

x

y

By Fubini’s Theorem 8.12, item (i),∫∫
D

f(x, y) d(x, y) =

∫ 1

0

(∫ 2x

0

ex
2

dy

)
dx =

∫ 1

0

2x ex
2

dx = e− 1.

Also, note

D = {(x, y) ∈ R2 : 0 ≤ y ≤ 2, y/2 ≤ x ≤ 1}.
So, by Fubini’s Theorem 8.12, item (ii),∫∫

D

f(x, y) d(x, y) =

∫ 2

0

(∫ 1

y/2

ex
2

dx

)
dy =??.

It is not clear how to proceed.

8.2.4. Area of a general region. Let D be a bounded subset of R2. Let
1D denote the function which is identically 1 on D. Suppose 1D is Riemann
integrable. Then define

(8.5) Area(D) =

∫∫
D

1D d(x, y),

with rhs defined by (8.2).
By Fubini’s Theorem 8.12, this definition is consistent with the earlier

definition of area under the curve given by y = f(x), or by x = g(y). See
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formulas (5.7) and (5.8). Explicitly, for area between the curves y = f1(x)
and y = f2(x) with f1(x) ≤ f2(x) for a ≤ x ≤ b,

Area(D) =

∫∫
D

1D d(x, y) =

∫ b

a

( ∫ f2(x)

f1(x)

1 dy
)
dx =

∫ b

a

f2(x)− f1(x) dx.

This is the same as (5.7).

8.3. Change of variables

Just as in the one variable case, the calculation of a double integral can
often be simplified by making a substitution, that is, a change of variables.
This can either simplify the region over which we are integrating or simplify
the function that we are integrating or both. A particular example that we
consider is that of polar coordinates.

8.3.1. Jacobian matrix. Consider the linear map

(8.6) Φ : R2 → R2, (u, v) 7→ (a1u+ b1v, a2u+ b2v).

Define the jacobian J(Φ) of Φ by

(8.7) J(Φ) = det

[
a1 b1
a2 b2

]
= a1b2 − a2b1.

We refer to the above 2 × 2 matrix as the jacobian matrix of Φ. Observe:
Φ is a bijection iff J(Φ) = a1b2 − a2b1 ̸= 0. In this case, the unit square
E = [0, 1]× [0, 1] maps to the parallelogram D = Φ(E) with vertices

Φ(0, 0) = (0, 0), Φ(1, 0) = (a1, a2),

Φ(0, 1) = (b1, b2), Φ(1, 1) = (a1 + b1, a2 + b2).

See picture below.

x

y

Φ−→

x

y

Thus Φ scales area by |J(Φ)|.

Definition 8.14 (Jacobian matrix). Let Ω be an open subset of R2 (that
is, each point of Ω is an interior point of Ω). Let

(8.8) Φ : Ω → R2, Φ(u, v) = (φ1(u, v), φ2(u, v)),

where partial derivatives of φ1 and φ2 exist, and are continuous. Define the
jacobian J(Φ) of Φ by

(8.9) J(Φ)(a, b) = det

∂φ1

∂u (a, b) ∂φ1

∂v (a, b)

∂φ2

∂u (a, b) ∂φ2

∂v (a, b)

 .
This depends on the point (a, b). We refer to the above 2 × 2 matrix as the
jacobian matrix of Φ.
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In the special case when Φ is a linear map, formula (8.9) reduces to
formula (8.7) which is a constant (with no dependence on (a, b)). In the
general case, the area scaling depends on (a, b).

8.3.2. Change of variables formula.

Theorem 8.15. Let map Φ be as in (8.8), with Φ injective and J(Φ)(u, v) ̸= 0
for all (u, v) ∈ Ω. Let D be an elementary region and let f : D → R be
continuous. Let E ⊆ Ω be such that Φ(E) = D. Then

f ◦ Φ : E
Φ−→ D

f−→ R

is Riemann integrable, and

(8.10)

∫∫
D

f(x, y) d(x, y) =

∫∫
E

(f ◦ Φ)(u, v)|J(Φ)(u, v)| d(u, v).

Proof. We omit the proof. See [13, Proposition 5.61] for more detail. □

Note: The following weakening of the hypothesis is permitted. Instead of
J(Φ)(u, v) ̸= 0 for all (u, v) ∈ Ω, it suffices to assume either J(Φ)(u, v) ≥ 0 or
J(Φ)(u, v) ≤ 0 for all (u, v) ∈ Ω, and J(Φ)(u, v) = 0 only on a ‘thin’ subset
of Ω like a point or a line segment or a curve v = ψ(u).

Example 8.16. Consider the trapezium

D = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0,
1

2
≤ x+ y ≤ 1}.

and define

f : D → R, f(x, y) =
y

x+ y
.

We want to find the Riemann integral of f . For that, we make a change of
variables as follows. Let

u = x+ y, v =
y

x+ y
, that is, x = u(1− v), y = uv.

We let Ω = {(u, v) ∈ R2 : u > 0}, and define

Φ : Ω → R2, Φ(u, v) = (u(1− v), uv).

Then the map Φ is injective and onto {(x, y) ∈ R2 : x + y > 0}. Also, by
formula (8.9),

J(Φ)(u, v) = det

[
1− v −u
v u

]
= u ̸= 0

for all (u, v) ∈ Ω.
Further, if E = [1/2, 1]× [0, 1], then Φ(E) = D. See picture below.

x

y

Φ−→

x

y
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By formula (8.10),∫∫
D

f(x, y) d(x, y) =

∫∫
E

f(u(1− v), uv)|u| d(u, v)

=

∫∫
E

uv d(u, v)

=

(∫ 1

1/2

u du

)(∫ 1

0

v dv

)
=

3

16
.

8.3.3. Polar coordinates. We now discuss polar coordinates. These are
useful to compute double integrals of functions or over regions which have a
circular symmetry.

Define

(8.11) Φ : R2 → R2, Φ(r, θ) := (r cos θ, r sin θ).

Let us compute the jacobian J(Φ) of Φ. By formula (8.9),

J(Φ)(r, θ) = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r.

Under suitable hypothesis,

(8.12)

∫∫
D

f(x, y) d(x, y) =

∫∫
E

f(r cos θ, r sin θ) r d(r, θ).

As formulated, this does not follow from formula (8.10) since the map Φ above
is not injective.

Example 8.17. Consider the closed unit disc

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Define

E = [0, 1]× [−π, π]
= {(r, θ) ∈ R2 : r ≥ 0,−π ≤ θ ≤ π, (r cos θ, r sin θ) ∈ D}.

Thus Φ(E) = D.
We now consider two examples of f : D → R.

(i) Let f(x, y) =
√

1− x2 − y2. By formula (8.12),∫∫
D

f(x, y) d(x, y) =

∫∫
E

f(r cos θ, r sin θ) r d(r, θ)

=

∫ π

−π

(∫ 1

0

√
1− r2 r dr

)
dθ

=

∫ π

−π

1

2

(∫ 1

0

√
s ds

)
dθ

=
2π

3
.



98 8. INTEGRATION

(ii) Let f(x, y) = ex
2+y2 . By formula (8.12),∫∫

D

f(x, y) d(x, y) =

∫∫
E

f(r cos θ, r sin θ) r d(r, θ)

=

∫ π

−π

(∫ 1

0

er
2

r dr

)
dθ

=

∫ π

−π

(
e− 1

2

)
dθ

= π(e− 1).

8.4. Riemann integral in space

We now go from two to three dimensions by following the general proce-
dure in the preceding sections. We begin with Riemann integral on a cuboid.
Then we go to Riemann integral on more general regions in space such as the
solid cylinder or unit solid sphere. This also allows us to formalize the notion
of volume of a region in space. We also see how change of variables works in
three dimensions. Particular examples that we consider are that of cylindrical
coordinates and spherical coordinates.

8.4.1. Riemann integral on a cuboid. Let a < b, c < d, p < q be real
numbers, and f : [a, b] × [c, d] × [p, q] → R be a bounded function. We then
define a partition P of [a, b] × [c, d] × [p, q], upper sum U(P, f), lower sum
L(P, f), norm ∥P∥, Riemann sums S(P, f), Riemann integral∫∫∫

[a,b]×[c,d]×[p,q]

f(x, y, z) d(x, y, z).

Fubini’s theorem takes the form∫∫∫
[a,b]×[c,d]×[p,q]

f(x, y, z) d(x, y, z) =

∫ b

a

( ∫ d

c

( ∫ q

p

f(x, y, z) dz
)
dy
)
dx,

and so on.

8.4.2. Riemann integral on a general region. Let D be a bounded sub-
set of R3, and let f : D → R be a bounded function. Pick a rectangle
[a, b]× [c, d]× [p, q] containing D, and define

f∗ : [a, b]× [c, d]× [p, q] → R, f∗(x, y, z) :=

{
f(x, y, z) if (x, y, z) ∈ D,

0 otherwise,

and

(8.13)

∫∫∫
D

f(x, y, z) d(x, y, z) :=

∫∫∫
[a,b]×[c,d]×[p,q]

f∗(x, y, z) d(x, y, z).

Let D0 be an elementary region in R2. Let φ1, φ2 : D0 → R be continuous
such that φ1 ≤ φ2, and define

(8.14) D := {(x, y, z) ∈ R3 : (x, y) ∈ D0, φ1(x, y) ≤ z ≤ φ2(x, y)}.
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It is the region between the two surfaces z = φ1(x, y) and z = φ2(x, y). We
make similar definitions, viewing D0 in the xz-plane or in the yz-plane. In all
cases, we say D is an elementary region in R3.

Fubini’s theorem for elementary region (8.14) says∫∫∫
D

f(x, y, z) d(x, y, z) =

∫∫
D0

( ∫ φ2(x,y)

φ1(x,y)

f(x, y, z) dz
)
d(x, y).

Let D be a bounded subset of R3. Let 1D denote the function which is
identically 1 on D. Suppose 1D is Riemann integrable. Then define

(8.15) Vol(D) =

∫∫∫
D

1D d(x, y, z),

with rhs defined by (8.13).

8.4.3. Change of variables.

Definition 8.18 (Jacobian matrix). Let Ω be an open subset of R3 (that
is, each point of Ω is an interior point of Ω). Let

(8.16) Φ : Ω → R3, Φ(u, v, w) = (φ1(u, v, w), φ2(u, v, w), φ3(u, v, w)),

where partial derivatives of φ1, φ2, φ3 exist, and are continuous. Define the
jacobian J(Φ) of Φ by

(8.17) J(Φ)(a, b, c) = det


∂φ1

∂u (a, b, c) ∂φ1

∂v (a, b, c) ∂φ1

∂w (a, b, c)

∂φ2

∂u (a, b, c) ∂φ2

∂v (a, b, c) ∂φ2

∂w (a, b, c)

∂φ3

∂u (a, b, c) ∂φ3

∂v (a, b, c) ∂φ3

∂w (a, b, c)

 .
We refer to the above 3× 3 matrix as the jacobian matrix of Φ.
If Φ is a linear map, then J(Φ) is a constant. Its absolute value is the

volume of the parallelopiped which is the image of the unit cube. Thus, |J(Φ)|
is the factor by which volumes get scaled.

Theorem 8.19. Let map Φ be as in (8.16), with Φ injective and J(Φ)(u, v, w) ̸=
0 for all (u, v, w) ∈ Ω. Let D be an elementary region and let f : D → R be
continuous. Let E ⊆ Ω be such that Φ(E) = D. Then

f ◦ Φ : E
Φ−→ D

f−→ R.

is Riemann integrable, and
(8.18)∫∫∫

D

f(x, y, z) d(x, y, z) =

∫∫∫
E

(f ◦ Φ)(u, v, w)|J(Φ)(u, v, w)| d(u, v, w).

Proof. We omit the proof. See [13, Proposition 5.71] for more detail. □

8.4.4. Cylindrical coordinates. We now discuss cylindrical coordinates.
These are useful to compute triple integrals of functions or over regions which
have a circular symmetry in the first two coordinates.

Define Φ : R3 → R3 by

(8.19) Φ(r, θ, z) := (r cos θ, r sin θ, z).
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Let us compute the jacobian J(Φ) of Φ. By formula (8.17),

J(Φ)(r, θ, z) = det

cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

 = r.

The function

Φ : {(r, θ, z) ∈ R3 : r > 0, −π < θ ≤ π} → {(x, y, z) ∈ R3 : (x, y) ̸= (0, 0)}

is a bijection.
Therefore, under suitable hypothesis,

(8.20)

∫∫∫
D

f(x, y, z) d(x, y, z) =

∫∫∫
E

f(r cos θ, r sin θ, z)r d(r, θ, z).

This formula arises from formula (8.18), by substituting the jacobian that we
computed above.

Example 8.20. Consider the solid cylinder

D = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 1},

and the function

f : D → R, f(x, y, z) = z
√
1− x2 − y2.

Define

E = [0, 1]× [−π, π]× [0, 1]

= {(r, θ, z) ∈ R3 : r ≥ 0, −π ≤ θ ≤ π, (r cos θ, r sin θ, z) ∈ D}.

Thus Φ(E) = D. Hence, by formula (8.20),∫∫∫
D

f(x, y, z) d(x, y, z) =

∫∫∫
E

f(r cos θ, r sin θ, z) r d(r, θ, z)

=

∫ 1

0

[∫ π

−π

(∫ 1

0

z
√

1− r2 r dz

)
dθ

]
dr

= π

∫ 1

0

√
1− r2 r dr

=
π

3
.

8.4.5. Spherical coordinates. We now discuss spherical coordinates. These
are useful to compute triple integrals of functions or over regions which have
a spherical symmetry.

Define Φ : R3 → R3 by

(8.21) Φ(ρ, φ, θ) := (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

Let us compute the jacobian J(Φ) of Φ. By formula (8.17),

J(Φ)(ρ, φ, θ) = det

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0

 = ρ2 sinφ.
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The function

Φ : {(ρ, φ, θ) ∈ R3 : ρ > 0, 0 < φ < π, −π < θ ≤ π}
−→ {(x, y, z) ∈ R3 : (x, y) ̸= (0, 0)}

is a bijection.
Therefore, under suitable hypothesis,

(8.22)

∫∫∫
D

f(x, y, z) d(x, y, z)

=

∫∫∫
E

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφd(ρ, φ, θ).

This formula arises from formula (8.18), by substituting the jacobian that we
computed above.

Example 8.21. Consider the unit solid sphere

D = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}
and the function

f : D → R, f(x, y, z) = z2.

Define

E = [0, 1]× [0, π]× [−π, π]
= {(ρ, φ, θ) ∈ R3 : ρ ≥ 0, 0 ≤ φ ≤ π, −π ≤ θ ≤ π,

(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ∈ D}.
Thus Φ(E) = D. Hence, by formula (8.22),∫∫∫

D

f(x, y, z) d(x, y, z) =

∫∫∫
E

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφd(ρ, φ, θ)

=

∫ 1

0

[∫ π

0

(∫ π

−π

(
ρ2 cos2 φ

)
ρ2 sinφdθ

)
dφ

]
dρ

= 2π

∫ 1

0

ρ4
(∫ π

0

cos2 φ sinφdφ

)
dρ

=
2π

5
· 2
3

=
4π

15
.



CHAPTER 9

Differential forms

We studied FTC in one real variable in Section 5.2 which says that differ-
entiation and integration are inverse processes. We would now like to extend
this result to higher dimensions. We will mainly focus on three different spe-
cial cases, namely, Green’s theorem, Gauss’s theorem, Stokes theorem. Their
formulations involve line and surface integrals. A summary is given in Ta-
ble 9.1.

Table 9.1. Various avatars of FTC.

curve C, dimC = 1 surface S, dimS = 2 solid W , dimW = 3

1 Theorem 5.18

2 Theorem 9.24, m = 2 Green’s theorem 9.30

3 Theorem 9.24, m = 3 Stokes theorem 9.61 Gauss’s theorem 9.54

The first row indicates dimension of the object under consideration, namely,
a curve, a surface, a solid. The first column indicates dimension of the ambi-
ent space in which the object lies. For example, a curve may lie in dimension
1, or dimension 2, or dimension 3, and so on.

The special cases of FTC in Table 9.1 can be unified into one result by
using the notion of differential forms which we will indicate towards the end
of the chapter.

In this chapter, we assume that all functions involved are smooth. That
is, they are continuous, differentiable, and so on.

9.1. Scalar and vector fields

We introduce scalar and vector fields. A scalar field on Rm is the same as
a real-valued function on Rm, while a vector field on Rm is the same as a Rm-
valued function on Rm. These concepts may then look like an unnecessary
renaming of known concepts, however the perspective is new. This becomes
more apparent when we consider vector fields on spaces such as the circle, the
sphere, and so on.

9.1.1. Scalar fields. Let D ⊆ Rm. A function f : D → R is called a scalar
field on D. In other words, a scalar field on D is the same as a real-valued
function on D.

We have seen many examples of real-valued functions, so each one of them
yields an example of a scalar field.

102
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Remark 9.1. It is customary to refer to a real number as a scalar. Thus,
a scalar field on D specifies a scalar at each point of D (which explains the
terminology). In many real-life examples, the scalar represent some physical
quantity. For example, consider the unit sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

See picture below.

As an idealistic model, we may identify the surface of the earth with S2. Then
the temperature on earth’s surface (at a fixed time) specifies a scalar field on
S2.

9.1.2. Vector fields. Informally: A vector field on a space X is a choice of
a tangent vector at each point of X. The following is a way to visualize a
vector field.

X

We have shown the tangent vectors only at three points, but one has to
imagine a tangent vector at each point of X.

Remark 9.2 (Manifolds). One need to make precise what one means by
space above. The technical term for space is differentiable manifold. See Sec-
tion 9.8 in this regard. The technical setup for vector field is that of a tangent
bundle of a manifold. For starting points, you may look at Boothby [6], do
Carmo [10].

For X = Rm, a vector field on X is the same as a function F : Rm → Rm.
We focus on the cases m = 1, m = 2, m = 3 below.

Example 9.3 (Vector fields on the line). For X = R, a vector field on
X is the same as a function F : R → R. For example, let F (x) = 1. Then
the vector at each point on the line points one unit to the right as illustrated
below.

Now let F (x) = x. Can you imagine this vector field? It is zero at the origin.
At positive real numbers, vectors point to the right, while at negative real
numbers, vectors point to the left. Their magnitudes increase linearly as we
move away from the origin on either side.

Example 9.4 (Vector fields on the plane). For X = R2, a vector field
on X is the same as a function F : R2 → R2. Many examples along with
illustrations are shown below.
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(1) Constant vector fields. Let F (x, y) = (2, 1).

This is an example of a constant vector field.
(2) Horizontal vector fields. Let F (x, y) = (x, 0). See left picture below.

Vectors on y-axis are 0. For positive values of x, vectors point to the
right. For negative values of x, vectors point to the left. Lengths of
vectors increase as we move to the right or to the left.

Let F (x, y) = (1, 0). This is a constant horizontal vector field where all
vectors point one unit to the right. See right picture above.

(3) Radial vector fields. Let F (x, y) = (x, y). See left picture below. Vec-
tors point radially outward. Their lengths increase as we move outward.

Let F (x, y) = ( x√
x2+y2

, y√
x2+y2

) on R2 \ {(0, 0)}. This is a variant of

the previous example where vectors point radially outward and have
length 1. See right picture above.

We may also consider F (x, y) = (−x,−y), where vectors point
radially inward, and its normalized version on R2\{(0, 0)} where vectors
also have length 1.

(4) Rotational vector fields. Let F (x, y) = (−y, x). See left picture be-
low. Vectors are orthogonal to the radial direction, and point in the
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anticlockwise direction. Their lengths increase as we move outward.

Let F (x, y) = ( −y√
x2+y2

, x√
x2+y2

) on R2 \ {(0, 0)}. This is a variant of

the previous example where vectors in addition have length 1. See right
picture above.

Example 9.5 (Vector fields in space). For X = R3, a vector field on X
is the same as a function F : R3 → R3.

A vector field on R2 yields a vector field on R3 by setting the z-coordinate
to zero. We can visualize it by translating the vector field in the xy-plane along
the z-axis. For instance, for the rotational vector field in Example 9.4, item
(4), we consider F (x, y, z) = (y,−x, 0). This can serve as a model for a fluid
moving in R3 which is rotating about the z-axis.

Example 9.6 (Vector fields on a curve). Consider the unit circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
A vector field on S1 is shown below on the left. For simplicity, only four
tangent vectors have been drawn.

The picture on the right cannot be part of a vector field on S1 since there are
vectors (two of them are shown) which are not tangential to the circle.

A way to visualize a vector field on a general curve is shown below.

Suppose a particle is moving along a curve X. Then the velocity vector
of the particle yields a vector field on X.

Example 9.7 (Vector fields on a surface). Consider a surface X in R3.
For example, X can be the unit sphere S2, or X can be the graph z = f(x, y)
of a function f of two variables. For each point p on X, there is a plane
tangent to X at p. To specify a vector field on X, we choose a vector from
this tangent plane at p, and do this for each point p on X. Can you now
imagine a vector field on a surface?
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9.2. Gradient, curl, divergence

We now introduce three fundamental operations related to scalar and
vector fields on R3. These are called the gradient, curl, divergence.

In this section, D denotes an open subset of R3.

9.2.1. Gradient in three dimensions. Let f be a scalar field on D. The
gradient vector field of f is the vector field on D defined by

(9.1) grad f := ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (fx, fy, fz).

In this case, we say F = grad f is a conservative vector field with potential
function f .

Example 9.8. LetD = R3. Consider the vector field F (x, y, z) = (yz, zx, xy)
on D. It is the gradient vector field of f(x, y, z) = xyz, that is, F = grad f .

Example 9.9 (Gravitational force field). Let D = R3 \ {(0, 0, 0)}, that
is, R3 minus the origin. Consider the vector field on D defined by

F (x, y, z) = −α
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
.

In physics, this is called the gravitational force field (with α = mMG). It is
the gradient vector field of

f(x, y, z) =
α

(x2 + y2 + z2)1/2
.

The scalar field f is the potential.

Definition (9.1) generalizes to open subsets of Rm. In particular, for open
subsets of R2, we define grad f = (fx, fy).

9.2.2. Curl. Let F = (P,Q,R) be a vector field on D. The curl vector field
of F is the vector field on D defined by

(9.2) curlF := ∇× F :=

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
.

The notation ∇× F is to be interpreted as

∇× F = ∇× (P,Q,R) = det


i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

 .
Example 9.10. Let F = ω(−y, x, 0), where we interpret w as angular speed.
Then curlF = (0, 0, 2ω). This is a constant vector field pointing along the
positive z-axis.
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9.2.3. Divergence in three dimensions. Let F = (P,Q,R) be a vector
field on D. The divergence field of F is the scalar field on D defined by

(9.3) divF := ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

For example,

div(x, y, z) = 3 and div(xy2, z sin y, xey) = y2 + z cos y.

Definition (9.3) generalizes to open subsets of Rm. In particular, for open
subsets of R2, we define div(P,Q) = Px +Qy.

9.2.4. Gradient, curl, divergence. Gradient, curl, divergence can be as-
sembled into a sequence of maps

(9.4)

{
scalar
fields

}
grad−−−→

{
vector
fields

}
curl−−→

{
vector
fields

}
div−−→

{
scalar
fields

}
.

Lemma 9.11. We have

(9.5)
curl(grad f) = ∇× (∇f) = 0,

div(curlF ) = ∇ · (∇× F ) = 0.

Proof. We compute:

curl(grad(f)) = det


i j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

 = 0.

Similarly,

div(curlF ) = (Ry −Qz)x + (Pz −Rx)y + (Qx − Py)z

= Ryx −Qzx + Pzy −Rxy +Qxz − Pyz

= 0.

In either calculation, we used the mixed partials result in Proposition 7.19. □

9.2.5. When is a vector field a gradient vector field? Given a vector
field F on D, we would like to know if F is the gradient vector field of some
scalar field f on D?

Lemma 9.12 (Necessary condition for a gradient vector field). Sup-
pose F = grad f , that is, F = (P,Q,R) and P = fx, Q = fy, R = fz. Then
curlF = 0, that is, Qx = Py, Ry = Qz, Pz = Rx.

Proof. We saw this in (9.5). □

Lemma 9.12 in two dimensions takes the following form. Suppose F =
grad f , that is, F = (P,Q) and P = fx, Q = fy. Then by the mixed partials
result, Qx = Py.

Example 9.13. Consider the inward radial vector field F (x, y) = (−x,−y) in
Example 9.4, item (3). It is the gradient vector field of f(x, y) = − 1

2 (x
2+y2),

that is, F = grad f .



108 9. DIFFERENTIAL FORMS

Example 9.14. Consider the rotational vector field F (x, y) = (−y, x) in
Example 9.4, item (4). This is not a gradient vector field since F = (P,Q)
and Qx = 1 = −Py which violates the necessary condition above.

Now consider

(9.6) F (x, y) = (
−y

x2 + y2
,

x

x2 + y2
)

on R2 \ {(0, 0)}. Now

F = (P,Q) and Qx = − x2 − y2

(x2 + y2)2
= Py.

So the necessary condition is satisfied, yet F is not a gradient vector field.
We will see this later in Example 9.27.

We mention that the converse of Lemma 9.12 holds when the region D is
simply connected. See Section 9.7.3 in this regard.

Remark 9.15 (Homological algebra). The sequence of maps in (9.4) is
an example of a chain complex. It has the property that composite of any two
consecutive maps in the sequence is zero. We saw this in (9.5). To any chain
complex are associated its homology groups H0, H1, and so on, depending
on the length of the sequence. In particular, (9.4) has four homology groups
H0, H1, H2, H3. They depend on the space X whose scalar and vector fields
we are considering. The question of the converse of Lemma 9.12 mentioned
above is related to the first homology group H1. For more details on this
topic, see Bott and Tu [7]. For abstract homological algebra, see Weibel [31].
These ideas developed mainly in the first half of the twentieth century.

9.3. Line integrals and FTC

Now we look at line integrals of scalar fields and of vector fields along a
parametrized curve. The length of a curve is the line integral of the scalar
field which is identically 1. The line integral of a gradient vector field yields
a generalization of FTC, Part II in one variable.

9.3.1. Parametrized curve. A path or a parametrized curve in Rm is a
map

(9.7) γ : [a, b] → Rm, t 7→ (x1(t), . . . , xm(t)).

We say γ(a) is the initial point and γ(b) is the final point of the path γ. We
say γ is closed if γ(a) = γ(b).

Define

(9.8) γ′(t) := lim
h→0

γ(t+ h)− γ(t)

h
= (x′1(t), . . . , x

′
m(t)).

It is the tangent vector to γ at t.
The picture below shows a parametrized curve in R2, with the tangent

vector marked at one point.
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γ(t)

γ′(t)

In physics terms, one may think of a path as a particle moving along a
curve in Rm with t as the time variable. The particle is at the initial point at
t = a, at the final point at t = b, and in general at point γ(t) at time t. The
vector γ′(t) is then the velocity of the particle at time t.

Example 9.16 (Graph). Let f : [a, b] → R be a function. Then the graph
of f is a parametrized curve

(9.9) γ : [a, b] → R2, γ(t) = (t, f(t)),

and γ′(t) = (1, f ′(t)).

We say γ is regular if γ′(t) ̸= 0 for all a ≤ t ≤ b.

Example 9.17. Consider the graph of the function y = x
2
3 , see Example 4.2,

item (2). This curve can be parametrized by γ(t) = (t3, t2) say for t ∈ [−1, 1].
Then γ′(t) = (3t3, 2t). Observe that γ′(0) = (0, 0). Thus, γ is not regular at
t = 0.

9.3.2. Length of a parametrized curve. For a parametrized curve γ,
define the length of γ to be

(9.10) ℓ(γ) :=

∫ b

a

∥γ′(t)∥ dt =
∫ b

a

√
x′1(t)

2 + · · ·+ x′m(t)2 dt.

The special case when m = 2 was considered in (5.14).

Example 9.18 (Helix). Consider the curve γ(t) = (cos t, sin t, t) for a ≤ t ≤
b. Then

ℓ(γ) =

∫ b

a

√
(− sin t)2 + (cos t)2 + 1 dt =

√
2 (b− a).

9.3.3. Line integral of a scalar field. Put C = γ([a, b]). Let f : C → R
be a scalar field. Define the line integral of f along a path γ by

(9.11)

∫
γ

f |ds| :=
∫ b

a

f(γ(t)) ∥γ′(t)∥ dt.

If f ≡ 1, then formula (9.11) coincides with (9.10) and yields the length of γ.
In physics terms, one may think of f as the density function of a one-

dimensional object such as a wire, and (9.11) then yields the mass of the wire.
Alternatively, one may think of f as the charge density function, and (9.11)
then yields the total charge present in the wire.
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9.3.4. Differential notation. Put

|ds| = ∥γ′(t)∥ dt =
√
dx21 + · · ·+ dx2m.

Then ∫
γ

f |ds| =
∫
γ

f
√
dx21 + · · ·+ dx2m =

∫ b

a

f(γ(t))∥γ′(t)∥ dt.

9.3.5. Invariance under reparametrization.

Lemma 9.19. Let

[α, β]
h−→ [a, b]

γ−→ Rm,
with h′ ̸= 0 and h onto. Then

(9.12)

∫
γ◦h

f |ds| =
∫
γ

f |ds|.

Proof. We calculate:∫
γ◦h

f |ds| =
∫ β

α

f((γ ◦ h)(u)) ∥(γ ◦ h)′(u)∥ du

=

∫ β

α

f(γ(h(u))) ∥γ′(h(u))∥ |h′(u)| du

=

∫ b

a

f(γ(t)) ∥γ′(t)∥ dt

=

∫
γ

f |ds|.

We used substitution formula (5.6) in the third step. □

In particular, taking f ≡ 1, we see that the length of a curve does not
depend on the chosen parametrization.

Exercise 9.20. Parametrize the unit circle S1 by (cos t, sin t) for t ∈ [0, 2π],
and also by (cos 2t, sin 2t) for t ∈ [0, π]. Check directly that in both cases, we
get ℓ(S1) to be 2π.

9.3.6. Arc length parametrization. For t ∈ [a, b], define

(9.13) u(t) :=

∫ t

a

∥γ′(t)∥ dt.

This yields a bijective map from [a, b] to [0, ℓ(γ)]. Composing its inverse with
γ yields

γ̃ : [0, ℓ(γ)] → [a, b]
γ−→ Rm.

This parametrization of C is known as its arc length parametrization, and u
is called the arc length parameter.

In physics terms, for a particle moving along C, the particle is at the
initial point at u = 0, at the final point at u = ℓ(C), and in general at point
γ̃(u) at time u, where the length of the curve from the initial point γ̃(0) to
point γ̃(u) is u.
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Example 9.21. For the circle of radius a centered at the origin, an arc length
parametrization is

γ̃ : [0, 2πa] → R2, u 7→ (a cos
(u
a

)
, a sin

(u
a

)
).

Starting with the usual parametrization (a cos t, a sin t), formula (9.13) yields
u = at which leads to the above map.

9.3.7. Line integral of a vector field. Define the line integral of a vector
field F on Rm along a path γ in Rm by

(9.14)

∫
γ

F · ds :=
∫ b

a

F (γ(t)) · γ′(t) dt.

The vector field F is defined everywhere, but for the above definition, only
its values on points of the curve matter. The dot product says that we take
the component of F (γ(t)) along the tangential component γ′(t).

In physics terms, one may think of (9.14) as the work done by the force
field F along the curve γ.

More generally, we can consider the situation where F is a vector field on
an open subset D of Rm, and γ is a path which lies in D, that is, γ(t) ∈ D
for all t ∈ [a, b].

Example 9.22. Consider the radial vector field F (x, y, z) = (x, y, z) on R3

and the path

γ : [0, 2π] → R3, γ(t) = (cos t, sin t, t).

The latter is a parametrized helix. Then∫
γ

F · ds =
∫ 2π

0

(cos t, sin t, t) · (− sin t, cos t, 1) dt

=

∫ 2π

0

t dt

= 2π2.

9.3.8. Differential notation. Let F = (P,Q,R) and γ(t) = (x(t), y(t), z(t)).
Put

ds = γ′(t) dt = (x′(t) dt, y′(t) dt, z′(t) dt) = (dx, dy, dz).

Then

F · ds = Px′(t) dt+Qy′(t) dt+Rz′(t) dt = P dx+Qdy +Rdz,

and∫
γ

F · ds =
∫
γ

P dx+Qdy +Rdz =

∫ b

a

Px′(t) dt+Qy′(t) dt+Rz′(t) dt.

Example 9.23. Consider the vector field F (x, y, z) = (cos z, ex, ey) on R3

and the path

γ : [0, 2] → R3, γ(t) = (1, t, et).
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Then ∫
γ

F · ds =
∫
γ

cos z dx+ ex dy + ey dz

=

∫ 2

0

[(cos et)(0) + (e1)(1) + (et)(et)]dt

= 2e+
1

2
(e4 − 1).

9.3.9. Relating ds and |ds|. Suppose γ′(t) ̸= 0. That is, the tangent
vector to the curve at t under the parametrization γ is nonzero. Put

(9.15) T (γ(t)) :=
γ′(t)

∥γ′(t)∥
,

the unit tangent vector to the curve γ at t. Then

(9.16)

∫
γ

F · ds =
∫
γ

F · T |ds|,

with lhs defined by (9.14) and rhs by (9.11).

Proof. This is a consequences of our definitions:

∫
γ

F · ds =
∫ b

a

F (γ(t)) · γ′(t) dt

=

∫ b

a

F (γ(t)) · T (γ(t)) ∥γ′(t)∥ dt

=

∫
γ

F · T |ds|.

In the second step, we used definition (9.15). □

9.3.10. Line integral of a gradient vector field. The following is a gen-
eralization of Theorem 5.18 which was FTC, Part II. We may refer to it as
FTC on a parametrized curve; the earlier FTC is on a line segment (which is
the simplest example of a parametrized curve with γ : [a, b] → R defined by
γ(x) = x).

Theorem 9.24. Let F = grad f be a gradient vector field on an open subset
D of Rm. Let γ : [a, b] → Rm be a path which lies in D. Then

(9.17)

∫
γ

F · ds = f(γ(b))− f(γ(a)).
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Proof. For simplicity, let us take m = 3. Also, put γ(t) = (x(t), y(t), z(t)).
Then ∫

γ

F · ds =
∫ b

a

∇f(γ(t)) · γ′(t) dt

=

∫ b

a

[fx(γ(t))x
′(t) + fy(γ(t))y

′(t) + fz(γ(t))z
′(t)] dt

=

∫ b

a

(f ◦ γ)′(t) dt

= f(γ(b))− f(γ(a)).

The third equality is by the chain rule. In matrix form,

(f ◦ γ)′(t) =
[
fx(γ(t)) fy(γ(t)) fz(γ(t))

] x′(t)y′(t)
z′(t)

 .
The last equality is by Theorem 5.18 (which was FTC, Part II on an interval
[a, b]). □

Example 9.25. Recall from Example 9.8, the vector field on R3 given by
F (x, y, z) = (yz, zx, xy). It is the gradient vector field of f(x, y, z) = xyz.
Let

γ : [0, π/4] → R3, γ(t) = (cos4 t, sin4 t, tan4 t).

By formula (9.17),∫
γ

F · ds = f(γ(π/4))− f(γ(0)) = f
(1
4
,
1

4
, 1
)
− f(1, 0, 0) =

1

16
.

9.3.11. Path independence of line integrals. Let F be a gradient vec-
tor field on an open subset D of Rm. We say line integrals of F are path
independent in D if ∫

γ1

F · ds =
∫
γ2

F · ds

for any paths γ1 and γ2 lying in D with the same initial point and same final
point. The above condition is equivalent to requiring that∫

γ

F · ds = 0

for any closed path γ lying in D.

Proposition 9.26. Let F be a gradient vector field on an open subset D of
Rm. Then line integrals of F are path independent in D. In particular, the
line integral of F along any closed path γ is zero.

Proof. This follows from formula (9.17). □

Example 9.27. Consider the vector field

F (x, y) = (
−y

x2 + y2
,

x

x2 + y2
)

on R2 \ {(0, 0)} from (9.6), and the closed path

γ : [0, 2π] → R2, γ(t) = (cos t, sin t).
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Then ∫
γ

F · ds =
∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt =

∫ 2π

0

dt = 2π.

Hence F is not a gradient vector field (since its line integral along the above
closed path γ is not zero).

The converse of Proposition 9.26 is also true.

Proposition 9.28. Let F be a vector field on an open path connected subset
D of Rm. Suppose the line integrals of F are path independent in D. Then
F is a gradient vector field on D.

Proof. We illustrate withm = 3. Let F = (P,Q,R). Fix a point (a0, b0, c0) ∈
D. Put ∫ (x,y,z)

(a0,b0,c0)

F · ds :=
∫
γ

F · ds,

where γ is any path in D from (a0, b0, c0) to (x, y, z). This is well-defined by
the hypothesis that line integrals of F only depend on endpoints of γ. Define

f(x, y, z) :=

∫ (x,y,z)

(a0,b0,c0)

F · ds.

We claim that f is the required potential function. That is, ∇f = F , or
equivalently, fx = P , fy = Q, fz = R. Let us first deal with the claim
fx = P . We calculate:

fx(a, b, c) = lim
h→0

f(a+ h, b, c)− f(a, b, c)

h

= lim
h→0

(a+h,b,c)∫
(a,b,c)

F · ds

h

= lim
h→0

h∫
0

P (a+ x, b, c) dx

h
= P (a, b, c).

In the third step, we took the straight line path in the x-direction, namely,

γ : [0, h] → R3, γ(x) = (a+ x, b, c),

and so γ′(x) = (1, 0, 0). The last step can be deduced from Theorem 5.15,
which is FTC, Part I. This shows fx = P . Analogously, we can show fy = Q,
fz = R. □

9.3.12. Invariance under reparametrization up to sign.

Lemma 9.29. Let

[α, β]
h−→ [a, b]

γ−→ Rm,
with h′ ̸= 0 and h onto. Then

(9.18)

∫
γ◦h

F · ds = ±
∫
γ

F · ds.



9.3. LINE INTEGRALS AND FTC 115

Proof. There are two cases.

• h′ > 0 on [α, β].∫
γ◦h

F · ds =
∫ β

α

F ((γ ◦ h)(u)) · (γ ◦ h)′(u) du

=

∫ β

α

F (γ(h(u))) · γ′(h(u))h′(u) du

=

∫ h(β)=b

h(α)=a

F (γ(t)) · γ′(t) dt

=

∫
γ

F · ds.

• h′ < 0 on [α, β]. We repeat the above calculation. We now get a minus

sign since h(α) = b and h(β) = a.

□

Special case. Consider

[−b,−a] h−→ [a, b]
γ−→ D,

with h(u) = −u. We denote γ ◦ h by −γ, and call it the negative of γ. Since
h′ = −1 < 0,

(9.19)

∫
−γ

F · ds = −
∫
γ

F · ds.

9.3.13. Geometric curve. A geometric curve is the image of a parametrized
curve. An orientation of a geometric curve C is an assignment of a unit tan-
gent vector, that is, a specification of a direction at each point of C in a
continuous manner.

This can be done in several ways.

(1) If C is not closed, then specify the ‘start’ and ‘finish’ points.
(2) If C is closed and is the boundary of a planar region S, then specify

whether S lies to the left (or to the right) as C is traversed (with head
in upright position).

(3) If γ : [a, b] → R2 is a ‘nice’ parametrized curve, then for each t, γ′(t)
∥γ′(t)∥

is a unit tangent vector to C at γ(t), and we obtain an orientation of
C.

An oriented geometric curve is a geometric curve with a specified orienta-
tion. If C is the image of a parametrized curve γ, then we say γ is orientation

preserving if γ′(t)
∥γ′(t)∥ equals the prescribed unit tangent vector. In this case,

we define ∫
C

F · ds =
∫
γ

F · ds.

If this is not the case, that is, γ is orientation reversing, then −γ is orientation
preserving, and we define∫

C

F · ds =
∫
−γ

F · ds = −
∫
γ

F · ds.
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9.4. Green’s theorem

We now generalize FTC, Part II to two dimensions, where the two-
dimensional region is a subset of R2.

All curves in this section are in R2.

9.4.1. Orienting the boundary curve. Let D be a bounded subset of
R2 such that ∂D consists of a finite number of simple closed nonintersecting
piecewise smooth geometric curves. Orient each such curve so that as one
travels along that curve, the set D lies to the left (with head in upright
position). Then we say ∂D is positively oriented. See illustrations below.

When viewed from above, the outer boundary of D is traversed anticlockwise,
and each of the inner boundary curves is traversed clockwise.

9.4.2. Green’s theorem. This result relates an integral on a two-dimensional
region D to a line integral on its boundary ∂D.

Theorem 9.30. Let D ⊆ R2 be such that ∂D is positively oriented. If P and
Q are scalar fields defined on an open set containing D, then

(9.20)

∫
∂D

P dx+Qdy =

∫∫
D

(Qx − Py) d(x, y).

Proof. We break the proof in three steps.

(i) D is a rectangle. Let D = [a, b] × [c, d]. Let γ1, γ2, γ3, γ4 be oriented
line segments corresponding to the four sides of the rectangle, as shown
below.

P dx

P dx

Qdy Qdy(Qx − Py) d(x, y)

γ1

γ2

γ3

γ4

Using formula (5.4) of FTC, Part II,∫∫
D

Qx d(x, y) =

∫ d

c

∫ b

a

Qx d(x, y)

=

∫ d

c

[Q(b, y)−Q(a, y)] dy

=

∫
γ2

Qdy +

∫
γ4

Qdy.
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Similarly,∫∫
D

−Py d(x, y) =
∫ b

a

∫ d

c

−Py d(x, y)

=

∫ b

a

[−P (x, d) + P (x, c)] dx

=

∫
γ3

P dx+

∫
γ1

P dx.

Adding the two proves formula (9.20) when D is a rectangle.
(ii) D is a “union” of rectangles. Now suppose D is as shown below.

Overlapping line-segments have opposite orientations, so line integrals
over them cancel by (9.19). Thus, formula (9.20) holds when D is
formed by adjoining rectangles.

(iii) D is a general region. Draw a grid inside D as shown below.

Let D′ be the largest region which fits inside D which is of the form in
item (ii) above and is made out of the sides of the grid. By item (ii),
formula (9.20) holds for D′. Finally, we approach formula (9.20) for D
by considering finer and finer grids.

□

9.4.3. Principle of deformation.

Corollary 9.31. If C is a simple closed geometric curve and Qx = Py inside
C, then

(9.21)

∫
C

P dx+Qdy = 0.

C

Proof. By (9.20),∫
C=∂D

P dx+Qdy =

∫∫
D

(Qx − Py) d(x, y) = 0.

□
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Corollary 9.32. Suppose C1 and C2 are simple closed geometric curves with
C1 lying inside C2 and with both oriented anticlockwise. If Qx = Py in the
region D between C1 and C2, then

(9.22)

∫
C1

P dx+Qdy =

∫
C2

P dx+Qdy.

C2

C1

Proof. Let ∂D be the positively oriented boundary of D. By (9.20),∫
∂D

P dx+Qdy =

∫∫
D

(Qx − Py) d(x, y) = 0.

Therefore, ∫
C2

P dx+Qdy +

∫
−C1

P dx+Qdy = 0.

Using (9.19), the required formula follows. □

Note: In (9.22), P and Q must be well-behaved in the region between C1

and C2. They may have singularities at other points.

Example 9.33. Let

P (x, y) =
−y

x2 + y2
and Q(x, y) =

x

x2 + y2

on R2 \ {(0, 0)}. Then

Qx = − x2 − y2

(x2 + y2)2
= Py

as noted in Example 9.14.
Let C be any simple closed geometric curve oriented anticlockwise. Let

us compute
∫
C
P dx+Qdy. There are two cases.

(i) (0, 0) lies outside C. Then
∫
C
P dx + Qdy = 0 by formula (9.21) in

Corollary 9.31.
(ii) (0, 0) lies inside C. Then

∫
C
P dx + Qdy = 2π. Why? Let γϵ be the

circle of radius ϵ and center (0, 0) lying inside C. Then by formula
(9.22) in Corollary 9.32,∫

C

P dx+Qdy =

∫
γϵ

P dx+Qdy =

∫
γ1

P dx+Qdy = 2π.

The second equality is by the same reasoning. The last equality was
calculated in Example 9.27.

Thus, the calculation of a line integral over a complicated curve C is simplified.
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9.4.4. Area calculation.

Corollary 9.34. Let C be a simple closed geometric curve oriented anticlock-
wise which encloses a region D. Then

(9.23) Area(D) =
1

2

∫
C

x dy − y dx =

∫
C

x dy = −
∫
C

y dx.

Proof. Put P (x, y) = −y
2 and Q(x, y) = x

2 . Then Qx − Py = 1
2 + 1

2 = 1. By
formula (8.5),

Area(D) =

∫∫
D

d(x, y)

=

∫∫
D

(Qx − Py) d(x, y)

=

∫
∂D=C

P dx+Qdy

=
1

2

∫
C

x dy − y dx.

The third equality is by (9.20). □

Note very carefully: If in (9.23) we replace x dy − y dx by x dy + y dx,
then we get a line integral of a gradient vector field over a closed curve which
is zero by formula (9.17).

Corollary 9.35. For a simple closed curve C parametrized by (x(t), y(t)) for
a ≤ t ≤ b which is traversed anticlockwise as t goes from a to b,

(9.24)

Area(D) =
1

2

∫ b

a

x(t)y′(t)− y(t)x′(t) dt

=
1

2

∫ b

a

det

[
x(t) y(t)
x′(t) y′(t)

]
dt.

Example 9.36 (Ellipse). Let C be the ellipse defined by x2

a2 + y2

b2 = 1. See
picture below.

(a, 0)

(0, b)

Parametrize C by x = a cos t and y = b sin t for 0 ≤ t ≤ 2π. Then, by formula
(9.24), area of the elliptical region enclosed by C is

1

2

∫ 2π

0

(a cos t)(b cos t)− (b sin t)(−a sin t) dt = πab.
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Example 9.37 (Hypocycloid). Let C be the hypocycloid given by x =
a cos3 t and y = a sin3 t for 0 ≤ t ≤ 2π. See picture below.

x

y

Then

det

[
x(t) y(t)
x′(t) y′(t)

]
= 3a2 cos2 t sin2 t.

Thus, by formula (9.24), area enclosed by C is

1

2

∫ 2π

0

3a2 cos2 t sin2 t dt =
3a2

2

∫ 2π

0

(
sin 2t

2

)2

dt

=
3a2

8

∫ 2π

0

1− cos 4t

2
dt

=
3πa2

8
.

Special case. Let the parameter be θ, and the curve C be given by x(θ) =
p(θ) cos θ and y(θ) = p(θ) sin θ for 0 ≤ θ ≤ 2π. In this case, C is traversed
anticlockwise. Now

det

[
x(θ) y(θ)
x′(θ) y′(θ)

]
= det

[
p(θ) cos θ p(θ) sin θ

p′(θ) cos θ − p(θ) sin θ p′(θ) sin θ + p(θ) cos θ

]
= p(θ)2.

Thus, by formula (9.24), area of the region D enclosed by the curve C is

(9.25) Area(D) =
1

2

∫ 2π

0

p(θ)2 dθ.

This is a special case of (5.9).

Example 9.38 (Cycloid). Consider the curve C defined by r = p(θ) =
a(1 + cos θ) for 0 ≤ θ ≤ 2π. See picture below. We had looked at half of this
curve in Example 5.29.

x

y

By formula (9.25), area enclosed by C is

1

2

∫ 2π

0

a2(1 + cos θ)2 dθ =
3πa2

2
.
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9.5. Surface integrals

Now we look at surface integrals of scalar fields and of vector fields across
a parametrized surface. The area of a surface is the surface integral of the
scalar field which is identically 1.

We proceed in analogy with Section 9.3 on line integrals. A comparison
is shown in Table 9.2.

Table 9.2. Line integrals vs surface integrals.

parametrized curve γ(t) (9.7) parametrized surface Φ(u, v) (9.26)

∥γ′(t)∥ ∥(Φu × Φv)(u, v)∥

ℓ(γ) (9.10) Area(Φ) (9.32)∫
γ
f |ds| (9.11)

∫∫
Φ
f |dS| (9.33)

reparametrization (9.12) reparametrization (9.35)

γ′(t) (9.8) Φu × Φv (9.28)∫
γ
F · ds (9.14)

∫∫
Φ
F · dS (9.36)

(P,Q,R) · ds =
P dx+Qdy+Rdz

(P,Q,R) · dS = P dy ∧ dz +
Qdz ∧ dx+Rdx ∧ dy

reparametrization (9.18) reparametrization (9.37)

oriented geometric curve oriented geometric surface

ds and |ds| (9.16) dS and |dS| (9.40)

9.5.1. Parametrized surface. A parametrized surface in R3 is a map

(9.26) Φ : D → R3, (u, v) 7→ (x(u, v), y(u, v), z(u, v)),

where D ⊆ R2. Define

(9.27) Φu := (xu, yu, zu) and Φv := (xv, yv, zv),

where xu is the partial derivative of x wrt u, and so on.

9.5.2. Fundamental vector product. The fundamental vector product of
the parametrization Φ is defined by

(9.28)

(Φu × Φv)(u, v) = det

 i j k
xu yu zu
xv yv zv


=

(
det

[
yu zu
yv zv

]
,det

[
zu xu
zv xv

]
,det

[
xu yu
xv yv

])
=:

(
∂(y, z)

∂(u, v)
,
∂(z, x)

∂(u, v)
,
∂(x, y)

∂(u, v)

)
.

This is a function of (u, v).

Example 9.39 (Cylinder). Let D = [0, 2π]× [0, h]. Fix a > 0. Define

(9.29) Φ : D → R3, Φ(θ, v) := (a cos θ, a sin θ, v).
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Contrast with cylindrical coordinates (8.19) on R3, or with the helix.
Now

Φθ = (−a sin θ, a cos θ, 0) and Φv = (0, 0, 1),

and

(Φθ × Φv)(θ, v) = det

 i j k
−a sin θ a cos θ 0

0 0 1


= (a cos θ, a sin θ, 0).

Example 9.40 (Sphere). Let D = [0, π]× [0, 2π]. Fix a > 0. Define

(9.30) Φ : D → R3, Φ(φ, θ) := (a sinφ cos θ, a sinφ sin θ, a cosφ).

Contrast with spherical coordinates (8.21) on R3.
Now

Φφ = (a cosφ cos θ, a cosφ sin θ,−a sinφ),
Φθ = (−a sinφ sin θ, a sinφ cos θ, 0)

and

(Φφ × Φθ)(φ, θ) = det

 i j k
a cosφ cos θ a cosφ sin θ −a sinφ
−a sinφ sin θ a sinφ cos θ 0


= a sinφΦ(φ, θ).

Example 9.41 (Graph). Let f : D → R be a function of two variables.
Then the graph of f is a parametrized surface

(9.31) Φ : D → R3, Φ(u, v) = (u, v, f(u, v)).

Now

Φu = (1, 0, fu) and Φv = (0, 1, fv),

and

(Φu × Φv)(u, v) = det

i j k
1 0 fu
0 1 fv


= (−fu,−fv, 1).

9.5.3. Area of a parametrized surface. Recall: For vectors u, v ∈ R3,
area of the parallelogram spanned by u and v is given by ∥u× v∥.

Let Φ : D → R3 be a parametrized surface. Define

(9.32) Area(Φ) :=

∫∫
D

∥(Φu × Φv)(u, v)∥ d(u, v),

where Φu × Φv is the fundamental vector product in (9.28).
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Example 9.42 (Cylinder). Consider the cylinder parametrized by (9.29).
By formula (9.32),

Area(Φ) =

∫∫
[0,2π]×[0,h]

∥(a cos θ, a sin θ, 0)∥ d(θ, v)

=

∫∫
[0,2π]×[0,h]

a d(θ, v)

= 2πah.

This is the familiar formula for the surface area of cylinder of radius a and
height h.

Example 9.43 (Sphere). Consider the sphere parametrized by (9.30). By
formula (9.32),

Area(Φ) =

∫∫
[0,π]×[0,2π]

∥a sinφΦ(φ, θ)∥ d(φ, θ)

= 2πa2
∫ π

0

sinφdφ

= 4πa2.

This is the familiar formula for the surface area of sphere of radius a.

Example 9.44 (Graph). Consider the surface parametrized by (9.31). By
formula (9.32),

Area(Φ) =

∫∫
D

∥(−fu,−fv, 1)∥ d(u, v)

=

∫∫
D

√
1 + f2u + f2v d(u, v).

As an example, consider the paraboloid parametrized by f(u, v) = u2+v2 for
(u, v) ∈ D, where D is the disc of radius a around (0, 0). Then

Area(Φ) =

∫∫
D

√
1 + 4u2 + 4v2 d(u, v)

=

∫ 2π

0

dθ

∫ a

0

√
1 + 4r2 r dr

=
π

6
[(1 + 4a2)3/2 − 1].

9.5.4. Surface integral of a scalar field. Put S = Φ(D). Let f : S → R
be a scalar field. Define the surface integral of f across Φ by

(9.33)

∫∫
Φ

f |dS| :=
∫∫

D

f(Φ(u, v)) ∥(Φu × Φv)(u, v)∥ d(u, v),

where Φu × Φv is the fundamental vector product in (9.28).
If f ≡ 1, then formula (9.33) coincides with (9.32) and yields the area of

the surface parametrized by Φ.



124 9. DIFFERENTIAL FORMS

Example 9.45. We do a minor variation on Example 9.43. Consider the
hemisphere parametrized by (9.30) on D = [0, π2 ]× [0, 2π]. Let f(x, y, z) = z.
Then ∫∫

Φ

f |dS| =
∫∫

[0,π2 ]×[0,2π]

a cosφ ∥a sinφΦ(φ, θ)∥ d(φ, θ)

= 2πa3
∫ π

2

0

cosφ sinφdφ

= πa3.

Example 9.46. Let f(x, y, z) = xy+ z. Let S be the portion of the cylinder
y2 + z2 = 9 in the first octant with 0 ≤ y ≤ 2 and 0 ≤ x ≤ 4. We want to
evaluate (9.33).

Observe: S is the graph of the function z = g(x, y) =
√

9− y2 with
0 ≤ y ≤ 2 and 0 ≤ x ≤ 4. Thus,∫∫

Φ

f |dS| =
∫ 2

0

∫ 4

0

(xy + g(x, y))
√
1 + g2x + g2y dxdy

=

∫ 2

0

∫ 4

0

(xy +
√
9− y2)

3√
9− y2

dxdy

=

∫ 2

0

∫ 4

0

3xy√
9− y2

dxdy +

∫ 2

0

∫ 4

0

3 dxdy

= 24(3−
√
5) + 24

= 24(4−
√
5).

Alternatively, we can parametrize S using cylindrical coordinates:

Φ(x, θ) = (x, 3 cos θ, 3 sin θ)

with 0 ≤ x ≤ 4 and tan−1(
√
5
2 ) ≤ θ ≤ π

2 . Thus,∫∫
Φ

f |dS| =
∫ π

2

tan−1(
√

5
2 )

∫ 4

0

(3x cos θ + 3 sin θ)3 dxdθ

= 9

∫ π
2

tan−1(
√

5
2 )

∫ 4

0

(x cos θ + sin θ) dxdθ

= 9

∫ π
2

tan−1(
√

5
2 )

(8 cos θ + 4 sin θ) dθ

= 24(4−
√
5).

Example 9.47 (Helicoid). Let D = [0, 1]× [0, 2π]. Define

(9.34) Φ : D → R3, Φ(u, v) = (u cos v, u sin v, v).

This looks like a staircase curling around a vertical pillar. Then

(Φu × Φv)(u, v) = det

 i j k
cos v sin v 0

−u sin v u cos v 1


= (sin v,− cos v, u).
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Let f(x, y, z) =
√
1 + x2 + y2. Thus,∫∫

Φ

f |dS| =
∫∫

[0,1]×[0,2π]

√
1 + u2 cos2 v + u2 sin2 v

√
sin2 v + cos2 v + u2 d(u, v)

= 2π

∫ 1

0

1 + u2 du

=
8π

3
.

9.5.5. Invariance under reparametrization. Recall from (8.9) the jaco-
bian of a map.

Lemma 9.48. Let

E
h−→ D

Φ−→ R3,

with J(h) ̸= 0. Then

(9.35)

∫∫
Φ◦h

f |dS| =
∫∫

Φ

f |dS|.

9.5.6. Surface integral of a vector field. Define the surface integral of a
vector field F on R3 across a parametrized surface Φ in R3 by

(9.36)

∫∫
Φ

F · dS :=

∫∫
D

F (Φ(u, v)) · (Φu × Φv)(u, v) d(u, v),

where Φu × Φv is the fundamental vector product in (9.28).

Example 9.49 (Cylinder). Consider the radial vector field F (x, y, z) =
(x, y, z) on R3 and the cylinder parametrized by (9.29). Then∫∫

Φ

F · dS =

∫∫
[0,2π]×[0,h]

(a cos θ, a sin θ, v) · (a cos θ, a sin θ, 0) d(θ, v)

= a2
∫ 2π

0

dθ

∫ h

0

dv

= 2πa2h.

Example 9.50 (Sphere). Consider the radial vector field F (x, y, z) = (x, y, z)
on R3 and the sphere parametrized by (9.30). Then∫∫

Φ

F · dS =

∫∫
[0,π]×[0,2π]

Φ(φ, θ) · Φ(φ, θ) a sinφd(φ, θ)

=

∫ π

0

∫ 2π

0

a3 sinφd(φ, θ)

= 4πa3.

Example 9.51 (Graph). Consider the surface parametrized by (9.31). Let
F = (P,Q,R). Then∫∫

Φ

F · dS =

∫∫
D

(P,Q,R) · (−fu,−fv, 1) d(u, v)

=

∫∫
D

(−P fu −Qfv +R) d(u, v).
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As an example, consider the paraboloid parametrized by f(u, v) = u2+v2 for
(u, v) ∈ D, where D = [0, 1]× [0, 1] is the unit square. Then∫∫

Φ

F · dS =

∫∫
[0,1]×[0,1]

(−u(2u)− v(2v) + (u2 + v2)) d(u, v)

= −
∫∫

[0,1]×[0,1]

(u2 + v2) d(u, v)

= −2

3
.

Note very carefully:
∫∫

Φ
F · dS can be negative in general.

9.5.7. Differential notation. Let F = (P,Q,R). Put

dS := (Φu × Φv)(u, v) d(u, v)

=

(
∂(y, z)

∂(u, v)
d(u, v),

∂(z, x)

∂(u, v)
d(u, v),

∂(x, y)

∂(u, v)
d(u, v)

)
= (dy ∧ dz, dz ∧ dx, dx ∧ dy).

Then

F · dS = P
∂(y, z)

∂(u, v)
d(u, v) +Q

∂(z, x)

∂(u, v)
d(u, v) +R

∂(x, y)

∂(u, v)
d(u, v)

= P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy,

and∫∫
Φ

F · dS =

∫∫
D

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

=

∫∫
D

P
∂(y, z)

∂(u, v)
d(u, v) +Q

∂(z, x)

∂(u, v)
d(u, v) +R

∂(x, y)

∂(u, v)
d(u, v).

9.5.8. Invariance under reparametrization up to sign. Recall from
(8.9) the jacobian of a map.

Lemma 9.52. Let

E
h−→ D

Φ−→ R3,

with J(h) ̸= 0. Then

(9.37)

∫∫
Φ◦h

F · dS = ±
∫∫

Φ

F · dS.

Special case. For D ⊆ R2, let E ⊆ R2 be defined by {(p, q) : (q, p) ∈ D}.
Consider

E
h−→ D

Φ−→ R3,

with h(p, q) = (q, p). We denote Φ ◦ h by −Φ, and call it the negative of Φ.
Since J(h) = −1 < 0,

(9.38)

∫∫
−Φ

F · dS = −
∫∫

Φ

F · dS.
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9.5.9. Relating dS and |dS|. Suppose (Φu × Φv)(u, v) ̸= 0. That is, the
normal vector to the surface at (u, v) under the parametrization Φ is nonzero.
Put

(9.39) n(Φ(u, v)) :=
(Φu × Φv)(u, v)

∥(Φu × Φv)(u, v)∥
,

the unit normal vector to the surface Φ at (u, v). Then

(9.40)

∫∫
Φ

F · dS =

∫∫
Φ

F · n |dS|,

with lhs defined by (9.36) and rhs by (9.33).

Proof. This is a consequences of our definitions:∫∫
Φ

F · dS =

∫∫
D

F (Φ(u, v)) · (Φu × Φv)(u, v) d(u, v)

=

∫∫
D

F (Φ(u, v)) · n(Φ(u, v)) ∥(Φu × Φv)(u, v)∥ d(u, v)

=

∫∫
Φ

F · n |dS|.

In the second step, we used definition (9.39). □

9.5.10. Geometric surface. A geometric surface in R3 is the image of a
parametrized surface. An orientation of a geometric surface S is an assign-
ment of a unit normal vector at each point of S in a continuous manner.

This can be done in several ways.

(1) If S is the graph of a function of two variables, then specify whether
the unit normal points upward with positive z-component (or downward
with negative z-component).

(2) If S is a bounded surface without boundary, then specify whether the
unit normal points outward (or inward).

(3) If Φ : D → R3 is a ‘nice’ parametrized surface, then for each (u, v),
Φu×Φv

∥Φu×Φv∥ is a unit normal vector to S at Φ(u, v), and we obtain an

orientation of S.

An oriented geometric surface is a geometric surface with a specified ori-
entation. If S is the image of a parametrized surface Φ, then we say Φ is
orientation preserving if Φu×Φv

∥Φu×Φv∥ equals the prescribed unit normal vector.

In this case, we define ∫∫
S

F · dS =

∫∫
Φ

F · dS.

If this is not the case, that is, Φ is orientation reversing, then −Φ is orientation
preserving, and we define∫∫

S

F · dS =

∫∫
−Φ

F · dS = −
∫∫

Φ

F · dS.

9.6. Gauss’s divergence theorem

We now generalize FTC, Part II to three dimensions, where the three-
dimensional region is a subset of R3.
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9.6.1. Orienting the boundary surface. Let W be a bounded subset of
R3 such that ∂W consists of a finite number of nonintersecting geometric
surfaces. Orient each such surface such that the unit normal vector points
out of W . Then we say ∂W is positively oriented.

Example 9.53. Let W = {(x, y, z) ∈ R3 : 1 ≤ x2 + y2 + z2 ≤ 4}. Then ∂W
consists of

S1 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 4}
and

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
The positive orientation on ∂W is given by outward normals on S1 and inward
normals on S2.

More generally, the normal to the outer boundary is outward, and to each
of the inner boundaries is inward.

9.6.2. Gauss’s divergence theorem. This result relates an integral on a
three-dimensional region W to a surface integral on its boundary ∂W .

Theorem 9.54. Let W ⊆ R3 be such that ∂W is positively oriented. If P ,
Q, R are scalar fields defined on an open set containing W , then

(9.41)

∫∫
∂W

P dy∧dz+Qdz∧dx+Rdx∧dy =

∫∫∫
W

(Px+Qy+Rz) d(x, y, z).

Equivalently, for F = (P,Q,R),

(9.42)

∫∫
∂W

F · dS =

∫∫∫
W

divF d(x, y, z).

Proof. We break the proof in three steps as in the proof of Theorem 9.30.

(i) W is a cuboid. Let W = [a, b]× [c, d]× [p, q]. Let S1 be the face of W
where z = p, and S2 be the face of W where z = q. We orient these
surfaces by the normal going out of W . In other words, S1 is oriented
by n1 = (0, 0,−1), and S2 is oriented by n2 = (0, 0, 1). Using formula
(5.4) of FTC, Part II,∫∫∫
W

Rz d(x, y, z) =

∫∫
[a,b]×[c,d]

R(x, y, q) d(x, y)−
∫∫

[a,b]×[c,d]

R(x, y, p) d(x, y)

=

∫∫
S2

F · n2 |dS|+
∫∫

S1

F · n1 |dS|.

Similarly, rewrite
∫∫∫

W
Qy d(x, y, z) and

∫∫∫
W
Px d(x, y, z) to surface

integrals over the remaining two pairs of faces. Adding these equalities
proves formula (9.41) when W is a cuboid.

(ii) W is a “union” of cuboids. Now suppose W is formed by adjoining
cuboids. Overlapping faces have opposite orientations, so surface inte-
grals over them cancel by (9.38). Thus, formula (9.41) holds when W
is formed by adjoining cuboids.
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(iii) W is a general region. Draw a cuboidal grid inside W as shown below.
Let W ′ be the largest region which fits inside W which is of the form
in item (ii) above and is made out of the faces of the cuboidal grid. By
item (ii), formula (9.41) holds for W ′. Finally, we approach formula
(9.41) for W by considering finer and finer cuboidal grids.

□

Theorem 9.54 gives us an interpretation of divergence: divF (a, b, c) is
the flux of the vector field F through the boundary of a small box around
(a, b, c), that is, the net flow of F out of the box. This explains the terminology
“divergence”.

9.6.3. Principle of deformation.

Corollary 9.55. If S is a simple closed geometric surface and Px+Qy+Rz =
0 inside S, then

(9.43)

∫∫
S

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy = 0.

Proof. By (9.41),∫∫
S=∂W

P dy∧dz+Qdz∧dx+Rdx∧dy =

∫∫∫
W

(Px+Qy+Rz) d(x, y, z) = 0.

□

Corollary 9.56. Suppose S1 and S2 are simple closed geometric surfaces
with S1 lying inside S2 and with both oriented by the outward normal. If
Px +Qy +Rz = 0 in the region W between S1 and S2, then

(9.44)

∫∫
S1

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

=

∫∫
S2

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Proof. Let ∂W be the positively oriented boundary of W . By (9.41),∫∫
∂W

P dy∧dz+Qdz∧dx+Rdx∧dy =

∫∫∫
W

(Px+Qy+Rz) d(x, y, z) = 0.

Therefore,∫∫
S2

P dy∧dz+Qdz∧dx+Rdx∧dy+
∫∫

−S1

P dy∧dz+Qdz∧dx+Rdx∧dy = 0.

Using (9.38), the required formula follows. □

Note: In (9.44), P , Q, R must be well-behaved in the region between S1

and S2. They may have singularities at other points.

Example 9.57. Let

F (x, y, z) = (P,Q,R) = (
x

r3
,
y

r3
,
z

r3
)

on R3 \ {(0, 0, 0)}. Then, one may check that divF = Px +Qy +Rz = 0.
Let S be any simple closed geometric surface oriented by the outward

normal. Let us compute
∫∫
S
F · dS. There are two cases.
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(i) (0, 0, 0) lies outside S. Then
∫∫
S
F · dS = 0 by formula (9.43) in Corol-

lary 9.55.
(ii) (0, 0, 0) lies inside S. Then

∫∫
S
F ·dS = 4π. Why? Let Tϵ be the sphere

of radius ϵ and center (0, 0) lying inside S. Then by formula (9.44) in
Corollary 9.56,∫∫

S

F · dS =

∫∫
Tϵ

F · dS =

∫∫
T1

F · dS = 4π.

The second equality is by the same reasoning.

9.6.4. Volume calculation.

Corollary 9.58. Let S be a simple closed geometric surface oriented by the
outward normal which encloses a region W . Then

(9.45) Vol(W ) =
1

3

∫∫
S

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

=

∫∫
S

x dy ∧ dz =
∫∫

S

y dz ∧ dx =

∫∫
S

z dx ∧ dy.

Proof. Put P (x, y, z) = x
3 , Q(x, y, z) = y

3 , R(x, y, z) =
z
3 . Then Px +Qy +

Rz =
1
3 + 1

3 + 1
3 = 1. By formula (8.15),

Vol(W ) =

∫∫∫
W

d(x, y, z)

=

∫∫∫
W

(Px +Qy +Rz) d(x, y, z)

=

∫∫
∂W=S

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

=
1

3

∫∫
S

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

The third equality is by (9.41). □

Corollary 9.59. For a simple closed surface S parametrized by (x(u, v), y(u, v), z(u, v))
which agrees with the outward normal,
(9.46)

Vol(W ) =
1

3

∫∫
D

[x(u, v)
∂(y, z)

∂(u, v)
+ y(u, v)

∂(z, x)

∂(u, v)
+ z(u, v)

∂(x, y)

∂(u, v)
] d(u, v)

=
1

3

∫∫
D

det

 x(u, v) y(u, v) z(u, v)
xu(u, v) yu(u, v) zu(u, v)
xv(u, v) yv(u, v) zv(u, v)

 d(u, v).
Example 9.60. Let S be the surface defined by x2

a2 +
y2

b2 +
z2

c2 = 1. See picture
below.
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Parametrize S by

x = a sinφ cos θ, y = b sinφ sin θ, z = c cosφ

for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π. Then x(φ, θ) y(φ, θ) z(φ, θ)
xφ(φ, θ) yφ(φ, θ) zφ(φ, θ)
xθ(φ, θ) yθ(φ, θ) zθ(φ, θ)

 =

 a sinφ cos θ b sinφ sin θ c cosφ
a cosφ cos θ b cosφ sin θ −c sinφ
−a sinφ sin θ b sinφ cos θ 0


whose determinant equals abc sinφ. Thus, by formula (9.46), volume of the
elliptical region enclosed by S is

1

3

∫∫
[0,π]×[0,2π]

abc sinφd(φ, θ) =
4

3
πabc.

In particular, the volume of a sphere of radius a is 4
3πa

3.

9.7. Stokes theorem

We now generalize FTC, Part II to two dimensions, where the two-
dimensional region is a surface in R3. In the special case when this surface
lies in R2, we recover Green’s theorem from Section 9.4.

9.7.1. Orienting the boundary curve. Let S be an oriented geometric
surface in R3. It induces an orientation on ∂S as follows. Walk along ∂S with
the prescribed unit normal vector as our upright direction so that S lies to
our left. This is the induced orientation on ∂S.

9.7.2. Stokes theorem. This result relates a surface integral on an oriented
surface S to a line integral on its boundary ∂S.

Theorem 9.61. Let S be an oriented geometric surface in R3. Suppose ∂S
consists of a finite number of nonintersecting simple closed curves. Let ∂S be
given the induced orientation. If P , Q, R are scalar fields defined on a region
containing S, then

(9.47)

∫
∂S

P dx+Qdy +Rdz

=

∫∫
S

(Ry −Qz) dy ∧ dz + (Pz −Rx) dz ∧ dx+ (Qx − Py) dx ∧ dy.

Equivalently, for F = (P,Q,R),

(9.48)

∫
∂S

F · ds =
∫∫

S

curlF · dS.

Proof. We break the proof in three steps.

(i) S is a parallelogram. We assume that the sides of the parallelogram
are parallel to the x-axis and y-axis. Let

Φ : [a, b]× [c, d] → S, (x, y) 7→ (x, y, αx+ βy).

Hence, Φx × Φy = (−α,−β, 1).∫∫
S

curlF · dS =

∫∫
D

−α(Ry −Qz)− β(Pz −Rx) + (Qx − Py) dx ∧ dy.



132 9. DIFFERENTIAL FORMS∫
∂S

F · ds =
∫
∂D

(P + αR) dx+ (Q+ βR) dy.

Why are the two results equal? The answer is Green’s theorem on the
rectangle! Let us check this.

(Q+ βR)x − (P + αR)y = Qx + αQz + β(Rx + αRz)− (Py + βPz)− α(Ry + βRz)

= −α(Ry −Qz)− β(Pz −Rx) + (Qx − Py).

For the first equality, note very carefully that we are taking partial wrt
x of Q(x, y, αx+ βy), and so on. This proves formula (9.48) when S is
a parallelogram.

(ii) S is a “union” of parallelograms. This follows from item (i). The con-
tribution along common edges cancels.

(iii) S is a general surface. Divide S into small pieces so that each piece is
roughly a parallelogram. Use item (ii), and then take limits.

□

Example 9.62. Let us verify Stokes theorem, that is, formula (9.48) for the
upper hemisphere for the vector field F = (x, y, z).

Observe: F = ∇f for f(x, y, z) = x2+y2+z2

2 . Thus, F is a gradient vector
field. Hence, curlF = 0 by (9.5). Thus, the surface integral in (9.48) is zero.
Also, ∫

∂S

F · ds =
∫ 2π

0

(cos t, sin t, 0) · (− sin t, cos t, 0) dt = 0.

Thus, the line integral in (9.48) is zero.

Example 9.63. Consider the surface defined by

S := {(x, y, z) ∈ R3 : x2 + y2 + (z −
√
3)2 = 4, z ≥ 0}.

It is the portion of the sphere of radius 2 centered at (0, 0,
√
3) which lies

above the xy-plane. Orient it by the outward normal of the sphere. Observe:

∂S = {(x, y, z) ∈ R3 : x2 + y2 = 1, z = 0}.
This is the unit circle in the xy-plane. The induced orientation on ∂S is
anticlockwise. Hence the parametrization (cos θ, sin θ, 0) for 0 ≤ θ ≤ 2π is
orientation preserving.

Consider the vector field F = (y,−x, exz). By (9.48),∫∫
S

curlF · dS =

∫
∂S

F · ds

=

∫ 2π

0

(sin θ,− cos θ, e(cos θ)(0)) · (− sin θ, cos θ, 0) dθ

= −2π.

Note: Calculating the surface integral directly is not easy.

Example 9.64. Let C be the intersection of the cylinder x2 + y2 = 1 and
plane x+ y + z = 1. Orient it clockwise when viewed from top. We want to
compute ∫

C

−y3 dx+ x3 dy − z3 dz.
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Observe: C is the boundary of the surface

S = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, x+ y + z = 1}.
This is the graph of the function z = f(x, y) = 1 − x − y for (x, y) ∈ D,
the closed unit disc. Orient S by the unit normal n = 1√

3
(1, 1, 1). Then the

induced orientation on C matches its given orientation.
Let F (x, y, z) = (−y3, x3,−z3). Then curlF = (0, 0, 3x2 + 3y2). Also

(−fx,−fy, 1) = (1, 1, 1). By (9.48),∫
C

F · ds =
∫∫

S

curlF · dS

=

∫∫
D

(0, 0, 3x2 + 3y2) · (1, 1, 1) d(x, y)

= 3

∫∫
D

(3x2 + 3y2) d(x, y)

=
3π

2
.

Note: Calculating the line integral directly is not easy.

9.7.3. Curl probe. Theorem 9.61 gives us an interpretation of curl: (curlF )(a, b, c)
is the flow of F around a small loop lying in the plane perpendicular to curlF .
This explains the terminology “curl”.

Curl of a vector field F can be detected using the curl probe. The vector
(curlF )(a, b, c) points in the direction such that if you insert the paddle of the
curl probe with its axis in that direction, then it will spin the fastest. The
speed at which it spins is proportional to the magnitude of the curl.

9.7.4. Principle of deformation.

Corollary 9.65. Let C be a simple closed geometric curve in R3. Let S be an
oriented geometric surface in R3 whose boundary is C. If Qx = Py, Pz = Rx,
Ry = Qz, that is, curl(P,Q,R) = 0 in a region containing S, then

(9.49)

∫
C

P dx+Qdy +Rdz = 0.

Proof. By (9.47),∫
C=∂S

P dx+Qdy +Rdz

=

∫∫
S

(Ry −Qz) dy ∧ dz + (Pz −Rx) dz ∧ dx+ (Qx − Py) dx ∧ dy = 0.

□

Corollary 9.31 is the special case when S lies in the xy-plane.

Corollary 9.66. Suppose the boundary of S consists of two closed curves C1

and C2. If Qx = Py, Pz = Rx, Ry = Qz, then

(9.50)

∫
C1

P dx+Qdy +Rdz =

∫
C2

P dx+Qdy +Rdz,

with appropriate orientations on C1 and C2 as illustrated in the figure below.
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Corollary 9.32 is the special case when S lies in the xy-plane. The above
result can be proved in the same way as this special case.

9.7.5. Simply connected region. Let us now look at the converse of Lemma 9.12.
We know curl(grad f) = 0. Suppose we are given curlF = 0. Then is
F = grad f for some f? That is, is F a gradient vector field? That is, is∫
C
F · ds = 0 for every closed curve C?
The answer is yes when the domain of F is simply connected. In rough

terms, it means that the domain has no holes. More precisely, it means that
every closed curve in the domain can be shrunk to a point by staying within
that domain.

Example 9.67 (Simply connected). We illustrate this concept.

(1) R2 is simply connected. But R2 with a point removed is not simply
connected.

(2) A closed disc in R2 is simply connected. But a closed disc with an
interior point removed is not simply connected. Similarly, an annulus
is not simply connected.

(3) R3 is simply connected. R3 with a point removed is simply connected.
But R3 with the entire z-axis removed is not simply connected.

Suppose the domain of F is simply connected, and curlF = 0. We indicate
an argument as to why F is a gradient vector field. Let C be any closed curve.
Since the domain of F is simply connected, one can find an orientable surface
S whose boundary is C. Now apply (9.48) to S.

Exercise 9.68. Consider the vector field F of Example 9.27 but only on the
right half plane x > 0. This region is simply connected. So F is a gradient
vector field on this region. Check that f(x, y) = tan−1( yx ) is a potential
function for F on this region. Note very carefully that f is constant along
radial lines. This makes sense since F is orthogonal to the radial direction.

Example 9.69. This is a three-dimensional version of Example 9.27. Con-
sider the vector field

F (x, y, z) = (
−y

x2 + y2
,

x

x2 + y2
, 0)

on R3 \{(0, 0, z)}, that is, on R3 minus z-axis. Note: curlF = 0. For the path

γ : [0, 2π] → R3, γ(t) = (cos t, sin t, 0),∫
γ

F · ds =
∫ 2π

0

(− sin t, cos t, 0) · (− sin t, cos t, 0) dt =

∫ 2π

0

dt = 2π.

Hence F is not a gradient vector field.
Note: γ goes round the z-axis. So there is no surface S in R3 \ {(0, 0, z)}

whose boundary is γ. So the argument given above does not work.
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9.8. Differential forms

Differentiable manifolds, and more specifically differential forms, provide
a general framework in which to express the content of the preceding sections.
We provide a brief informal discussion on this point in this concluding section.
Note: Lines, planes, curves, surfaces, three-space, and so on are examples of
differentiable manifolds.

9.8.1. Orientations. Let us try to understand the notion of orientation of
a manifold through examples.

• Dimension zero. Let us start with R0 which is a point. To orient a
point, we specify a number for it, which is either +1 or −1. See below.

+1 −1

• Dimension one. For R, to orient it, we specify a direction as shown
below.

• Dimension one. Orientations of more complicated one-dimensional ob-
jects, that is, curves in R2 and R3 are shown below.

x

y

x

y

z

• Dimension two. What does it mean to orient R2? It means that we
order the positive x-axis and positive y-axis:

– x followed by y is the standard orientation, denoted dx ∧ dy, and
– y followed by x, namely, dy ∧ dx is the negative of the standard

orientation.
Thus,

dy ∧ dx = −dx ∧ dy.

• Dimension two. Orientations of more complicated two-dimensional ob-
jects, that is, surfaces in R3 are defined as follows. Parametrize the
surface S by a region D in R2 whose coordinates we denote by u and
v. To orient S, we either orient u before v (standard orientation), or v
before u.

This way of orienting is equivalent to the way we have discussed
before, that is, by specifying a normal.

• Dimension three. What does it mean to orient R3? It means that we
order the positive x-axis, positive y-axis, positive z-axis: x followed
by y followed by z is the standard orientation, denoted dx ∧ dy ∧ dz.
Changing the order of any two consecutive axes changes the orientation
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to its negative as illustrated below.

dx ∧ dy ∧ dz −dy ∧ dx ∧ dz dy ∧ dz ∧ dx

−dx ∧ dz ∧ dy dz ∧ dx ∧ dy −dz ∧ dy ∧ dx.

In general: Let M be an oriented manifold of dimension n. Then its
boundary ∂M is a manifold of dimension n−1. The orientation ofM induces
an orientation on ∂M .

Illustrate.

9.8.2. Differential forms. Differential forms on the manifold Rm can be
understood in a formal manner. We illustrate them for m = 0, 1, 2, 3 in
Table 9.3.

Table 9.3. Differential forms.

0-form 1-form 2-form 3-form

R0 scalar – – –

R1 f(x) g(x)dx – –

R2 f(x, y) Pdx+Qdy gdx ∧ dy –

R3 f(x, y, z) Pdx+Qdy +Rdz Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy gdx ∧ dy ∧ dz

9.8.3. Exterior derivative. The exterior derivative d is a map which takes
k-forms to (k + 1)-forms. We illustrate it for k = 0, 1, 2 below.

• 0 to 1.

d : 0-forms −→ 1-forms.

We illustrate on m = 0, 1, 2, 3.

d(scalar) = 0.

d
(
f(x)

)
= f ′(x) dx.

d
(
f(x, y)

)
= fx(x, y) dx+ fy(x, y) dy.

d
(
f(x, y, z)

)
= fx(x, y, z) dx+ fy(x, y, z) dy + fz(x, y, z) dz.

• 1 to 2.

d : 1-forms −→ 2-forms.

We illustrate on m = 1, 2, 3.

d
(
f(x) dx

)
= 0.

d
(
P (x, y) dx+Q(x, y) dy

)
= Py(x, y) dy ∧ dx+Qx(x, y) dx ∧ dy
=
(
Qx(x, y)− Py(x, y)

)
dx ∧ dy.
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d
(
P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz

)
= Py(x, y, z) dy ∧ dx+ Pz(x, y, z) dz ∧ dx

+Qx(x, y, z) dx ∧ dy +Qz(x, y, z) dz ∧ dy
+Rx(x, y, z) dx ∧ dz +Ry(x, y, z) dy ∧ dz

= (Ry(x, y, z)−Qz(x, y, z)) dy ∧ dz
+ (Pz(x, y, z)−Rx(x, y, z)) dz ∧ dx
+ (Qx(x, y, z)− Py(x, y, z)) dx ∧ dy.

• 2 to 3.

d : 2-forms −→ 3-forms.

We illustrate on m = 2, 3.

d
(
g(x, y) dx ∧ dy

)
= 0.

d
(
P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx+R(x, y, z) dx ∧ dy

)
= Px(x, y, z) dx ∧ dy ∧ dz +Qy(x, y, z) dy ∧ dz ∧ dx

+Rz(x, y, z) dz ∧ dx ∧ dy
=
(
Px(x, y, z) +Qy(x, y, z) +Rz(x, y, z)

)
dx ∧ dy ∧ dz.

Note very carefully how formulas for gradient, curl, divergence in Sec-
tion 9.2 emerge naturally in the consideration of the map d.

The map d has the important property that d2 = 0. For M = R3, we
may ‘write’

0-forms
gradient−−−−−→ 1-forms

curl−−→ 2-forms
divergence−−−−−−→ 3-forms.

The fact that curl(gradient) = 0 and divergence(curl) = 0 that we saw in
(9.5) are instances of the property d2 = 0.

9.8.4. Stokes theorem. This result links an integral on a manifold M to
an integral on its boundary ∂M .

Theorem 9.70. Let M be an oriented manifold of dimension m. Put the
induced orientation on ∂M . Let ω be an (m− 1)-form on M . Then

(9.51)

∫
M

dω =

∫
∂M

ω.

In the lhs, the m-form dω on M is obtained by applying the exterior
derivative d to the (m− 1)-form ω on M .

Special case. Let us see how formula (9.51) specializes to formulas that we
have seen earlier.

• m = 1. We rewrite formula (5.4), namely,∫ b

a

f ′(x) dx = f(b)− f(a)

as ∫
[a,b]

f ′(x) dx =

∫
∂[a,b]

f(x).
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Here M = [a, b] which is a one-dimensional manifold. The 0-form on
M is f(x), and the resulting 1-form on M is f ′(x) dx.

• m = 1. More generally: We rewrite formula (9.17), namely,∫
γ

F · ds = f(γ(b))− f(γ(a))

as ∫
γ

fx dx+ fy dy =

∫
∂γ

f(x)

or as ∫
γ

fx dx+ fy dy + fz dz =

∫
∂γ

f(x),

depending on whether γ is in R2 or in R3.
• m = 2. We rewrite formula (9.20), namely,∫∫

D

(Qx − Py) d(x, y) =

∫
∂D

P dx+Qdy

as ∫
D

(Qx − Py) dx ∧ dy =

∫
∂D

P dx+Qdy.

We now use only one integral sign even for a double integral.
• m = 2. Formula (9.47), namely,∫
S

(Ry −Qz) dy ∧ dz + (Pz −Rx) dz ∧ dx+ (Qx − Py) dx ∧ dy

=

∫
∂S

P dx+Qdy +Rdz

does not need any rewriting! The only minor difference is that we now
use only one integral sign for the surface integral.

• m = 3. We rewrite formula (9.41), namely,∫∫∫
W

(Px +Qy +Rz) d(x, y, z) =

∫∫
∂W

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

as∫
W

(Px +Qy +Rz) dx ∧ dy ∧ dz =
∫
∂W

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.
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