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CHAPTER 1

Tutorial problems

1.0. Revision material on real numbers

Mark the following statements as True/False:

(1) +∞ and −∞ are both real numbers.
(2) The set of all even natural numbers is bounded.
(3) The set {x} is an open interval for every x ∈ R.
(4) The set {2/m|m ∈ N} is bounded above.
(5) The set {2/m|m ∈ N} is bounded below.
(6) Union of intervals is also an interval.
(7) Nonempty intersection of intervals is also an interval.
(8) Nonempty intersection of open intervals is also an open interval.
(9) Nonempty intersection of closed intervals is also a closed interval.
(10) Nonempty finite intersection of closed intervals is also a closed interval.
(11) For every x ∈ R, there exists a rational r ∈ Q, such that r > x.
(12) Between any two rational numbers there lies an irrational number.

1
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1.1. Sequences

(1) Using (ϵ-N) definition prove the following:

(i) lim
n→∞

10

n
= 0.

(ii) lim
n→∞

5

3n+ 1
= 0.

(iii) lim
n→∞

n2/3 sin(n!)

n+ 1
= 0.

(iv) lim
n→∞

(
n

n+ 1
− n+ 1

n

)
= 0.

(2) Show that the following limits exist and find them :

(i) lim
n→∞

(
n

n2 + 1
+

n

n2 + 2
+ · · ·+ n

n2 + n

)
.

(ii) lim
n→∞

(
n!

nn

)
.

(iii) lim
n→∞

(
n3 + 3n2 + 1

n4 + 8n2 + 2

)
.

(iv) lim
n→∞

(n)1/n.

(v) lim
n→∞

(
cosπ

√
n

n2

)
.

(vi) lim
n→∞

(√
n
(√
n+ 1−

√
n
))
.

(3) Show that the following sequences are not convergent :

(i) { n2

n+ 1
}n≥1.

(ii)

{
(−1)n

(
1

2
− 1

n

)}
n≥1

.

(4) Determine whether the sequences are increasing or decreasing:

(i)

{
n

n2 + 1

}
n≥1

.

(ii)

{
2n3n

5n+1

}
n≥1

.

(iii)

{
1− n

n2

}
n≥2

.

(5) Prove that the following sequences are convergent by showing that they are
monotone and bounded. Also find their limits :

(i) a1 = 1, an+1 =
1

2

(
an +

2

an

)
for all n ≥ 1.

(ii) a1 =
√
2, an+1 =

√
2 + an for all n ≥ 1.

(iii) a1 = 2, an+1 = 3 +
an
2

for all n ≥ 1.

(6) If lim
n→∞

an = L, find the following : lim
n→∞

an+1, lim
n→∞

|an|.
(7) If lim

n→∞
an = L ̸= 0, show that there exists n0 ∈ N such that

|an| ≥
|L|
2

for all n ≥ n0.

(8) If an ≥ 0 and lim
n→∞

an = 0, show that lim
n→∞

a
1/2
n = 0.
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(Optional: State and prove a corresponding result if an → L > 0.)
(9) For given sequences {an}n≥1 and {bn}n≥1, prove or disprove the following :
(i) {anbn}n≥1 is convergent, if {an}n≥1 is convergent.
(ii) {anbn}n≥1 is convergent, if {an}n≥1 is convergent and {bn}n≥1 is bounded.

(10) Show that a sequence {an}n≥1 is convergent iff both the subsequences {a2n}n≥1

and {a2n+1}n≥1 are convergent to the same limit.

Supplement

(1) A sequence {an}n≥1 is said to be Cauchy if for any ϵ > 0, there exists n0 ∈ N
such that |an − am| < ϵ for all m,n ≥ n0.
In other words, the elements of a Cauchy sequence come arbitrarily close to each
other after some stage. One can show that every convergent sequence is also
Cauchy and conversely, every Cauchy sequence in R is also convergent. This is
an equivalent way of stating the Completeness property of real numbers.

(2) To prove that a sequence {an}n≥1 is convergent to L, one needs to find a real

number L (not given by the sequences) and verify the required property. However
the concept of ‘Cauchyness’ of a sequence is purely an ‘intrinsic’ property which
can be verified purely for the given sequence. Still a sequence is Cauchy if and
only if it is convergent.

(3) In problem 5(i) we defined

a0 = 1, an+1 =
1

2
(an +

2

an
) for all n ≥ 1.

The sequence {an}n≥1 is a monotonically decreasing sequence of rational numbers

which is bounded below. However, it cannot converge to a rational (why?). This
exhibits the need to enlarge the concept of numbers beyond rational numbers.
The sequence {an}n≥1 converges to

√
2 and its elements an’s are used to find

rational approximation (in computing machines) of
√
2.
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1.2. Limits, continuity, differentiability

(1) Let a < c < b and f, g : (a, b) → R be such that lim
x→c

f(x) = 0. Prove or disprove

the following statements:
(i) lim

x→c
[f(x)g(x)] = 0.

(ii) lim
x→c

[f(x)g(x)] = 0, if g is bounded.

(iii) lim
x→c

[f(x)g(x)] = 0, if lim
x→c

g(x) exists.

(2) Let f : R → R be such that lim
x→α

f(x) exists for α ∈ R. Show that

lim
h→0

[f(α+ h)− f(α− h)] = 0.

Analyze the converse.
(3) Discuss the continuity of the following functions :

(i) f(x) = sin
1

x
, if x ̸= 0 and f(0) = 0.

(ii) f(x) = x sin
1

x
, if x ̸= 0 and f(0) = 0.

(iii) f(x) =



x

[x]
if 1 ≤ x < 2

1 if x = 2

√
6− x if 2 ≤ x ≤ 3

(4) Let f : R → R satisfy f(x+ y) = f(x) + f(y) for all x, y ∈ R. If f is continuous
at 0, show that f is continuous at every c ∈ R.
(Optional Show that the function f satisfies f(kx) = kf(x), for all k ∈ R).

(5) Let f(x) = x2 sin(1/x) for x ̸= 0 and f(0) = 0. Show that f is differentiable on

R. Is f ′
a continuous function?

(6) Let f : (a, b) → R be a function such that

|f(x+ h)− f(x)| ≤ C|h|α

for all x, x + h ∈ (a, b), where C is a constant and α > 1. Show that f is

differentiable on (a, b) and compute f
′
(x) for x ∈ (a, b).

(7) If f : (a, b) → R is differentiable at c ∈ (a, b), then show that

lim
h→0+

f(c+ h)− f(c− h)

2h

exists and equals f
′
(c). Is the converse true ? [Hint: Consider f(x) = |x|.]

(8) Let f : R → R satisfy

f(x+ y) = f(x)f(y) for all x, y ∈ R.

If f is differentiable at 0, then show that f is differentiable at every c ∈ R and
f

′
(c) = f

′
(0)f(c).

(Optional Show that f has a derivative of every order on R.)
(9) Using the theorem on derivative of inverse function. Compute the derivative of

(i) cos−1 x, −1 < x < 1.
(ii) cosec−1x, |x| > 1.
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(10) Compute
dy

dx
, given

y = f

(
2x− 1

x+ 1

)
andf

′
(x) = sin(x2).

Optional Exercises:
(11) Construct an example of a function f : R → R which is continuous every where

and is differentiable everywhere except at 2 points.

(12) Let f(x) =

{
1, if x is rational,
0, if x is irrational.

Show that f is discontinuous at every c ∈ R.

(13) Let g(x) =

{
x, if x is rational,

1− x, if x is irrational.
Show that g is continuous only at c = 1/2.

(14) Let f : (a, b) → R and c ∈ (a, b) be such that lim
x→c

f(x) > α. Prove that there

exists some δ > 0 such that

f(c+ h) > α for all 0 < |h| < δ.

(See also question 7 of Tutorial Sheet 1.)
(15) Let f : (a, b) → R and c ∈ (a, b). Show that the following are equivalent :
(i) f is differentiable at c.
(ii) There exist δ > 0 and a function ϵ1 : (−δ, δ) → R such that limh→0 ϵ1(h) =

0 and
f(c+ h) = f(c) + αh+ hϵ1(h) for all h ∈ (−δ, δ).

(iii) There exists α ∈ R such that

lim
h→0

(
|f(c+ h)− f(c)− αh|

|h|

)
= 0.
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1.3. Rolle’s and mean value theorems, Maximum/Minimum

(1) Show that the cubic x3 − 6x+ 3 has all roots real.
(2) Let p and q be two real numbers with p > 0. Show that the cubic x3 + px + q

has exactly one real root.
(3) Let f be continuous on [a, b] and differentiable on (a, b). If f(a) and f(b) are

of different signs and f
′
(x) ̸= 0 for all x ∈ (a, b), show that there is a unique

x0 ∈ (a, b) such that f(x0) = 0.
(4) Consider the cubic f(x) = x3 + px+ q, where p and q are real numbers. If f(x)

has three distinct real roots, show that 4p3 + 27q2 < 0 by proving the following:
(i) p < 0.

(ii) f has maximum/minimum at ±
√

−p/3.
(iii) The maximum/minimum values are of opposite signs.

(5) Use the MVT to prove | sin a− sin b| ≤ |a− b| for all a, b ∈ R.
(6) Let f be continuous on [a, b] and differentiable on (a, b). If f(a) = a and f(b) = b,

show that there exist distinct c1, c2 in (a, b) such that f
′
(c1) + f

′
(c2) = 2.

(7) Let a > 0 and f be continuous on [−a, a]. Suppose that f ′
(x) exists and f

′
(x) ≤ 1

for all x ∈ (−a, a). If f(a) = a and f(−a) = −a, show that f(0) = 0.
Optional: Show that under the given conditions, in fact f(x) = x for every x.

(8) In each case, find a function f which satisfies all the given conditions, or else
show that no such function exists.
(i) f

′′
(x) > 0 for all x ∈ R, f ′

(0) = 1, f
′
(1) = 1

(ii) f
′′
(x) > 0 for all x ∈ R, f ′

(0) = 1, f
′
(1) = 2

(iii) f
′′
(x) ≥ 0 for all x ∈ R, f ′

(0) = 1, f(x) ≤ 100 for all x > 0

(iv) f
′′
(x) > 0 for all x ∈ R, f ′

(0) = 1, f(x) ≤ 1 for all x < 0
(9) Let f(x) = 1+ 12|x| − 3x2. Find the global maximum and the global minimum

of f on [−2, 5]. Verify it from the sketch of the curve y = f(x) on [−2, 5].
(10) A window is to be made in the form of a rectangle surmounted by a semicircular

portion with diameter equal to the base of the rectangle. The rectangular portion
is of clear glass and the semicircular portion is to be of colored glass admitting
only half as much light per square foot as the clear glass. If the total perimeter of
the window frame is p feet, find the dimensions of the window which will admit
the maximum light.
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1.4. Curve sketching, Riemann integration

(1) Sketch the following curves after locating intervals of increase/decrease, inter-
vals of concavity upward/downward, points of local maxima/minima, points of
inflection and asymptotes. How many times and approximately where does the
curve cross the x-axis?

(i) y = 2x3 + 2x2 − 2x− 1.

(ii) y =
x2

x2 + 1
.

(iii) y = 1 + 12|x| − 3x2, x ∈ [−2, 5].
(2) Sketch a continuous curve y = f(x) having all the following properties:

f(−2) = 8, f(0) = 4, f(2) = 0; f
′
(2) = f

′
(−2) = 0;

f
′
(x) > 0 for |x| > 2, f

′
(x) < 0 for |x| < 2;

f
′′
(x) < 0 for x < 0 and f

′′
(x) > 0 for x > 0.

(3) Give an example of f : (0, 1) → R such that f is
(i) strictly increasing and convex.
(ii) strictly increasing and concave.
(iii) strictly decreasing and convex.
(iv) strictly decreasing and concave.

(4) Let f, g : R → R satisfy f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ R. Define h(x) =
f(x)g(x) for x ∈ R. Which of the following statements are true? Why?

(i) If f and g have a local maximum at x = c, then so does h.
(ii) If f and g have a point of inflection at x = c, then so does h.

(5) Let f(x) = 1 if x ∈ [0, 1] and f(x) = 2 if x ∈ (1, 2]. Show from the first principle

that f is Riemann integrable on [0, 2] and find

∫ 2

0

f(x)dx.

(6) (a) Let f : [a, b] → R be Riemann integrable and f(x) ≥ 0 for all x ∈ [a, b].

Show that

∫ b

a

f(x)dx ≥ 0. Further, if f is continuous and

∫ b

a

f(x)dx = 0,

show that f(x) = 0 for all x ∈ [a, b].
(b) Give an example of a Riemann integrable function on [a, b] such that f(x) ≥ 0

for all x ∈ [a, b] and

∫ b

a

f(x)dx = 0, but f(x) ̸= 0 for some x ∈ [a, b].

(7) Evaluate lim
n→∞

Sn by showing that Sn is an approximate Riemann sum for a

suitable function over a suitable interval:

(i) Sn =
1

n5/2

n∑
i=1

i3/2.

(ii) Sn =

n∑
i=1

n

i2 + n2
.

(iii) Sn =

n∑
i=1

1√
in+ n2

.

(iv) Sn =
1

n

n∑
i=1

cos
iπ

n
.

(v) Sn =
1

n

{
n∑

i=1

(
i

n

)
+

2n∑
i=n+1

(
i

n

)3/2

+

3n∑
i=2n+1

(
i

n

)2
}
.
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(8) Compute

(a)
d2y

dx2
, if x =

∫ y

0

dt√
1 + t2

.

(b)
dF

dx
, if for x ∈ R (i) F (x) =

∫ 2x

1

cos(t2)dt (ii) F (x) =

∫ x2

0

cos(t)dt.

(9) Let p be a real number and let f be a continuous function on R that satisfies the

equation f(x+p) = f(x) for all x ∈ R. Show that the integral

∫ a+p

a

f(t)dt has the

same value for every real number a. (Hint : Consider F (a) =

∫ a+p

a

f(t)dt, a ∈ R.)

(10) Let f : R → R be continuous and λ ∈ R, λ ̸= 0. For x ∈ R, let

g(x) =
1

λ

∫ x

0

f(t) sinλ(x− t)dt.

Show that g
′′
(x) + λ2g(x) = f(x) for all x ∈ R and g(0) = 0 = g

′
(0).
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1.5. Length, area, volume

(1) Find the area of the region bounded by the given curves in each of the following
cases.
(i)

√
x+

√
y = 1, x = 0 and y = 0.

(ii) y = x4 − 2x2 and y = 2x2.
(iii) x = 3y − y2 and x+ y = 3.

(2) Let f(x) = x − x2 and g(x) = ax. Determine a so that the region above the
graph of g and below the graph of f has area 4.5.

(3) Find the area of the region inside the circle r = 6a cos θ and outside the cardioid
r = 2a(1 + cos θ).

(4) Find the arc length of the each of the curves described below.
(i) the cycloid x = t− sin t, y = 1− cos t, 0 ≤ t ≤ 2π.

(ii) y =

∫ x

0

√
cos 2tdt, 0 ≤ x ≤ π/4.

(5) For the following curve, find the arc length as well as the the area of the surface
generated by revolving it about the line y = −1.

y =
x3

3
+

1

4x
, 1 ≤ x ≤ 3

(6) The cross sections of a certain solid by planes perpendicular to the x-axis are
circles with diameters extending from the curve y = x2 to the curve y = 8− x2.
The solid lies between the points of intersection of these two curves. Find its
volume.

(7) Find the volume common to the cylinders x2 + y2 = a2 and y2 + z2 = a2.
(8) A fixed line L in 3-space and a square of side r in a plane perpendicular to L

are given. One vertex of the square is on L. As this vertex moves a distance h
along L, the square turns through a full revolution with L as the axis. Find the
volume of the solid generated by this motion.

(9) Find the volume of the solid generated when the region bounded by the curves
y = 3 − x2 and y = −1 is revolved about the line y = −1, by both the Washer
Method and the Shell Method.

(10) A round hole of radius
√
3 cms is bored through the center of a solid ball of

radius 2 cms. Find the volume cut out.



10 1. TUTORIAL PROBLEMS

1.6. Multivariables, limits, continuity

(1) Find the natural domains of the following functions of two variables:

(i)
xy

x2 − y2

(ii) log(x2 + y2)
(2) Describe the level curves and the contour lines for the following functions cor-

responding to the values c = −3,−2,−1, 0, 1, 2, 3, 4 :
(i) f(x, y) = x− y
(ii) f(x, y) = x2 + y2

(iii) f(x, y) = xy
(3) Using definition, examine the following functions for continuity at (0, 0). The

expressions below give the value at (x, y) ̸= (0, 0). At (0, 0), the value should be

taken as zero: (i)
x3y

x6 + y2

(ii) xy
x2 − y2

x2 + y2

(iii) ||x| − |y|| − |x| − |y|.
(4) Suppose f, g : R → R are continuous functions. Show that each of the following

functions of (x, y) ∈ R2 are continuous:
(i) f(x)± g(y)
(ii) f(x)g(y)
(iii) max{f(x), g(y)}
(iv) min{f(x), g(y)}.

(5) Let

f(x, y) =
x2y2

x2y2 + (x− y)2
for (x, y) ̸= (0, 0).

Show that the iterated limits

lim
x→0

[
lim
y→0

f(x, y)

]
and lim

y→0

[
lim
x→0

f(x, y)
]

exist and both are equal to 0, but lim
(x,y)→(0,0)

f(x, y) does not exist.

(6) Examine the following functions for the existence of partial derivatives at (0, 0).
The expressions below give the value at (x, y) ̸= (0, 0). At (0, 0), the value should
be taken as zero.

(i) xy
x2 − y2

x2 + y2

(ii)
sin2(x+ y)

|x|+ |y|
(7) Let f(0, 0) = 0 and

f(x, y) = (x2 + y2) sin
1

x2 + y2
for (x, y) ̸= (0, 0).

Show that f is continuous at (0, 0), and the partial derivatives of f exist, but are
not bounded in any disc (how so ever small) around (0, 0).

(8) Let f(0, 0) = 0 and

f(x, y) =

 x sin(1/x) + y sin(1/y), if x ̸= 0, y ̸= 0
x sin 1/x, if x ̸= 0, y = 0
y sin 1/y, if y ̸= 0, x = 0.
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Show that none of the partial derivatives of f exist at (0, 0) although f is con-
tinuous at (0, 0).

(9) Examine the following functions for the existence of directional derivatives and
differentiability at (0, 0). The expressions below give the value at (x, y) ̸= (0, 0).
At (0, 0), the value should be taken as zero:

(i) xy
x2 − y2

x2 + y2

(ii)
x3

x2 + y2

(iii) (x2 + y2) sin
1

x2 + y2

(10) Let f(x, y) = 0 if y = 0 and

f(x, y) =
y

|y|
√
x2 + y2 if y ̸= 0.

Show that f is continuous at (0, 0), Duf(0, 0) exists for every vector u, yet f is
not differentiable at (0, 0).
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1.7. Maxima, minima, saddle points

(1) Let F (x, y, z) = x2 +2xy− y2 + z2. Find the gradient of F at (1,−1, 3) and the
equations of the tangent plane and the normal line to the surface F (x, y, z) = 7
at (1,−1, 3).

(2) Find DuF (2, 2, 1), where F (x, y, z) = 3x − 5y + 2z, and u is the unit vector in
the direction of the outward normal to the sphere x2 + y2 + z2 = 9 at (2, 2, 1).

(3) Given sin(x+ y) + sin(y + z) = 1, find
∂2z

∂x∂y
, provided cos(y + z) ̸= 0.

(4) If f(0, 0) = 0 and

f(x, y) = xy
x2 − y2

x2 + y2
for (x, y) ̸= (0, 0),

show that both fxy and fyx exist at (0, 0), but they are not equal. Are fxy and
fyx continuous at (0, 0)?

(5) Show that the following functions have local minima at the indicated points.
(i) f(x, y) = x4 + y4 + 4x− 32y − 7, (x0, y0) = (−1, 2).
(ii) f(x, y) = x3 + 3x2 − 2xy + 5y2 − 4y3, (x0, y0) = (0, 0).

(6) Analyze the following functions for local maxima, local minima and saddle
points:

(i) f(x, y) = (x2 − y2)e−(x2+y2)/2 (ii) f(x, y) = x3 − 3xy2

(7) Find the global maximum and the global minimum of

f(x, y) = (x2 − 4x) cos y

for 1 ≤ x ≤ 3, −π/4 ≤ y ≤ π/4.
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1.8. Multiple integrals

(1) For the following, write an equivalent iterated integral with the order of inte-
gration reversed:

(i)

∫ 1

0

[∫ ex

1

dy

]
dx.

(ii)

∫ 1

0

[∫ √
y

−√
y

f(x, y)dx

]
dy.

(2) Evaluate the following integrals:

(i)

∫ π

0

[∫ π

x

sin y

y
dy

]
dx.

(ii)

∫ 1

0

[∫ 1

y

x2exydx

]
dy.

(iii)

∫ 2

0

(tan−1 πx− tan−1 x)dx.

(3) Find

∫∫
D

f(x, y)d(x, y), where f(x, y) = ex
2

and D is the region bounded by

the lines y = 0, x = 1 and y = 2x.
(4) Evaluate the integral ∫∫

D

(x− y)2 sin2(x+ y)d(x, y),

where D is the parallelogram with vertices at (π, 0), (2π, π), (π, 2π) and (0, π).
(5) Let D be the region in the first quadrant of the xy-plane bounded by the hy-

perbolas xy = 1, xy = 9 and the lines y = x, y = 4x. Find

∫∫
D

d(x, y) by

transforming it to

∫∫
E

d(u, v), where x =
u

v
, y = uv, v > 0.

(6) Find

lim
r→∞

∫∫
D(r)

e−(x2+y2)d(x, y),

where D(r) equals:
(i) {(x, y) : x2 + y2 ≤ r2}.
(ii) {(x, y) : x2 + y2 ≤ r2, x ≥ 0, y ≥ 0}.
(iii) {(x, y) : |x| ≤ r, |y| ≤ r}.
(iv) {(x, y) : 0 ≤ x ≤ r, 0 ≤ y ≤ r}.

(7) Find the volume common to the cylinders x2 + y2 = a2 and x2 + z2 = a2 using
double integral over a region in the plane. (Hint: Consider the part in the first
octant.)

(8) Express the solid D = {(x, y, z)|
√
x2 + y2 ≤ z ≤ 1} as

{(x, y, z)|a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x), ξ1(x, y) ≤ z ≤ ξ2(x, y)}.

(9) Evaluate

I =

∫ √
2

0

(∫ √
2−x2

0

(∫ 2

x2+y2

xdz

)
dy

)
dx.

Sketch the region of integration and evaluate the integral by expressing the order
of integration as dxdydz.
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(10) Using suitable change of variables, evaluate the following:
(i)

I =

∫∫∫
D

(z2x2 + z2y2)dxdydz

where D is the cylindrical region x2 + y2 ≤ 1 bounded by −1 ≤ z ≤ 1.
(ii)

I =

∫∫∫
D

exp(x2 + y2 + z2)3/2dxdydz

over the region enclosed by the unit sphere in R3.
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1.9. Vector fields, curves, parameterization

(1) Let a,b be two fixed vectors, r = (x, y, z) and r2 = x2 + y2 + z2. Prove the
following:
(i) ∇(rn) = nrn−2r for any integer n.

(ii) a · ∇
(
1

r

)
= −

(a · r
r3

)
.

(iii) b · ∇
(
a · ∇

(
1

r

))
=

3(a · r)(b · r)
r5

− a · b
r3

.

(2) For any two scalar functions f, g on Rm establish the relations:
(i) ∇(fg) = f∇g + g∇f.
(ii) ∇fn = nfn−1∇f.
(iii) ∇(f/g) = (g∇f − f∇g)/g2 whenever g ̸= 0.

(3) Prove the following:
(i) ∇ · (fv) = f∇ · v + (∇f) · v.
(ii) ∇× (fv) = f(∇× v) +∇f × v.
(iii) ∇×∇× v = ∇(∇ · v)− (∇ · ∇)v,

where ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
is called the Laplacian operator.

(iv) ∇ · (f∇g)−∇ · (g∇f) = f∇2g − g∇2f.
(v) ∇ · (∇× v) = 0
(vi) ∇× (∇f) = 0.
(vii) ∇ · (g∇f × f∇g) = 0.

(4) Let r = (x, y, z) and r = |r|. Show that

(i) ∇2f = div (∇f(r)) = d2f

dr2
+

2

r

df

dr
.

(ii) div (rnr) = (n+ 3)rn.
(iii) curl(rnr) = 0

(iv) div (∇1

r
) = 0 for r ̸= 0.

(5) Prove that
(i) ∇ · (u× v) = v · (∇× u)− u · (∇× v)

Hence, if u,v are irrotational, u× v is solenoidal. (Def: A vector-field u is
said to be irrotational if ∇×u = 0. A vector-field u is said to be solenoidal
if ∇ · u = 0.)

(ii) ∇× (u× v) = (v · ∇)u− (u · ∇)v + (∇ · v)u− (∇ · u)v.
(iii) ∇(u · v) = (v · ∇)u+ (u · ∇)v + v × (∇× u) + u× (∇× v).

Hint: Write ∇ =
∑

i
∂

∂x
, ∇× v =

∑
i
∂

∂x
× v and ∇ · v =

∑
i
∂

∂x
· v.

(6) (i) If w is a vector field of constant direction and ∇×w ̸= 0, prove that ∇×w
is always orthogonal to w.

(ii) If v = w × r for a constant vector w, prove that ∇× v = 2w.
(iii) If ρv = ∇p where ρ( ̸= 0) and p are continuously differentiable scalar func-

tions, prove that

v · (∇× v) = 0.

(7) Calculate the line integral of the vector field

F (x, y) = (x2 − 2xy, y2 − 2xy)

from (−1, 1) to (1, 1) along y = x2.
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(8) Calculate the line integral of the vector field

F (x, y) = (x2 + y2, x− y)

once around the ellipse b2x2 + a2y2 = a2b2 in the anticlockwise direction.
(9) Calculate the value of the line integral∮

C

(x+ y)dx− (x− y)dy

x2 + y2

where C is the curve x2 + y2 = a2 traversed once in the anticlockwise direction.
(10) Calculate ∮

C

ydx+ zdy + xdz

where C is the intersection of two surfaces z = xy and x2 + y2 = 1 traversed
once in a direction that appears anticlockwise when viewed from high above the
xy-plane.
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1.10. Line integrals and applications

(1) Consider the helix
γ(t) = (a cos t, a sin t, ct)

lying on the cylinder x2 + y2 = a2. Parameterize this in terms of arc length.
(2) Evaluate the line integral ∮

C

x2ydx− x3dy

(x2 + y2)2

where C is the square with vertices (±1,±1) oriented in the anticlockwise direc-
tion.

(3) Find ∮
C

grad (x2 − y2) · ds

where C is the curve x2 + y2 = 1 oriented in the anticlockwise direction.
(4) Evaluate ∫ (2,8)

(0,0)

grad (x2 − y2) · ds

where C is y = x3. The notation is written to suggest that (0, 0) is the initial
point and (2, 8) is the final point of C.

(5) Compute the line integral ∮
C

dx+ dy

|x|+ |y|
where C is the square with vertices (1, 0), (0, 1), (−1, 0) and (0,−1) traversed
once in the anticlockwise direction.

(6) A force F = (xy, x6y2) moves a particle from (0, 0) onto the line x = 1 along
y = axb where a, b > 0. If the work done is independent of b, find the value of a.

(7) Calculate the work done by the force field F (x, y, z) = (y2, z2, x2) along the
curve C of intersection of the sphere x2 + y2 + z2 = a2 and cylinder x2 + y2 = ax
where z ≥ 0, a > 0 (specify the orientation of C that you use.)

(8) Determine whether or not the vector field F (x, y) = (3xy, x3y) is a gradient field
on any open subset of R2.

(9) Let S = R2 \ {(0, 0)}. Let

F (x, y) = (− y

x2 + y2
,

x

x2 + y2
) = (P (x, y), Q(x, y)).

Show that
∂

∂y
P (x, y) =

∂

∂x
Q(x, y) on S while F is not the gradient of a scalar

field on S.
(10) For F = (2xy + z3, x2, 3xz2). Show that ∇ϕ = F for some ϕ and calculate∮

C

F · ds where C is any arbitrary smooth closed curve.

(11) A radial force field is one which can be expressed as F = f(r)r where r =
(x, y, z) is the position vector and r = ∥r∥. Show that F is conservative if f is
continuous.
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1.11. Green’s theorem and applications

(1) Verify Green’s theorem in each of the following cases:
(i) f(x, y) = −xy2; g(x, y) = x2y; D : x ≥ 0, 0 ≤ y ≤ 1− x2;
(ii) f(x, y) = 2xy; g(x, y) = ex + x2; where D is the triangle with vertices

(0, 0), (1, 0), and (1, 1).

(2) Use Green’s theorem to evaluate the integral

∮
∂D

y2 dx+ x dy where:

(i) D is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2).
(ii) D is the square with vertices (±1,±1).
(iii) D is the disc of radius 2 and center (0, 0) (specify the orientation you use

for the curve.)
(3) For a simple closed curve given in polar coordinates r = p(θ) show using Green’s

theorem that the area enclosed is given by

A =
1

2

∮
C

p(θ)2dθ.

Use this to compute the area enclosed by the following curves:
(i) The cardioid: r = p(θ) = a(1− cos θ), 0 ≤ θ ≤ 2π.
(ii) The lemniscate: r2 = p(θ)2 = a2 cos 2θ, −π/4 ≤ θ ≤ π/4.

(4) Find the area of the following regions:
(i) The area lying in the first quadrant of the cardioid r = p(θ) = a(1− cos θ).
(ii) The region under one arch of the cycloid

C(t) = (a(t− sin t), a(1− cos t)), 0 ≤ t ≤ 2π.

(iii) The region bounded by the limaçon

r = p(θ) = 1− 2 cos θ, 0 ≤ θ ≤ π/2

and the two axes.
(5) Evaluate ∮

C

xe−y2

dx+ [−x2ye−y2

+ 1/(x2 + y2)]dy

around the square determined by |x| ≤ a, |y| ≤ a traced in the anticlockwise
direction.

(6) Let C be a simple closed curve in the xy-plane. Show that

3I0 =

∮
C

x3dy − y3dx,

where I0 is the polar moment of inertia of the region D enclosed by C. It is
defined by I0 =

∫∫
D
x2 + y2 dxdy.

(7) Consider a = a(x, y), b = b(x, y) having continuous partial derivatives on the
unit disc D. If

a(x, y) ≡ 1, b(x, y) ≡ y

on the boundary circle C, and

u = (a, b), v = ((ax − ay), (bx − by)), w = ((bx − by), (ax − ay)),

find ∫∫
D

u · v dxdy and

∫∫
D

u · w dxdy.

(8) Let C be any closed curve in the plane. Compute

∮
C

∇(x2 − y2) · n|ds|.
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(9) Green’s Identities are as follows:

(i)

∫∫
D

∇2w dxdy =

∮
∂D

∂w

∂n
|ds|.

(ii)

∫∫
D

[w∇2w +∇w · ∇w] dxdy =

∮
∂D

w
∂w

∂n
|ds|.

(iii)

∮
∂D

(
v
∂w

∂n
− w

∂v

∂n

)
|ds| =

∫∫
D

(v∇2w − w∇2v) dxdy.

Here ∇2w is the divergence of the gradient of w. Also, ∂w
∂n is the same as ∇w ·n.

(a) Use (i) to compute ∮
C

∂w

∂n
|ds|

for w = ex sin y, and D the triangle with vertices (0, 0), (4, 2), (0, 2).
(b) Let D be a plane region bounded by a simple closed curve C and let F,G :

U −→ R2 be smooth functions where U is a region containing D ∪C such that

curlF = curlG,div F = div G on D ∪ C
and

F · n = G · n on C,

where n is the unit normal to the curve. Show that F = G on D.
(10) Evaluate the following line integrals where the loops are traced in the anti-

clockwise sense
(i) ∮

C

y dx− x dy

x2 + y2

where C is any simple closed curve not passing through the origin.
(ii) ∮

C

x2ydx− x3dy

(x2 + y2)2
,

where C is the square with vertices (±1,±1).
(iii) Let C be a smooth simple closed curve lying in the annulus 1 < x2+y2 <

2. Find ∮
C

∂(log r)

∂y
dx− ∂(log r)

∂x
dy.
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1.12. Surface area and surface integrals

(1) Find a suitable parameterization Φ(u, v) and the normal vector Φu ×Φv for the
following surface:
(i) The plane x− y + 2z + 4 = 0.
(ii) The cylinder y2 + z2 = a2.
(iii) The cylinder of radius 1 whose axis is along the line x = y = z.

(2) (a) For a surface S let the unit normal n at every point make the same acute angle
α with z-axis. Let SAxy denote the area of the projection of S onto the xy plane.
Show that SA, the area of the surface S satisfies the relation: SAxy = SA cosα.
(b) Let S be a parallelogram not parallel to any of the coordinate planes. Let
S1, S2, and S3 denote the areas of the projections of S on the three coordinate
planes. Show that the area of S is

√
S2
1 + S2

2 + S2
3 .

(3) Compute the surface area of that portion of the sphere x2 + y2 + z2 = a2 which
lies within the cylinder x2 + y2 = ay, where a > 0.

(4) A surface S is parametrized by

Φ(u, v) = (u cos v, u sin v, u2),

where 0 ≤ u ≤ 4 and 0 ≤ v ≤ 2π.
(i) Show that S is a portion of a surface of revolution. Make a sketch and indicate

the geometric meanings of the parameters u and v on the surface.
(ii) Compute the vector Φu × Φv in terms of u and v.

(iii) The area of S is
π

n
(65

√
65− 1) where n is an integer. Compute the value of

n.
(5) Compute the area of that portion of the paraboloid x2 + z2 = 2ay which is

between the planes y = 0 and y = a.
(6) A sphere is inscribed in a cylinder. The sphere is sliced by two parallel planes

perpendicular the axis of the cylinder. Show that the portions of the sphere and
the cylinder lying between these planes have equal surface areas.

(7) Let S denote the plane surface whose boundary is the triangle with vertices at
(1, 0, 0), (0, 1, 0), (0, 0, 1), and let F (x, y, z) = (x, y, z). Let n denote the unit
normal to S having a nonnegative z-component. Evaluate the surface integral∫∫

S

F · n |dS|, using

(i) The parametrization Φ(u, v) = ((u+ v), (u− v), (1− 2u)).
(ii) A parametrization of the form Φ(x, y) = (x, y, f(x, y)).

(8) If S is the surface of the sphere x2 + y2 + z2 = a2, compute the value of the
surface integral (with the choice of outward unit normal)∫∫

S

xzdy ∧ dz + yzdz ∧ dx+ x2dx ∧ dy.

Choose a parametrization in which the fundamental vector product points in the
direction of the outward normal.

(9) A fluid flow has flux density vector

F (x, y, z) = (x,−(2x+ y), z).

Let S denote the hemisphere x2 + y2 + z2 = 1, z ≥ 0, and let n denote the unit
normal that points out of the sphere. Calculate

∫∫
S
F · n|dS|, which is the mass

of the fluid flowing through S in unit time in the direction of n.
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(10) Solve the previous exercise when S includes the planar base of the hemisphere
also with the outward unit normal on the base being (0, 0,−1).
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1.13. Divergence theorem and applications

(1) Verify the divergence theorem for the vector field

F (x, y, z) = (xy2, yz2, zx2)

for the region W defined by

y2 + z2 ≤ x2; 0 ≤ x ≤ 4.

(2) Verify the divergence theorem for the vector field

F (x, y, z) = (xy, yz, zx)

for the region W in the first octant bounded by the plane
x

a
+
y

b
+
z

c
= 1.

(3) LetW be a region bounded by a piecewise smooth closed surface S with outward
unit normal

n = (nx, ny, nz).

Let u, v : W → R be continuously differentiable. Show that∫∫∫
W

u
∂v

∂x
d(x, y, z) = −

∫∫∫
W

v
∂u

∂x
d(x, y, z) +

∫∫
∂W

u v nx |dS|.

[Hint: Consider F = u v (1, 0, 0).]
(4) Suppose a scalar field ϕ, which is never zero has the properties

∥∇ϕ∥2 = 4ϕ and ∇ · (ϕ∇ϕ) = 10ϕ.

Evaluate

∫∫
S

∂ϕ

∂n
|dS|, where S is the surface of the unit sphere.

(5) Let V be the volume of a region W bounded by a closed surface S and n =
(nx, ny, nz) be its outer unit normal. Prove that

V =

∫∫
S

xnx |dS| =
∫∫

S

y ny |dS| =
∫∫

S

z nz |dS|.

(6) Compute

∫∫
S

(x2dy ∧ dz + y2 dz ∧ dx+ z2dx ∧ dy), where S is the surface of

the cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1. The surface S is oriented by the
normal going out of the solid cube.

(7) Compute

∫∫
S

yzdy ∧ dz + zxdz ∧ dx+ xydx ∧ dy, where S is the unit sphere

oriented by the outward normal.
(8) Let F = (−x3, y3 + 3z2 sin z, ey sin z + x4) and S be the portion of the sphere

x2 + y2 + z2 = 1 with z ≥ 1
2 and n is the unit normal with positive z-component.

Use divergence theorem to compute

∫∫
S

(curlF ) · n |dS|.

(9) Let p denote the distance from the origin to the tangent plane at the point

(x, y, z) to the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1. Prove that

(a)

∫∫
S

p |dS| = 4πabc.

(b)

∫∫
S

1

p
|dS| = 4π

3abc
(b2c2 + c2a2 + a2b2).

(10) Interpret Green’s theorem as a divergence theorem in the plane.



1.14. STOKES THEOREM AND APPLICATIONS 23

1.14. Stokes theorem and applications

(1) Consider the vector field F = (x− y, x+ z, y + z). Verify Stokes theorem for F
where S is the surface of the cone: z2 = x2 + y2 intercepted by
(a) x2 + (y − a)2 + z2 = a2 : z ≥ 0
(b) x2 + (y − a)2 = a2

(2) Evaluate using Stokes theorem, the line integral∮
C

yz dx+ xz dy + xy dz,

where C is the curve of intersection of x2+9y2 = 9 and z = y2+1 with clockwise
orientation when viewed from the origin.

(3) Compute ∫∫
S

(curlF ) · n|dS|,

where F = (y, xz3,−zy3) and n is the outward unit normal to S, the surface of
the cylinder x2 + y2 = 4 between z = 0 and z = −3.

(4) Compute
∮
C
F · ds for

F =
(−y, x)
x2 + y2

,

where C is the circle of unit radius in the xy plane centered at the origin and ori-
ented clockwise. Can the above line integral be computed using Stokes theorem?

(5) Compute ∮
C

(y2 − z2)dx+ (z2 − x2)dy + (x2 − y2)dz,

where C is the curve cut out of the boundary of the cube

0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a

by the plane x+ y + z = 3
2a (specify the orientation of C.)

(6) Calculate ∮
C

ydx+ zdy + xdz,

where C is the intersection of the surface bz = xy and the cylinder x2 + y2 = a2,
oriented anticlockwise as viewed from a point high upon the positive z-axis.

(7) Consider a plane with unit normal (a, b, c). For a closed curve C lying in this
plane, show that the area enclosed by C is given by

A(C) =
1

2

∮
C

(bz − cy)dx+ (cx− az)dy + (ay − bx)dz,

where C is given the anticlockwise orientation. Compute A(C) for the curve C
given by

u cos t+ v sin t, 0 ≤ t ≤ 2π.

.
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Answers

2.0. Tutorial sheet 0

(1) False (2) False (3) False (4) True (5) True. (6) False (7) True (8) False
(9) True (10) True (11) True
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2.1. Tutorial sheet 1

(1) (i) N > 10/ϵ, (ii) N >
5− ϵ

3ϵ
, (iii) N >

1

ϵ3
(iv) N >

2

ϵ

(2) (i) lim
n→∞

an = 1. (ii) lim
n→∞

n!

nn
= 0. (iii) lim

n→∞
an = 0.

(iv) lim
n→∞

n1/n = 1. (v) lim
n→∞

an = 0. (vi) 1
2 .

(3) (i) Not convergent (ii) Not convergent
(4) (i) Decreasing

(ii) Increasing
(iii) Increasing

(5) (i) Using induction show that

an ≥
√
2, (n ≥ 2) and an+1 − an < 0 for all n. lim

n→∞
an =

√
2.

(ii) Using induction show that an ≤ 2 and
(

an+1

an

)2
> 1 for all n. lim

n→∞
an = 2.

(iii) Using induction show that an ≤ 6 and an+1 − an > 0 for all n. lim
n→∞

an = 6.

(6) lim
n→∞

|an| = |L|.
(7) Hint: Consider ϵ = |L|/2.
(8) Follows from definition.

Optional: Use the inequality: For x > y > 0,
√
x−√

y ≤
√
x− y

(9) Both the statements are False.



26 2. ANSWERS

2.2. Tutorial sheet 2

(1) (i) False (ii) True (iii) True
(2) The converse is False.
(3) (i) Not continuous at α = 0. (ii) Continuous everywhere. (iii) Continuous ev-

erywhere except at x = 2.
(5) Continuous for x ̸= 0, not continuous at x = 0.
(7) The converse is False .

(9) (i)
−1

sin(x)
=

−1√
1− cos2(x)

=
−1√
1− y2

.

(ii) csc−1(x) =
(−1
x2 )√

(1− 1
x2 )

, |x| > 1.

(10)
3

(x+ 1)2
sin

(
2x− 1

x+ 1

)2

.
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2.3. Tutorial sheet 3

(8) (i) Not possible (ii) Possible (iii) Not possible (iv) Possible
(9) Global max = 13 at x = ±2 and global min = −14 at x = 5.

(10) h =
p(4 + π)

2(8 + 3π)
.
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2.4. Tutorial sheet 4

(i) f(x) is strictly increasing in the intervals (−∞,−1)∪(1/3,∞) and f(x) is strictly
decreasing in that interval (−1, 1/3).

f(x) has a local maximum at x = −1, a local minimum at x = 1
3 and a point

of inflection at x = −1

3
.

(ii) y = 1 is an asymptote.
f(x) is increasing in (0,∞) and decreasing in (−∞, 0).

f(x) has points of inflection at x = ± 1√
3
.

(iii) f is not differentiable at x = 0.
f(0) = 1,

f is concave in(−2, 0) ∪ (0, 5),

decreasingin(−2, 0) ∪ (2, 5),

and
increasingin(0, 2).

Further, f has a global maximum at x = ±2.
(2) f has a local max at x = −2 and a local min at x = 2, f is concave in (−∞, 0)

and convex in (0,∞), and x = 0 is a point of inflection.
(3) Motivate students to discover their own examples.
(i) f ′ > 0, f ′′ > 0. Example: f(x) = x2; 0 < x < 1.
(ii) f ′ > 0, f ′′ < 0. Example: f(x) =

√
x; 0 < x < 1.

(iii) f ′ < 0, f ′′ > 0. Example: f(x) = −
√
x; 0 < x < 1.

(iv) f ′ < 0, f ′′ < 0. Example: f(x) = −x2; 0 < x < 1.
(4) (i) True .

(ii) False; consider f(x) = g(x) = sin(x), c = 0.

(7) (i)
2

5
(ii)

π

4
(iii) 2(

√
2− 1)

(iv) 0.

(v)
1

2
+

2

5
(4
√
2− 1) +

19

3

(8) (a)
y√

1 + y2
dy

dx
= y

(b) (i) F ′(x) = cos((2x)2)2 = 2 cos(4x2).
(ii) F ′(x) = cos(x2)2x = 2x cos(x2).
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2.5. Tutorial Sheet 5

(1) (i)
1

6

(ii)
128

15

(iii)
4

3
(2) a = −2
(3) 4πa2

(4) (i) 8
(ii) 1

(5) L =
53

6
, the surface area is

(
101

5

18

)
π

(6) 512π
15

(7) Volume is
16a3

3
(8) Volume is r2h
(9) 29π/15
(10) 28π

3
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2.6. Tutorial Sheet 6

(1) (i) {(x, y) ∈ R2 | x ̸= ±y}.
(ii) R2 − {(0, 0)}

(2) (i) Level curves are parallel lines x−y = c. Contours are the same lines shifted
to z = c, (some c).

(ii) Level curves do not exist for c ≤ −1. It is just a point for c = 0 and are
concentric circles for c = 1, 2, 3, 4. Contours are the sections of paraboloid of
revolution z = x2 + y2 by z = c, i.e., concentric circles in the plane z = c.

(iii) Level curves are rectangular hyperbolas. Branches are in first and third
quadrant for for c > 0 and in second and fourth quadrant for c < 0. For
c = 0 it is the union of x-axis and y-axis.

(3) (i) Discontinuous at (0, 0)
(ii) Continuous at (0, 0)
(iii) Continuous at (0, 0)

(6) (i) fx(0, 0) = 0 = fy(0, 0).
(ii) f is continuous at (0, 0). Both fx(0, 0) and fy(0, 0) do not exist.

(8) Does not exist.
(9) (i) (Dvf) (0, 0) exists and equals 0 for every unit vector v ∈ R2; f is also

differentiable at (0, 0).
(ii) It is not differentiable, but for every unit vector v = (a, b), Dvf(0, 0) exists.
(iii) (Dvf) (0, 0) = 0; f is differentiable at (0, 0).
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2.7. Tutorial sheet 7

(1) Tangent plane:

0.(x− 1) + 4(y + 1) + 6(z − 3) = 0, i.e.,2y + 3z = 7

Normal line: x = 1, 3y − 2z + 9 = 0

(2) −2

3
.

(3)
sin (x+ y)

cos (y + z)
+ tan (y + z)

cos2 (x+ y)

cos2 (y + z)
.

(6) (i) (0, 0)is a saddle point; (±
√
2, 0)are local maxima; ((0,±

√
2)are local minima.

(ii) (0, 0) is a saddle point.
(7) fmin = −4 at (2, 0) and fmax = − 3√

2
at (3,±π

4 )
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2.8. Tutorial sheet 8

(1) (i)

∫ e

1

(∫ 1

log y

dx

)
dy

(ii)

∫ 1

−1

(∫ 1

x2

f(x, y)dy

)
dx

(2) (i) 2

(ii)
1

2
(e− 2))

(iii)
π − 1

2π
log 5 + 2(tan−1 2π − tan−1 2)− 1

2π

[
log

(4π2 + 1)

5

]
.

(3) (e− 1).

(4)
π4

3
.

(5) 8 log 2.
(6) (i) π.

(ii) π/4.
(iii) π.
(iv) π/4.

(7)
16a3

3
.

(8) {(x, y, z)| − 1 ≤ x ≤ 1, −
√
1− x2 ≤ y ≤

√
1− x2,

√
x2 + y2 ≤ z ≤ 1}

(9)
8
√
2

15
. We can also write D as

{(x, y, z)|0 ≤ z ≤ 2, 0 ≤ x ≤
√
z − y2, 0 ≤ y ≤

√
z}.

(10) (i) π/3.

(ii)
4π(e− 1)

3
.
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2.9. Tutorial sheet 9

(7) − 14
15 . (8) πab. (9) −2π. (10) −π.
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2.10. Tutorial sheet 10

(1) The arc length parametrization is

γ̃(u) =

(
a cos

(
u√

a2 + c2

)
, a sin

(
u√

a2 + c2

)
,

cu√
a2 + c2

)
.

(2)

∫
C

=

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

= −π.

(3)

∮
C

∇(x2 − y2) · ds = 0.

(4)

∮
C

∇(x2 − y2) · ds = −60.

(5)

∫
C

dx

dy
|x|+ |y| = 2− 2 = 0.

(6)
√
3/2.

(7)
−πa3

4
.
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2.11. Tutorial sheet 11

(1) (i)

∫∫
D

(gx − fy) dxdy = 1
3 =

∮
∂D

(fdx+ gdy).

(ii) LHS = 1 = RHS.
(2) (i) −4.

(ii) 4.
(iii) 4π.

(3) (i) A =
3πa2

2
.

(ii) A = a2/2.

(4) (i) a2

8 (3π − 8).

(ii) 2πa2.
(iii) 1

2

(
3π−8

2

)
.

(5) 0.
(8) 0.
(6) 3I0.
(7) −π.
(10) (i) Case (a): If the curve does not enclose the origin, the integral vanishes.

Case (b): If the curve encloses the origin, it is equal to −2π.
(ii) −π/4.
(iii) −2π.



36 2. ANSWERS

2.12. Tutorial sheet 12

(1) (i) Φ(x, y) = (x, y, 12 (4 + y − x)), (x, y) ∈ R2 as a parametrization.

The normal vector is Φx × Φy = ( 12 ,−
1
2 , 1).

(ii) Φ(u, v) = (u, a sin v, a cos v), u ∈ R, 0 ≤ v ≤ 2π,
normal is (0, a sin v, a cos v).

(iii) Φθ ×Φt = cos θu+ sin θv, where u is a vector in the cross-section by a
plane through the origin, and v = e× u.

(3) 2(π − 2)a2.

(5) 2π
3 (3

√
3− 1)a2.

(7) (i)

∫∫
S

F · n|dS| = 1

2
.

(ii) Explicitly, surface is z = 1− x− y. Area(S∗
1 = 1/2).

(8) 0.
(9) 2π

3 .

(10)
2π

3
.
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2.13. Tutorial sheet 13

(4) 8π.
(6) 3.
(7) 0.
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2.14. Tutorial sheet 14

(2)

∫∫
S

curl F · n|dS| = 0.

(3) −108π.
(4) Stokes theorem cannot be applied to F directly.

(5)

∮
C

(y2 − z2)dx+ (z2 − x2)dy + (x2 − y2)dz = −9a3

2
.

(6) −πa2.
(7) π||u× v||.
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Solutions

3.0. Tutorial sheet 0

(1) False. +∞ and −∞ are just symbols to represent infinite intervals.
(2) False. The set of all even natural numbers is bounded below but not above.
(3) False. Any nonempty open interval has at least two distinct points. In fact,

{x} = [x, x] is a closed interval.
(4) True. Note that 2

m ≤ 2 for all m ∈ N.
(5) True. Note that 2

m > 0 for all m ∈ N.
(6) False. For example, (0, 1)

⋃
(2, 3) is not an interval.

(7) True. Let Iα, α ∈ J , be intervals and let I =
⋂

α∈J Iα ̸= ∅. Suppose x, y ∈ I.
Then x, y ∈ Iα for every α, and if x < y then [x, y] ⊂ Iα for every α. Thus
[x, y] ⊂ I. This shows that I is an interval.

(8) False. For example,
⋂∞

n=1(
−1
n ,

1
n ) = {0} is not an open interval.

(9) True. Consult the solution of (10) below. That solution can be adapted here by
using ‘sup’ in place of ‘max’ and using ‘inf’ in place of ‘min’. Since ‘sup’ and ‘inf’
may not be discussed in the class, the student can only be expected to believe
the statement in an intuitive way.

(10) True. Consider I =
⋂m

n=1 In where each In is a closed interval, and suppose
I ̸= ∅. We provide a solution only in the case where each In is a finite closed
interval [an, bn]; the solution can easily be modified to apply to the case where
some of the In are infinite closed intervals. Let

a = max{a1, a2, . . . , am}

and

b = min{b1, b2, . . . , bm}.

Note that a ≤ b. (Indeed, here a = ak for some k and b = bl for some bl; if
ak = a > b = bl, then [ak, bk] would not intersect [al, bl] forcing I to be empty).
Now one has, for any n, an ≤ a ≤ b ≤ bn so that [a, b] ⊂ [an, bn] for every n; thus

[a, b] ⊂
m⋂

n=1

[an, bn].

Next, any number p that is strictly less than a = ak does not belong to the
interval [ak, bk]; also, any number q that is strictly greater than b = bl does not
belong to the interval [al, bl]; this shows that

m⋂
n=1

[an, bn] ⊂ [a, b].

39
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Hence one has
m⋂

n=1

[an, bn] = [a, b].

(11) True. Recall the Archimedean property of R: For every x ∈ R, there exists
n ∈ N such that n > x.

(12) True. Note that
√
2 is an irrational number between 1 and 2. Let r1, r2 ∈ Q

be such that r1 < r2. Then r = r2 − r1 > 0 and r < r
√
2 < 2r so that

r1 = (2r1 − r2) + r < (2r1 − r2) + r
√
2 < (2r1 − r2) + 2r = r2.

Thus s = (2r1 − r2) + r
√
2 is an irrational number between r1 and r2.
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3.1. Tutorial sheet 1

(1) For a given ϵ select
(i) N > 10

ϵ ,

(ii) N > 5−ϵ
3ϵ ,

(iii) N > 1
ϵ3 as 1

n
1
3
> n

2
3

n+1 > |an|,

(iv) N > 2
ϵ as 2

n >
2− 1

n+1

n = |an|.

(2) (i)
n2

n2 + n
≤ an ≤ n2

n2 + 1
⇒ lim

n→∞
an = 1.

(ii) 0 <
n!

nn
=

(
n− 1

n

)(
n− 2

n

)
· · ·
(
2

n

)(
1

n

)
≤ 1

n
⇒ lim

n→∞

n!

nn
= 0.

(iii) 0 <
n3 + 3n2 + 1

n4 + 8n2 + 2
<

4

n
⇒ lim

n→∞
an = 0.

(iv) Let n
1
n = 1 + hn. Then, for n ≥ 2, one has

n = (1 + hn)
n ≥ 1 + nhn +

(
n

2

)
h2n >

(
n

2

)
h2n.

Thus 0 < h2n <
2

n−1 (n ≥ 2) giving limn→∞ hn = 0. So limn→∞ n
1
n = 1.

(v) As

0 <

∣∣∣∣cos(π√n)n2

∣∣∣∣ ≤ 1

n2
,

limn→∞ an = 0.

(vi)
√
n(
√
n+ 1−

√
n) =

√
n√

n+ 1 +
√
n
=

1√
1 + 1

n + 1
→ 1

2 as n→ ∞.

(3) (i) { n2

n+1 = (n− 1) + 1
n+1}n≥1 is not convergent since 1

n+1 → 0 as n→ ∞.

(ii) {(−1)n
(
1
2 − 1

n

)
= (−1)n

2 − (−1)n

n }n≥1 is not convergent since (−1)n

n → 0 as
n→ ∞.

(4) (i) Decreasing as an = 1
n+ 1

n

and {n+ 1
n}n≥1 is increasing.

(ii) Increasing as
an+1

an
=

6

5
> 1.

(iii) Increasing as an+1 − an =
n(n− 1)− 1

n2(1 + n)2
> 0 for n ≥ 2.

(5) (i) Using induction show that an−
√
2 > 0 for n ≥ 2, and note that an+1−an =

2−a2
n

2an
< 0 n ≥ 2; limn→∞ an =

√
2.

(ii) Using induction show that an < 2 for all n, and note that

an+1 − an =
(2− an)(1 + an)√

2 + an + an
> 0 for all n; lim

n→∞
an = 2.

(iii) Using induction show that an < 6 for all n, and note that

an+1 − an =
6− an

2
> 0 for all n; lim

n→∞
an = 6.

(6) limn→∞ an+1 = L; and

||an| − |L|| ≤ |an − L|

implies that limn→∞ |an| = |L|.
(7) Given ϵ = |L|/2, there exists n0 such that
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(||an| − |L|| ≤) |an − L| < |L|/2 for all n ≥ n0.

Thus |an| > |L| − |L|
2 = |L|

2 for all n ≥ n0.
(8) Follows from the definition of ‘limit of a sequence’.
(9) Both the statements are false. Consider, for example, an = 1 and bn = (−1)n.
(10) The implication⇒ is obvious. For the converse, let both {a2n}n≥1 and {a2n+1}n≥1

be convergent to ℓ, and let ϵ > 0 be given. Choose n1, n2 ∈ N such that

|a2n − ℓ| < ϵ for all n ≥ n1, and|a2n+1 − ℓ| < ϵ for all n ≥ n2.

Let n0 = max{n1, n2}. Then
|an − ℓ| < ϵ for all n ≥ 2n0 + 1.
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3.2. Tutorial sheet 2

(1) (i) The statement is false. For example consider a = −1, b = 1, c = 0 and
define f, g : (−1, 1) → R by

f(x) = x, g(x) =

{
1 if x = 0
1/x2 if x ̸= 0.

(ii) The statement is true since 0 ≤ |f(x)g(x)| ≤ M |f(x)| if |g(x)| ≤ M for x
in (a, b).

(iii) The statement is true since limx→c f(x)g(x) = limx→c f(x) limx→c g(x).
(2) Let limx→α f(x) = L. It follows from

|f(α+ h)− f(α− h)| ≤ |f(α+ h)− L|+ |f(α− h)− L|
that

lim
h→0

|f(α+ h)− f(α− h)| = 0.

The converse is false; e.g. consider α = 0 and

f(x) =

{
1 if x = 0
1
|x| if x ̸= 0.

(3) (i) Continuous everywhere except at x = 0. This can be seen in part by
considering the sequences {xn}n≥1, {yn}n≥1 where

xn :=
1

nπ
andyn :=

1

2nπ + π
2

.

Note that both xn, yn → 0, but

f(xn) → 0, andf(yn) → 1.

(ii) Continuous everywhere. For ascertaining the continuity of f at x = 0, note
that |f(x)| ≤ |x| and f(0) = 0.

(iii) Continuous everywhere on [1, 3] except at x = 2.
(4) Taking x = 0 = y, we get f(0+ 0) = 2f(0) so that f(0) = 0. By the assumption

of the continuity of f at 0, limx→0 f(x) = 0. Thus,

lim
h→0

f(c+ h) = lim
h→0

[f(c) + f(h)] = f(c)

showing that f is continuous at x = c.
Optional: First verify the equality for all k ∈ Q and then use the continuity of
f to establish it for all k ∈ R.

(5) Clearly, f is differentiable for all x ̸= 0 and the derivative is

f ′(x) = 2x sin(
1

x
)− cos(

1

x
), x ̸= 0.

Also,

f ′(0) = lim
h→0

h2 sin( 1h )− 0

h
= 0.

Clearly, f ′ is continuous at any x ̸= 0. However, lim
x→0

f ′(x) does not exist. Indeed,

for any δ > 0, we can choose n ∈ N such that

x :=
1

nπ
, y :=

1

(n+ 1)π
∈ (−δ, δ);
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note that x and y satisfy |f ′(x)− f ′(y)| = 2.
(6)

0 ≤
∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ c|h|α−1

implies by the Sandwich Theorem that

lim
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ = 0 for all x ∈ (a, b).

(7)

lim
h→0+

f(c+ h)− f(c− h)

2h
= lim

h→0+

1

2

[
f(c+ h)− f(c)

h
+
f(c− h)− f(c)

−h

]

=
1

2
[f ′(c) + f ′(c)] = f ′(c).

The converse is false; consider, for example, f(x) = |x| and c = 0.
(8)

f(x+ y) = f(x)f(y) ⇒ f(0) = f(0)
2 ⇒ f(0) = 0 or 1.

If f(0) = 0, then

f(x+ 0) = f(x)f(0) ⇒ f(x) = 0 for all x.

Thus, trivially, f is differentiable. If f(0) = 1, then

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
= f(c)

(
lim
h→0

f(h)− f(0)

h

)
= f ′(0)f(c).

(9) (i) Let f(x) = cos(x). Then f ′(x) = − sin(x) ̸= 0 for x ∈ (0, π).
Thus g(y) = f−1(y) = cos−1(y), −1 < y < 1 is differentiable
and

g′(y) =
1

f ′(x)
, where x is such that f(x) = y.

Therefore,

g′(y) =
−1

sin(x)
=

−1√
1− cos2(x)

=
−1√
1− y2

.

(ii) Note that

cosec−1(x) = sin−1 1

x
for |x| > 1.

Since
d

dx
sin−1(x) =

1√
1− x2

for |x| < 1,

one has, by the chain rule,

d

dx
cosec−1(x) =

1√
(1− 1

x2 )
(
−1

x2
), |x| > 1.
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(10)
dy

dx
= f ′

(
2x− 1

x+ 1

)
d

dx

(
2x− 1

x+ 1

)
= sin

(
2x− 1

x+ 1

)2 [
3

(x+ 1)2

]
=

3

(x+ 1)2
sin

(
2x− 1

x+ 1

)2

.

(11) f(x) : |x|+ |1− x|
(12) For c ∈ R, select a sequence {an}n≥1 of rational numbers and a sequence

{bn}n≥1 of irrational numbers, both converging to c. Then {f(an)}n≥1 converges
to 1 while {f(bn)}n≥1 converges to 0, showing that limit of f at c does not exist.

(13) Let c ̸= 1/2.If {an}n≥1 is a sequence of rational numbers and {bn}n≥1 a
sequence of irrational numbers, both converging to c, then g(an) = an → c,
while g(bn) = 1 − bn → 1 − c, and c ̸= 1 − c. Thus g is not continuous at
any c ̸= 1/2. Further, if {an}n≥1 is any sequence converging to c = 1/2, then
g(an) → 1/2 = g(1/2). Hence, g is continuous at c = 1/2.

(14) Let L = limx→c f(x). For ϵ = L− α, choose a δ such that

|f(c+ h)− L| < ϵfor 0 < |h| < δ;

then f(c+ h) > L− ϵ = α for 0 < |h| < δ.

(15) (i) ⇒ (ii) : Take α = f ′(c) and ϵ1(h) =

{
f(c+h)−f(c)−αh

h , if h ̸= 0
0, if h = 0.

(ii) ⇒ (iii) : lim
h→0

|f(c+ h)− f(c)− αh|
|h|

= lim
h→0

|ϵ1(h)| = 0

(iii) ⇒ (i) : lim
h→0

∣∣∣∣f(c+ h)− f(c)

h
− α

∣∣∣∣ = 0 ⇒ lim
h→0

f(c+ h)− f(c)

h
exists

and in fact is equal to α.
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3.3. Tutorial sheet 3

(1) f(x) = x3 − 6x+ 3 has stationary points at x = ±
√
2.

Note that f(−
√
2) = 4

√
2 + 3 > 0, f(+

√
2) = −4

√
2 + 3 < 0. Therefore f has a

root in (−
√
2,
√
2). Also, f → −∞ as x → −∞ implying that f has a root

in (−∞,−
√
2). Similarly, f → +∞ as x → +∞ implying that f has a root in

(
√
2,∞). Since f has at most three roots, all its root are real.

(2) For f(x) = x3 + px+ q, p > 0, f ′(x) = 3x2 + p > 0. Therefore f is strictly in-
creasing and can have at most one root. Since

lim
x→±∞

( p
x2

+
q

x3

)
= 0,

f(x)

x3
= 1 +

p

x2
+

q

x3
> 0

for |x| very large. Thus f(x) > 0 if x is large positive and f(x) < 0 if x is large
negative. By the Intermediate Value Property (IVP) f must have at least one
root.

(3) By the IVP, there exists at least one x0 ∈ (a, b) such that f(x0) = 0. If
there were another y0 ∈ (a, b) such that f(y0) = 0, then by Rolle’s theorem there
would exist some c between x0 and y0 (and hence between a and b) with f ′(c) = 0,
leading to a contradiction.

(4) Since f has 3 distinct roots say r1 < r2 < r3, by Rolle’s theorem f ′(x) has at
least two real roots, say, x1 and x2 such that r1 < x1 < r2 and r2 < x2 < r3.
Since f ′(x) = 3x2 + p, this implies that p < 0, and x1 = −

√
−p/3, x2 =

√
−p/3.

Now, f ′′(x1) = 6x1 < 0 =⇒ f has a local maximum at x = x1. Similarly, f
has a local minimum at x = x2. Since the quadratic f ′(x) is negative between
its roots x1 and x2 (so that f is decreasing over [x1, x2]) and f has a root r2 in
(x1, x2), we must have f(x1) > 0 and f(x2) < 0. Further,

f(x1) = q +

√
−4p3

27
, f(x2) = q −

√
−4p3

27

so that
4p3 + 27q2

27
= f(x1)f(x2) < 0.

(5) For some c between a and b, one has∣∣∣∣ sin(a)− sin(b)

a− b

∣∣∣∣ = | cos(c)| ≤ 1.

(6) By Lagrange’s Mean Value Theorem (MVT) there exists c1 ∈
(
a, (a+b)

2

)
such

that

f
(
a+b
2

)
− f(a)(

b−a
2

) = f ′(c1)

and there exists c2 ∈
(
a+b
2 , b

)
such that

f(b)− f
(
a+b
2

)(
b−a
2

) = f ′(c2).
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Clearly one has c1 < c2, and adding the above equations one obtains

f ′(c1) + f ′(c2) =
f(b)− f(a)(

b−a
2

) = 2 (as f(b) = b, f(a) = a).

(7) By Lagrange’s MVT, there exists c1 ∈ (−a, 0) and there exists c2 ∈ (0, a) such
that

f(0)− f(−a) = f ′(c1)a and f(a)− f(0) = f ′(c2)a.

Using the given conditions, we obtain

f(0) + a ≤ a and a− f(0) ≤ a

which implies f(0) = 0.
Optional: Consider g(x) = f(x)− x, x ∈ [−a, a]. Since g′(x) = f ′(x)− 1 ≤ 0, g
is decreasing over [−a, a]. As g(−a) = g(a) = 0, we have g ≡ 0.

(8) (i) No such function exists in view of Rolle’s theorem.

(ii) Possible, f(x) = x2

2 + x
(iii) f ′′ ≥ 0 ⇒ f ′ increasing. As f ′(0) = 1, by Lagrange’s MVT we have f(x)−

f(0) ≥ x for x > 0. Hence f with the required properties cannot exist.
(iv) Possible,

f(x) =

{
1

1−x if x ≤ 0

1 + x+ x2 if x > 0.

(9) The points to check are the end points x = −2 and x = 5, the point of non-
differentiability x = 0, and the stationary point x = 2. The values of f at these
points are given by

f(−2) = f(2) = 13, f(0) = 1, f(5) = −14.

Thus, global max = 13 at x = ±2, and global min = −14 at x = 5.
(10) Let 2a be the width of the window and h be its height. Then 2a+2h+πa = p,

and 0 ≤ a ≤ p

2 + π
. As the area of the colored glass is πa2

2 and the area of the

plane glass is 2ah, the total light admitted is

L(a) = 2ah+
πa2

4
= 2a

[
p− (π + 2)a

2

]
+
πa2

4
(0 ≤ a ≤ p

2 + π
).

Since

L′(a) = 0 ⇒ a =
2p

8 + 3π

and

L′(a) > 0 in [ 0,
2p

8 + 3π
) and L′(a) < 0 in (

2p

8 + 3π
,

p

2 + π
],

a =
2p

8 + 3π
must give the global maximum. That yields h =

p(4 + π)

2(8 + 3π)
.
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3.4. Tutorial sheet 4

(1)(i) f(x) = 2x3 + 2x2 − 2x− 1 ⇒ f ′(x) = 6x2 + 4x− 2 = 2(x+ 1)(3x− 1). Thus,
f ′(x) > 0 in (−∞,−1) ∪ (1/3,∞) so that f(x) is strictly increasing in those
intervals, and f ′(x) < 0 in (−1, 1/3) so that f(x) is strictly decreasing in that
interval.

4.1.1-eps-converted-to.pdf

Graph of f

Thus, f(x) has a local maximum at
x = −1, and a local minimum at x = 1

3 .
As f ′′(x) = 12x+ 4 we have that f(x)
is convex in

(
− 1

3 ,∞
)
and concave in(

−∞,− 1
3

)
, with a point of inflection at

x = −1

3
.

(ii) y =
x2

x2 + 1
⇒ lim

x→±∞
y = 1 ⇒ y = 1 is an asymptote.

4.1.2-eps-converted-to.pdf

Graph of f

y′ =
2x

(x2 + 1)2
⇒ y is increasing in (0,∞) and decreasing

in (−∞, 0).

Further, y′′ = − 2(3x2−1)
(x2+1)3 implies that

y′′ > 0 if |x| < 1√
3
, andy′′ < 0 if |x| >

1√
3
. Therefore,

y is convex in

(
− 1√

3
,
1√
3

)
and concave in R\

[
− 1√

3
,
1√
3

]
with the points x = ± 1√

3
being the

points of inflection.
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(iii) f(x) = 1 + 12|x| − 3x2; f is not differentiable at x = 0; f(0) = 1.

4.1-eps-converted-to.pdf

Graph of f

Further,

f ′(x) = 0 at x = ±2,

f ′(x) < 0 in (−2, 0) ∪ (2, 5],

f ′(x) > 0 in (0, 2),

and

f ′′(x) = −6 in (−2, 0) ∪ (0, 5).

Thus

f is concave in(−2, 0) ∪ (0, 5),

decreasingin(−2, 0) ∪ (2, 5),

and
increasingin(0, 2);

further, f has a global maximum at x =
±2.

(2) In view of the given conditions, f has a local max at x = −2 and
a local min at x = 2, f is concave in (−∞, 0) and convex in (0,∞), and
x = 0 is a point of inflection.

(3) Motivate students to discover their own examples.

(i) f ′ > 0, f ′′ > 0. Example: f(x) = x2; 0 < x < 1.
(ii) f ′ > 0, f ′′ < 0. Example: f(x) =

√
x; 0 < x < 1.

(iii) f ′ < 0, f ′′ > 0. Example: f(x) = −
√
x; 0 < x < 1.

(iv) f ′ < 0, f ′′ < 0. Example: f(x) = −x2; 0 < x < 1.
(4) (i) The statement is true. In (c− δ, c+ δ), f(x) ≤ f(c), g(x) ≤ g(c). As all

the quantities are non-negative, f(x)g(x) ≤ f(c)g(c) in (c− δ, c+ δ).
(ii) The statement is false. E.g. f(x) = g(x) =! + sin(x), c = 0.

(5) Let Pn be the partition of [0, 2] into 2×2n equal parts. Then U(Pn, f) = 3 and

L(Pn, f) = 1 + 1× 1

2n
+ 2× (2n − 1)

2n
→ 3

as n→ ∞. Thus,
∫ 2

0
f(x)dx = 3.

(6) f(x) ≥ 0 ⇒ U(P, f) ≥ 0, L(P, f) ≥ 0 ⇒
∫ b

a
f(x)dx ≥ 0.

Suppose, moreover, f is continuous and
∫ b

a
f(x)dx = 0. Assume f(c) > 0 for

some c in [a, b]. Then f(x) > f(c)
2 in a δ-nbhd of c for some δ > 0. This implies

that

U(P, f) > δ × f(c)

2

for any partition P, and hence,
∫ b

a
f(x)dx ≥ δf(c)/2 > 0, a contradiction.
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(7) (i) Sn =
1

n

n∑
i=1

(
i

n

) 3
2

−→
∫ 1

0

(x)3/2dx =
2

5

(ii) Sn =
1

n

n∑
i=1

1(
i
n

)2
+ 1

−→
∫ 1

0

dx

x2 + 1
=
π

4

(iii) Sn =
1

n

n∑
i=1

1√
i
n + 1

−→
∫ 1

0

dx√
x+ 1

= 2(
√
2− 1)

(iv) Sn =
1

n

n∑
i=1

cos
iπ

n
−→

∫ 1

0

cosπxdx = 0

(v) Sn −→
∫ 1

0

xdx+

∫ 2

1

x3/2dx+

∫ 3

2

x2dx =
1

2
+

2

5
(4
√
2− 1) +

19

3
(8) Let F (x) =

∫ x

a
f(t)dt. Then F ′(x) = f(x). Note that∫ v(x)

u(x)

f(t)dt =

∫ v(x)

a

f(t)dt−
∫ u(x)

a

f(t)dt = F (v(x))− F (u(x)).

By the Chain Rule one has

d

dx

∫ v(x)

u(x)

f(t)dt = F ′(v(x))v′(x)− F ′(u(x))u′(x)

= f(v(x))v′(x)− f(u(x))u′(x).

(a)
dy

dx
= 1

dx/dy =
√
1 + y2,

d2y

dx2
=

y√
1 + y2

dy
dx = y.

(b) (i) F ′(x) = cos((2x)2)2 = 2 cos(4x2).

(ii) F ′(x) = cos(x2)2x = 2x cos(x2)
(9) Define

F (x) =

∫ x+p

x

f(t)dt, x ∈ R.

Then F ′(x) = 0 for every x.
(10) Expand sinλ(x−t) in the integrand, evaluate g′(x), g′′(x), and simplify to show

lhs=rhs.
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3.5. Tutorial sheet 5

(1) (i)
∫ 1

0
y dx =

∫ 1

0
(1 + x− 2

√
x) dx = 1

6

(ii) 2
∫ 2

0
(2x2 − (x4 − 2x2)) dx = 2

∫ 2

0
(4x2 − x4) dx = 128

15

(iii)
∫ 3

1
(3y − y2 − (3− y)) dy =

∫ 3

1
(4y − y2 − 3) dy = 4

3

(2)
∫ 1−a

0
(x− x2 − ax) dx =

∫ 1−a

0
((1− a)x− x2) dx = 4.5 gives (1−a)3

6 = 4.5 so
that a = −2.

(3) Required area = 2×
∫ π/3

0
1
2 (r

2
2 − r21)dθ

= 4a2
∫ π/3

0
(8 cos2 θ − 2 cos θ − 1)dθ = 4πa2.

(4) (i) Length =

∫ 2π

0

√
(1− cos(t))2 + sin2(t)dt

=

∫ 2π

0

2| sin(t/2)|dt = 4

∫ π

0

| sin(u)|du = 8.

(ii) Length =

∫ π/4

0

√
1 + y′2dx =

∫ π/4

0

√
1 + cos(2x)dx

=
√
2
∫ π/4

0
| cos(x)|dx = 1.

(5)
dy

dx
= x2 +

(
− 1

4x2

)
.

ds

dx
=

√
1 +

(
dy

dx

)2

=

√
1 + x4 +

1

16x4
− 1

2
= x2 +

1

4x2
.

Therefore,

Length =

∫ 3

1

(
x2 +

1

4x2

)
dx =

[
x3

3
− 1

4x

]3
1

=
53

6
.

The surface area is

S =

∫ 3

1

2π(y + 1)
ds

dx
dx =

∫ 3

1

2π

(
x3

3
+

1

4x
+ 1

)(
x2 +

1

4x2

)
dx

= 2π

[
x6

18
+
x3

3
+
x2

6
− 1

32x2
− 1

4x

]3
1

=

(
101 +

5

18

)
π.

(6) The diameter of the circle at a point x is given by

(8− x2)− x2, −2 ≤ x ≤ 2.

So the area of the cross-section at x is A(x) = π(4− x2)2. Thus

Volume =

∫ 2

−2

π(4− x2)2dx = 2π

∫ 2

0

(4− x2)2dx =
512π

15
.

(7) In the first octant, the sections perpendicular to the y-axis are squares with

0 ≤ x ≤
√
a2 − y2, 0 ≤ z ≤

√
a2 − y2, 0 ≤ y ≤ a.

Since the squares have sides of length
√
a2 − y2, the area of the cross-section at

y is A(y) = 4(a2 − y2). Thus the required volume is∫ a

−a

A(y)dy = 8

∫ a

0

(a2 − y2)dy =
16a3

3
.
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(8) Let the line be along z-axis, 0 ≤ z ≤ h. For any fixed z, the section is a square

of area r2. Hence the required volume is
∫ h

0
r2dz = r2h.

(9) Washer Method
Area of washer = π(1 + y)2 = π(1 + (3− x2))2 = π(4− x2)2 so that

Volume =
∫ 2

−2
π(4− x2)2dx = 512π/15.

(This is the same integral as in (6) above).

Shell method
Area of shell = 2π(y − (−1))2x = 4π(1 + y)

√
3− y so that

Volume =

∫ 3

−1

4π(1 + y)
√
3− ydy = 512π/15.

(10) Washer Method
Required volume = Volume of the sphere -Volume generated by revolving the
shaded region is

32π/3− [

∫ 1

−1

πx2dy − π(
√
3)22] = 32π/3− 2π[

∫ 1

0

(4− y2)dy − 3]

= 32π/3− 2π[11/3− 3] = 28π/3

Shell Method
Required volume = Volume of the sphere -Volume generated by revolving the
shaded region is

= 32π/3−
∫ 2

√
3

2πx(2y)dx = 32π/3− 4π

∫ 2

√
3

x
√
4− x2dx

= 32π/3− 4π(1/3) = 28π/3
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3.6. Tutorial sheet 6

(1) (i) {(x, y) ∈ R2 | x ̸= ±y}.
(ii) R2 − {(0, 0)}.

(2) (i) A level curve corresponding to any of the given values of c is the straight
line x − y = c in the xy-plane. A contour line corresponding to any of the
given values of c is the same line shifted to the plane z = c in R3.

(ii) Level curves do not exist for c = −3,−2,−1. The level curve corresponding
to c = 0 is the point (0, 0). The level curves corresponding to c = 1, 2, 3, 4
are concentric circles centered at the origin in the xy-plane. Contour lines
corresponding to c = 1, 2, 3, 4 are the cross-sections in R3 of the paraboloid
z = x2 + y2 by the plane z = c, i.e., circles in the plane z = c centered at
(0, 0, c).

(iii) For c = −3,−2,−1, level curves are rectangular hyperbolas xy = c in the
xy-plane with branches in the second and fourth quadrant. For c = 1, 2, 3, 4,
level curves are rectangular hyperbolas xy = c in the xy-plane with branches
in the first and third quadrant. For c = 0, the corresponding level curve
(resp. the contour line) is the union of the x-axis and the y-axis in the xy-
plane (resp. in the xyz-space). A contour line corresponding to a non-zero
c is the cross-section of the hyperboloid z = xy by the plane z = c, i.e., a
rectangular hyperbola in the plane z = c.

(3) (i) Discontinuous at (0, 0). (Check lim
(x,y)→(0,0)

f(x, y) using y = mx3).

(ii) Continuous at (0, 0) :∣∣∣∣xyx2 − y2

x2 + y2

∣∣∣∣ ≤ |xy|x
2 + y2

x2 + y2
= |xy|.

(iii) Continuous at (0, 0) :

|f(x, y)| ≤ 2(|x|+ |y|) ≤ 4
√
x2 + y2.

(4) (i) Use the sequential definition of limit: (xn, yn) → (a, b) =⇒ xn →
aandyn → b =⇒ f(xn) → f(a)andg(yn) → g(b) =⇒ f(xn) ± g(yn) →
f(a)± g(b) by the continuity of f, g and limit theorems for sequences.

(ii) (xn, yn) → (a, b) =⇒ xn → aandyn → b =⇒ f(xn) → f(a)andg(yn) →
g(b) =⇒ f(xn)g(yn) → f(a)g(b) by the continuity of f, g and limit theorems
for sequences.

(iii) Follows from (i) above and the following:

min{f(x), g(y)} =
f(x) + g(y)

2
− |f(x)− g(y)|

2
,

max{f(x), g(y)} =
f(x) + g(y)

2
+

|f(x)− g(y)|
2

.

(5) Note that limits are different along different paths: f(x, x) = 1 for every x and
f(x, 0) = 0.

(6) (i) fx(0, 0) = 0 = fy(0, 0).
(ii)

fx(0, 0) = lim
h→0

sin2(h)/|h|
h

= lim
h→0

sin2(h)

h|h|
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does not exist (Left Limit ̸= Right Limit). Similarly, fy(0, 0) does not exist.

(7) |f(x, y)| ≤ x2 + y2 ⇒ f is continuous at(0, 0).
It is easily checked that fx(0, 0) = fy(0, 0) = 0.
Now,

fx = 2x

(
sin

(
1

x2 + y2

)
− 1

x2 + y2
cos

(
1

x2 + y2

))
.

The function 2x sin
(

1
x2+y2

)
is bounded in any disc centered at (0, 0),

while
2x

x2 + y2
cos

(
1

x2 + y2

)
is unbounded in any such disc.

(To see this, consider (x, y) =
(

1√
nπ
, 0
)
for n a large positive integer.)

Thus fx is unbounded in any disc around (0, 0).

(8) fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0
sin

1

h
does not exist. Similarly fy(0, 0)

does not exist. Clearly, f is continuous at (0, 0).

(9) (i) Let v = (a, b) be any unit vector in R2. We have

(Dvf) (0, 0) = lim
h→0

f(hv)

h
= lim

h→0

f(ha, hb)

h
= lim

h→0

h2ab
(

a2−b2

a2+b2

)
h

= 0.

Therefore (Dvf) (0, 0) exists and equals 0 for every unit vector v ∈ R2.
For considering differentiability, note that

fx(0, 0) = (Dîf) (0, 0) = 0 = fy(0, 0) =
(
Dĵf

)
(0, 0). We have then

lim
(h,k)→(0,0)

|f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)|√
h2 + k2

= lim
(h,k)→(0,0)

|hk(h2 − k2)|
(h2 + k2)3/2

= 0 since

0 ≤ |hk(h2 − k2)|
(h2 + k2)

3/2
≤ |hk|√

h2 + k2
h2 + k2

h2 + k2

≤
√
h2 + k2

√
h2 + k2√

h2 + k2
=
√
h2 + k2.

Thus f is differentiable at (0, 0).
(ii) Note that, for any unit vector v = (a, b) in R2, we have

Dvf(0, 0) = lim
h→0

h3a3

h(h2(a2 + b2))
= lim

h→0

a3

(a2 + b2)
=

a3

(a2 + b2)
.

To consider differentiability, note that fx(0, 0) = 1, fy(0, 0) = 0 and

lim
(h,k)→(0,0)

|f(h, k)− h× 1− k × 0|√
h2 + k2

= lim
(h,k)→(0,0)

∣∣h3/(h2 + k2)− h
∣∣

√
h2 + k2

= lim
(h,k)→(0,0)

∣∣hk2∣∣
(h2 + k2)3/2

does not exist (consider, for example, k = mh). Hence f is not differentiable
at (0, 0).
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(iii) For any unit vector v ∈ R2, one has

(Dvf) (0, 0) = lim
h→0

h2(a2 + b2) sin
[

1
h2(a2+b2)

]
h

= 0.

Also,

lim
(h,k)→(0,0)

∣∣∣(h2 + k2) sin
[

1
(h2+k2)

]∣∣∣
√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 sin

(
1

h2 + k2

)
= 0

therefore f is differentiable at (0, 0).

(10) f(0, 0) = 0, |f(x, y)| ≤
√
x2 + y2 =⇒ f is continuous at (0, 0). Let v be a

unit vector in R2. For v = (a, b), with b ̸= 0, one has

(Dv) f(0, 0) = lim
h→0

1

h

hb

|hb|
√
h2a2 + h2b2 =

(a2 + b2)b

|b|
.

If v = (a, 0), then (Dvf) (0, 0) = 0. Hence (Dvf) (0, 0) exists for every unit vector
v ∈ R2. Further,

fx(0, 0) = 0, fy(0, 0) = 1,

and

lim
(h,k)→(0,0)

|f(h, k)− 0− h× 0− k × 1|√
h2 + k2

= lim
(h,k)→(0,0)

∣∣∣ k
|k|

√
h2 + k2 − k

∣∣∣
√
h2 + k2

= lim
(h,k)→(0,0)

∣∣∣∣ k|k| − k√
h2 + k2

∣∣∣∣
does not exist (consider, for example, k = mh) so that f is not differentiable at
(0, 0).
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3.7. Tutorial sheet 7

(1) (∇F ) (1,−1, 3) = (
∂F

∂x
(1,−1, 3),

∂F

∂y
(1,−1, 3),

∂F

∂z
(1,−1, 3)) = (0, 4, 6).

The tangent plane to the surface F (x, y, z) = 7 at the point (1,−1, 3) is
given by 0× (x− 1) + 4× (y + 1) + 6× (z − 3) = 0, i.e.,2y + 3z = 7.

The normal line to the surface F (x, y, z) = 7 at the point (1,−1, 3) is given
by
x = 1, 3y − 2z + 9 = 0.

(2) u =
(2, 2, 1)√

22 + 22 + 12
=

(
2

3
,
2

3
,
1

3

)
and
(∇F ) (2, 2, 1) = (3,−5, 2).
Therefore,

(DuF ) (2, 2, 1) = (∇F )(2, 2, 1) · u =
6

3
− 10

3
+

2

3
= −2

3
.

(3) Given that sin (x+ y) + sin (y + z) = 1 (with cos(y + z) ̸= 0).
(It may be assumed that z is a sufficiently smooth function of x and y).
Differentiating w.r.t. x while keeping y fixed, we get
cos (x+ y) + cos (y + z) ∂z∂x = 0. (∗)
Similarly, differentiating w.r.t.y while keeping x fixed, we get

cos (x+ y) + cos (y + z)
(
1 + ∂z

∂y

)
= 0. (∗∗)

Differentiating (*) w.r.t y we have

− sin (x+ y)− sin (y + z)
(
1 + ∂z

∂y

)
∂z
∂x + cos (y + z) ∂2z

∂x∂y = 0.

Thus, using (*) and (**), we have

∂2z

∂x∂y

=
1

cos (y + z)

[
sin (x+ y) + sin (y + z).

(
1 +

∂z

∂y

)
∂z

∂x

]

=
1

cos (y + z)

[
sin (x+ y) + sin (y + z)

(
−cos (x+ y)

cos (y + z)

)(
−cos (x+ y)

cos (y + z)

)]

=
sin (x+ y)

cos (y + z)
+ tan (y + z)

cos2 (x+ y)

cos2 (y + z)
.

(4) We have

fxy(0, 0) = lim
k→0

fx(0, k)− fx(0, 0)

k
,

where (noting that k ̸= 0)

fx(0, k) = lim
h→0

f(h, k)− f(0, k)

h
= −kand fx(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= 0.

Therefore,

fxy(0, 0) = lim
k→0

−k − 0

k
= −1; similarlyfyx(0, 0) = 1.

Thus

fxy(0, 0) ̸= fyx(0, 0).
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By directly computing fxy, fyx for (x, y) ̸= (0, 0), one observes that these are not
continuous at (0, 0).
(In the following Hf (a, b) denotes the Hessian matrix of a sufficiently smooth
function f at the point (a, b)).

(5) (i) We have

fx(−1, 2) = 0 = fy(−1, 2);Hf (−1, 2) =

 12 0

0 48

 .
D = 12× 48 > 0, fxx(−1, 2) = 12 > 0 ⇒ (−1, 2) is a point of local minimum of f .

(ii) We have

fx(0, 0) = 0 = fy(0, 0);Hf (0, 0) =

 6 −2

−2 10

 .
D = 60− 4 > 0, fxx(0, 0) = 6 > 0 ⇒ (0, 0) is a point of local minimum of f .

(6) (i) fx = e−
(x2+y2)

2

(
2x− x3 + xy2

)
, fy = e−

(x2+y2)
2

(
−2y + y3 − x2y

)
.

Critical points are (0, 0), (±
√
2, 0), (0,±

√
2).

Hf (0, 0) =

[
2 0
0 −2

]
⇒ (0, 0)is a saddle point of f .

Hf (±
√
2, 0) =

[
− 4

e 0
0 − 4

e

]
⇒ (±

√
2, 0)is a point of local maximum of f .

Hf (0,±
√
2) =

[
4
e 0
0 4

e

]
⇒ (0,±

√
2)is a point of local minimum of f .

(ii) fx = 3x2−3y2 and fy = −6xy imply that (0, 0) is the only critical point of f.
Now,

Hf (0, 0) =

[
0 0
0 0

]
.

Thus, the standard derivative test fails.
However, f(±ϵ, 0) = ±ϵ3 for any ϵ so that (0, 0) is a saddle point of f.

(7) From f(x, y) = (x2 − 4x) cos y (1 ≤ x ≤ 3,−π/4 ≤ y ≤ π/4), we have
fx = (2x− 4) cos y and fy = −(x2 − 4x) sin y.
Thus the only critical point of f is P = (2, 0); note that f(P ) = −4.

Next, g±(x) ≡ f(x,±π
4 ) = (x2−4x)√

2
(1 ≤ x ≤ 3) has x = 2 as the only critical

point so that we consider P± = (2,±π
4 ); note that f(P±) =

−4√
2
.

We also need to check g±(1) = f(1,±π
4 ) (≡ f(Q±)) and g±(3) = f(3,±π

4 ) (≡
f(S±)); note that f(Q±) =

−3√
2
, f(S±) = −−3√

2
.

Next, consider h(y) ≡ f(1, y) = −3 cos y (−π/4 ≤ y ≤ π/4). The only critical
point of h is y = 0; note that h(0) = f(1, 0) (≡ f(M)) = −3. (h(±π/4) is just
f(Q±)).
Finally, consider k(y) ≡ f(3, y) = −3 cos y (−π/4 ≤ y ≤ π/4). The only critical
point of k is y = 0; note that k(0) = f(3, 0) (≡ f(T )) = −3. (k(±π/4) is just
f(S±)).
Summarizing, we have the following table:
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Points P+ P− Q+ Q− S+ S− T P M
Values − 4√

2
− 4√

2
− 3√

2
− 3√

2
− 3√

2
− 3√

2
-3 -4 -3

By inspection one finds that

fmin = −4 is attained at P = (2, 0) and
fmax = − 3√

2
at Q± = (1,±π/4) and at S± = (3,±π/4).
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3.8. Tutorial sheet 8

(1) (i)

∫ e

1

(∫ 1

log y

dx

)
dy

(ii)

∫ 1

−1

(∫ 1

x2

f(x, y)dy

)
dx.

(2) (i)

∫ π

0

(∫ y

0

sin(y)

y
dx

)
dy =

∫ π

0

sin(y)dy = 2.

(ii)

∫ 1

0

(∫ x

0

x2exydy

)
dx =

∫ 1

0

x(ex
2

− 1)dx

=
1

2
(e− 1)− 1

2
=

1

2
(e− 2).

(iii)

∫ 2

0

(tan−1(πx)− tan−1(x))dx =

∫ 2

0

(∫ πx

x

dy

1 + y2

)
dx

=

∫ ∫
R1+R2

d(x, y)

1 + y2
=

∫ 2

0

(∫ y

y/π

dx

1 + y2

)
dy +

∫ 2π

2

(∫ 2

y/π

dx

1 + y2

)
dy

=

∫ 2

0

(1− 1

π
)
ydy

1 + y2
+

∫ 2π

2

(2− y

π
)

dy

1 + y2

=
π − 1

2π
log(1 + y2)|20 + 2 tan−1 y|2π2 − 1

2π
log(1 + y2)|2π2

=
π − 1

2π
log 5 + 2(tan−1 2π − tan−1 2)− 1

2π

[
log

(4π2 + 1)

5

]
.

(3)

∫∫
D

ex
2

d(x, y) =

∫ 1

0

(∫ 2x

0

ex
2

dy

)
dx =

∫ 1

0

2xex
2

dx = e− 1.

(4) Put

x =
u− v

2
, y =

u+ v

2
.

Then the rectangle R = {π ≤ u ≤ 3π, −π ≤ v ≤ π}
in the uv-plane gets mapped to D, a parallelogram in the xy-plane.
Further,

J =

∣∣∣∣ 1/2 −1/2
1/2 1/2

∣∣∣∣ = 1

2

and then ∫∫
D

(x− y)2 sin2(x+ y)dxdy =

∫∫
R

v2 sin2(u)
1

2
dudv

=
1

2

(∫ π

−π

v2dv

)(∫ 3π

π

sin2(u)du

)
=

1

2

(
2× π3

3

)
(π) =

π4

3
.

(5) Put

x =
u

v
, y = uv.

Then the rectangle R = {1 ≤ u ≤ 3, 1 ≤ v ≤ 2} in the uv-plane gets mapped to D
in the xy-plane.
Further,

J =

∣∣∣∣ 1/v −u/v2
v u

∣∣∣∣ = 2u

v
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and then∫∫
D

d(x, y) = Area(D) =

∫∫
R

2u

v
dudv =

(∫ 3

1

2udu

)(∫ 2

1

dv

v

)
= 8 log 2.

(6) (i) Setting

x = ρ cos(θ), y = ρ sin(θ), 0 ≤ ρ ≤ r, 0 ≤ θ ≤ 2π,

and using J = ρ, we get∫∫
D(r)

e−(x2+y2)d(x, y) =

∫ 2π

0

∫ r

0

e−ρ2

ρdρdθ = π(1− e−r2).

Therefore, letting r → ∞, we obtain the limit to be π.

(ii) By symmetry, the required limit is lim
r→∞

π

4

(
1− e−r2

)
=
π

4
.

(iii) Let

I(r) = {|x| ≤ r, |y| ≤ r} .
Then ∫∫

D(r)

e−(x2+y2)d(x, y) ≤
∫∫

I(r)

e−(x2+y2)d(x, y)

≤
∫∫

D(r
√
2)

e−(x2+y2)d(x,y).

Therefore, letting r → ∞, we obtain the limit to be π using the Sandwich
theorem.

(iv) The required integral being one-fourth of the integral in (iii) is
π

4
.

(7) By symmetry, the given volume is 8 times the volume in the positive octant.
In that octant the volume lies above the region Q =

{
x ≥ 0, y ≥ 0, x2 + y2 ≤ a2

}
and underneath the cylinder x2 + z2 = a2.
Therefore,

V = 8

∫ a

0

(∫ √
a2−x2

0

(∫ √
a2−x2

0

1dz

)
dy

)
dx =

16a3

3
.

(8)

D = {(x, y, z)| − 1 ≤ x ≤ 1, −
√
1− x2 ≤ y ≤

√
1− x2,

√
x2 + y2 ≤ z ≤ 1}.

(9)

I =

∫ √
2

0

(∫ √
2−x2

0

(∫ 2

x2+y2

xdz

)
dy

)
dx.

We can also write the region of integration D as

D = {(x, y, z)|0 ≤ z ≤ 2, 0 ≤ y ≤
√
z, 0 ≤ x ≤

√
z − y2}.

Thus

I =

∫ 2

0

(∫ √
z

0

(∫ √
z−y2

0

xdx

)
dy

)
dz =

8
√
2

15
.

(10) (i) Using cylindrical coordinates, one has

I =

∫ 1

−1

∫ 2π

0

∫ 1

0

(z2r2)rdrdθdz = π/3.
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(ii) Using spherical coordinates, one has

I =

∫ 2π

0

∫ π

0

∫ 1

0

(exp(r3)r2 sinϕdrdϕdθ =
4π(e− 1)

3
.
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3.9. Tutorial sheet 9

(1) (i) Note that

∂r

∂x
=
∂(x2 + y2 + z2)1/2

∂x
= x/r.

Similarly, ∂r
∂y = y/r and ∂r

∂z = z/r. Now,

∂rn

∂x
= nrn−1 ∂r

∂x
= nrn−2x, etc.

Hence, ∇(rn) = nrn−2r.
(ii) Letting n = −1 in (i) we have ∇(r−1) = −r−3r. Hence, a · ∇(r−1) =

−r−3(a · r).

(iii) First we compute ∇(a · ∇(r−1)):

∂

∂x

(a · r
r3

)
=

∂

∂x

(a1x+ a2y + a3z

r3

)
=
a1
r3

+ a · r∂r
−3

∂x
=
a1
r3

− 3xr−5(a · r).

Hence,

b · ∇(a · ∇(r−1)) = −r−3(a · b) + 3r−5(a · r)(b · r).

(2) (i) ∇(fg) =
∑

i
∂(fg)

∂x
=
∑

i
∂f

∂x
g +

∑
if
∂g

∂x
= g∇f + f∇g.

(ii) Since
∂fn

∂x
= nfn−1 ∂f

∂x
, hence ∇fn = nfn−1∇f .

(iii) Since,
∂

∂x

(
f

g

)
= g−2

(
g
∂f

∂x
− f

∂g

∂x

)
,

∇
(
f

g

)
=
∑

i
∂

∂x

(
f

g

)
= g−2

(
g
∑

i
∂f

∂x
− f

∑
i
∂g

∂x

)
,

which is the desired result.

(3) (i) ∇ · (fv) =
∑ ∂

∂x
(fv1) =

∑ ∂f

∂x
v1 + f

∑ ∂v1
∂x

= ∇f · v + f∇ · v.

(ii) ∇× (fv) =
∑

i× ∂

∂x
(fv) =

∑
i× (

∂f

∂x
v) +

∑
i× (f

∂v

∂x
)

=
(∑ ∂f

∂x
i
)
× v + f

∑
i× ∂

∂x
v = ∇f × v + f(∇× v).

(iii) ∇× (∇× v) =
∑

i× ∂

∂x

(∑
j× ∂

∂y
v
)
=
∑∑(

i× (j× ∂2v

∂x∂y
)
)

=
∑

i

∑
j j
(
i · ∂2v

∂x∂y

)
−
∑

∂2v
∂x2 =

∑
j j

∂
∂y

∑
i

(
i · ∂

∂xv
)
−∆v

= ∇(∇ · v)−∆v.
(iv) Since

∇ · (f∇g) =
∑

i · ∂
∂x

(∑
f
∂g

∂y
j
)
=
∑ ∂

∂x

(
f
∂g

∂x

)
= ∇f · ∇g + f∆g,

we have
∇ · (f∇g)−∇ · (g∇f) = f∆g − g∆f.

(v) ∇ · (∇× v) =
∑

i · ∂
∂x

(∑
j× ∂

∂y
v
)
=
∑

i ·
(∑

j× ∂2v
∂x∂y

)
=
∑∑

(i× j) · ∂
2v

∂x∂y
=
∑

k ·
(

∂2v
∂x∂y − ∂2v

∂y∂x

)
= 0,

by the equality of mixed partials.
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(vi) ∇× (∇f) =
∑

i× ∂

∂x

(∑
j
∂f

∂y

)
=
∑∑

(i× j) ∂2f
∂x∂y

=
∑

k
(

∂2f
∂x∂y − ∂2f

∂y∂x

)
= 0.

(vii) Note that

g∇f × f∇g = g
∑

i
∂f

∂x
× f

∑
j
∂g

∂y
=
∑∑

fg(i× j)
∂f

∂x

∂g

∂y

=
∑
fg
(

∂f
∂x

∂g
∂y − ∂f

∂y
∂g
∂x

)
k

= fg

∣∣∣∣∣∣∣
i j k
∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z

∣∣∣∣∣∣∣ =
∑

fg
(∂f
∂y

∂g

∂z
− ∂g

∂y

∂f

∂z

)
i.

Hence,

∇ · (g∇f × f∇g) =
∑

i · ∂
∂x

∑
ifg
(∂f
∂y

∂g

∂z
− ∂g

∂y

∂f

∂z

)
=
∑ ∂

∂x

(
fg
(∂f
∂y

∂g

∂z
− ∂g

∂y

∂f

∂z

))
=
∑

f
∂g

∂x

(∂f
∂y

∂g

∂z
− ∂g

∂y

∂f

∂z

)
+
∑

g
∂f

∂x

(∂f
∂y

∂g

∂z
− ∂g

∂y

∂f

∂z

)
+
∑

fg
( ∂2f

∂x∂y

∂g

∂z
− ∂2f

∂x∂z

∂g

∂y

)
+
∑

fg
( ∂2g

∂x∂z

∂f

∂y
− ∂2g

∂y∂x

∂f

∂z

)
.

Each of the four sums vanishes individually.

(4) (i) Since
∂f(r)

∂x
= f

′
(r)

∂r

∂x
= f

′
(r)x/r, we have

div(∇f(r)) =
∑ ∂

∂x

(
f

′
(r)

x

r

)
=
∑

f
′′
(r)

x2

r2
+
∑ f

′
(r)

r
−
∑ x2

r3
f

′
(r) = f

′′
(r) +

2

r
f

′
(r).

(ii) div(rnr) =
∑

∂
∂x (r

nx) =
∑

(rn + nrn−1 x2

r ) = 3rn + nrn = (3 + n)rn.

(iii) Note that ∇
(

rn+2

n+2

)
= rnr, by exercise 1(i). So,

curl(rnr) = curl(grad
( rn+2

n+ 2

)
) = 0,

by exercise 3(vi). If n = −2, then

∇(log r) = r−2r

and hence,
curl(r−2r) = curl(∇ log r) = 0.

(iv) Using part (i) it follows that

div(∇r−1) =
d2

dr2

(1
r

)
+

2

r

( d
dr

(r−1)
)
= 0.

(5) (i) ∇ · (u× v) =
∑

i ·
( ∂
∂x

(u× v)
)
=
∑

i · (∂u
∂x

× v) +
∑

i · (u× ∂v

∂x
)

=
∑

(i× ∂u

∂x
) · v −

∑
(i× ∂v

∂x
) · u = v · curlu− u · curlv.

(Def: A vector-field u is said to be irrotational if ∇× u = 0. A vector-field
u is said to be solenoidal if ∇ · u = 0. We have now proved that if u and v
are irrotational then u× v is solenoidal. )
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(ii) ∇× (u× v) =
∑

i× ∂

∂x
(u× v) =

∑
i×
(∂u
∂x

× v
)
+
∑

i×
(
u× ∂v

∂x

)
=
∑

(i · v)∂u
∂x

−
∑(

i · ∂u
∂x

)
v +

∑(
i · ∂v
∂x

)
u−

∑
(i · u)∂v

∂x

= (v · ∇)u− (∇ · u)v + (∇ · v)u− (u · ∇)v.

(iii) ∇(u · v) =
∑

i
∂

∂x
(u · v) =

∑
i
(∂u
∂x

· v
)
+
∑

i
(∂v
∂x

· u
)

=
∑[(

v · ∂u
∂x

)
i− (v · i)∂u

∂x

]
+
∑[(

u · ∂v
∂x

)
i− (u · i)∂v

∂x

]
+(v · ∇)u+ (u · ∇)v

= v ×
(∑

i× ∂

∂x
u
)
+ u×

(∑
i× ∂

∂x
v
)
+ (v · ∇)u+ (u · ∇)v

= v × (∇× u) + u× (∇× v) + (v · ∇)u+ (u · ∇)v.
(6) (i) Let w = fu, where f is a scalar field and u is a constant vector. Then,

w · (∇×w) = fu · (∇× fu) = fu · (f∇× u+∇f × u) (using 3(ii) ) =
f2(u · (∇× u)) + fu · ∇f × u = 0 (using 3(v)).

(ii) Here r = (x, y, z). Thus, ∇× v = ∇× (w× r) = (r · ∇)w− (w · ∇)r+ (∇ ·
r)w − (∇ ·w)r (using 5(ii) ) = (∇ · r)w − (w · ∇)r = 3w −w = 2w.

(iii) Let f = ρ−1. Then, using problem 3(ii) and 3(vi),

∇× v = ∇× (f∇p) = f(∇×∇p) +∇f ×∇p = −f2(∇ρ×∇p).

Hence

v · (∇× v) = −f3∇p · (∇ρ×∇p) = 0.

(7) Parameterize the curve C as Φ(t) = (t, t2). Then, Φ′(t) = (1, 2t). Thus∫
C

F · ds =

∫ 1

−1

(t2 − 2t3, t4 − 2t3) · (1, 2t)dt

=

∫ 1

−1

(t2 − 2t3) + 2t(t4 − 2t3)dt = −14

15
.

(8) A parametrization of the ellipse is given by

γ(θ) = (a cos θ, b sin θ), 0 ≤ θ ≤ 2π,

and

γ′(θ) = (−a sin θ, b cos θ).

Thus,
F (a cos θ, b sin θ) · γ′(θ)
= (a2 cos2 θ + b2 sin2 θ, a cos θ − b sin θ) · (−a sin θ, b cos θ)
and ∫

C

F (x, y) · ds

=

∫ 2π

0

[
(−a3 cos2 θ sin θ − ab2 sin3 θ) + (ab cos2 θ − b2 sin θ cos θ)

]
dθ

= πab.

(9) A parametrization of the curve is given by

γ(θ) = (a cos θ, a sin θ), 0 ≤ θ ≤ 2π.
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Thus, x(θ) = a cos θ, y = a sin θ, and the required integral is∫ 2π

0

a2(cos θ + sin θ)(− sin θ) + a2(sin θ − cos θ) cos θ

a2
dθ =

∫ 2π

0

−a2

a2
dθ = −2π.

(10) For the curve z = xy, x2 + y2 = 1, we can use the parametrization

x = cos θ, y = sin θ, z = sin θ cos θ, 0 ≤ θ ≤ 2π.

Thus,∫
ydx+ zdy + xdz =

∫
ydx+ (xy)dy + x(xdy + ydx)

=

∫ 2π

0

[sin θ(− sin θ) + sin θ cos θ cos θ + cos2 θ cos θ + sin θ cos θ(− sin θ)]dθ

=

∫ 2π

0

[− sin2 θ + sin θ cos2 θ + cos3 θ − sin2 θ cos θ]dθ

= −
∫ 2π

0

sin2 θdθ +

∫ 2π

0

sin θ cos2 θdθ

+

∫ 2π

0

cos3 θdθ −
∫ 2π

0

sin2 θ cos θdθ

= −π.
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3.10. Tutorial sheet 10

(1) Let
γ(t) = (a cos t, a sin t, ct).

Then γ′(t) = (−a sin t, a cos t, c) and ∥γ′
(t)∥ =

√
a2 + c2. Hence

u(t) =

∫ t

0

√
a2 + c2dt = (

√
a2 + c2)t.

Thus the arc length parametrization is

γ̃(u) =

(
a cos

(
u√

a2 + c2

)
, a sin

(
u√

a2 + c2

)
,

cu√
a2 + c2

)
.

(2) ∫
C1

= −
∫ +1

−1

x2dx

(1 + x2)2
= −

∫ +π/4

−π/4

sin2 θ = −π/4 + 1

2
,∫

C2

= −
∫ +1

−1

dy

(1 + y2)2
= −

∫ +π/4

−π/4

cos2 θdθ = −π/4− 1/2,∫
C3

=

∫ +1

−1

−x2dx
(1 + x2)

2

= −π/4 + 1

2
,∫

C4

=

∫ +1

−1

−dy
(1 + y2)2

= −π/4− 1/2.

Hence ∫
C

=

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

= −π.

(3) A parametrization of C is

γ(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

Also,
∇(x2 − y2) = (2x,−2y).

Thus ∮
C

∇(x2 − y2) · ds =
∫ 2π

0

(2 cos t,−2 sin t) · (− sin t, cos t)dt

=

∫ 2π

0

(−2 sin 2t)dt = 0.

(4) Parameterize C as
γ(t) = (t, t3)

for 0 ≤ t ≤ 2. Then γ′(t) = (1, 3t2). Since ∇(x2 − y2) = (2t,−2t3),∫
C

∇(x2 − y2) · ds =
∫ 2

0

(2t− 6t5)dt = 4− 64 = −60.

(5) The required integral is

=

∫
C1

dx+ dy

|x|+ |y|
+

∫
C2

dx+ dy

|x|+ |y|
+

∫
C3

dx+ dy

|x|+ |y|
+

∫
C4

dx+ dy

|x|+ |y|
.

Along C1: x+ y = 1 and |x|+ |y| = x+ y = 1. Thus∫
C1

dx+ dy

|x|+ |y|
=

∫ 0

1

dx−
∫ 0

1

dx = 0.
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Along C2: −x+ y = 1 and |x|+ |y| = −x+ y = 1. Thus

∫
C2

dx+ dy

|x|+ |y|
=

∫ −1

0

dx+

∫ −1

0

dx = −2.

Along C3: x+ y = −1 and |x|+ |y| = −x− y = 1. Thus

∫
C3

dx+ dy

|x|+ |y|
=

∫ 0

−1

dx−
∫ 0

−1

dx = 0.

Along C4: x− y = 1 and |x|+ |y| = x− y = 1. Thus

∫
C4

dx+ dy

|x|+ |y|
=

∫ 1

0

dx+

∫ 1

0

dx = 2.

Hence ∫
C

dx+ dy

|x|+ |y|
= 2− 2 = 0.

(6) The work done W is∫
C

F · ds =
∫
C
xydx+ x6y2dy

=
∫ 1

0
axb+1dx+

∫ 1

0
(a2x2b+6)(abxb−1)dx

= a
b+2 + a3b

3b+6

= a
b+2

(
1 + a2b

3

)
= a

(
3+a2b
3(b+2)

)
.

This will be independent of b iff dW
db = 0 iff 0 = (b+2)a2−(3+a2b)

(b+2)2 iff a =
√

3
2 (as a >

0).
(7) First we observe that the cylinder is given by

(
x− a

2

)2
+ y2 =

a2

4
.

From the equations of the sphere and the cylinder we have that, on the intersec-
tion C,

z2 = a2 − ax.

Noting the requirement z ≥ 0, a parametrization of C is given by

x =
a

2
+
a

2
cos θ, y =

a

2
sin θ, z = a sin

θ

2
; 0 ≤ θ ≤ 2π.
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Then∫
C

F · ds =

∫ 2π

0

[

(
a2

4
sin2 θ

)
(−a

2
sin θ) + (a2 sin2

θ

2
)(
a

2
cos θ)

+

(
a2

4
+
a2

4
cos2 θ +

a2

2
cos θ

)
(
a

2
cos

θ

2
)]dθ

=

∫ 2π

0

[−a
3

8
sin3 θ +

a3

2
sin2

θ

2
cos θ +

a3

8
cos

θ

2
+
a3

8
cos2 θ cos

θ

2

+
a3

4
cos θ cos

θ

2
]dθ

= −πa
3

4
.

(8)
∂P

∂y
= 3x,

∂Q

∂x
= 3x2y where (P,Q) = F. Now

∂P

∂y
=
∂Q

∂x
iff 3x = 3x2y

iff either x = 0 or xy = 1.

Since the sets {(x, y)|x = 0}, {(x, y)|xy = 1} are not open, F (x, y) is not the
gradient of a scalar field on any open subset of R2.

(9)

∂P

∂y
=

y2 − x2

(x2 + y2)2
=
∂Q

∂x
on R2 \ {(0, 0)}.

However, F ̸= ∇f for any f . Indeed, let C to be the unit circle x2 + y2 = 1,
oriented anticlockwise. Then one has∮

C

F · ds =

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t)dt

= 2π ̸= 0

(10) Suppose F = ∇ϕ for some ϕ.
Then

∂ϕ

∂x
= 2xy + z3 ⇒ ϕ(x, y, z) = x2y + z3x+ f(y, z)

for some f(y, z). Assuming f has partial derivatives, we get

∂ϕ

∂y
= x2 +

∂f

∂y
= x2

so that
∂f

∂y
= 0

and f(y, z) depends only on z

Let f(y, z) = g(z). Then ϕ(x, y, z) = x2y + z3x + g(z) ⇒ ∂ϕ

∂z
= 3z2x + g′(z) =

3z2x ⇒ g′(z) = 0. Let us select g(z) = 0. It can be checked that ϕ(x, y, z) =
x2y + z3x satisfies ∇ϕ = F.
Hence ∮

C

F · ds = 0
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for every smooth closed curve C.

(11) F (x, y, z) = f(r)r = (f(r)x, f(r)y, f(r)z). Since

r = (x2 + y2 + z2)1/2,

∂r

∂x
=
x

r
,
∂r

∂y
=
y

r
,
∂r

∂z
=
z

r
.

If F is to be ∇ϕ for some ϕ, then we must have ϕx = f(r)x, ϕy = f(r)y, ϕz =
f(r)z; that is,

ϕx = xf(r) =
x

r
rf(r) =

∂r

∂x
rf(r),

ϕy = yf(r) =
y

r
rf(r) =

∂r

∂y
rf(r),

ϕz = zf(r) =
z

r
rf(r) =

∂r

∂z
rf(r).

Now it can be seen that ϕ(x, y, z) =

∫ r

t0

tf(t)dt, with some t0 fixed, satisfies all

the desired equations.
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3.11. Tutorial sheet 11

(1) We have to show that∫∫
R

(gx − fy) dxdy =

∮
∂R

(fdx+ gdy).

(i)

lhs =

∫∫
R

4xy dxdy =

∫ 1

0

(∫ 1−x2

0

4xy dy

)
dx =

1

3
.

Observe that the boundary of R consists of three smooth curves: a segment
of the x-axis, a part of the parabola y = 1 − x2 and a segment of the y-
axis. The integral on the rhs vanishes on both the axes. We choose the
parametrization t 7→ (t, 1 − t2), (t ∈ [0, 1]) for the part of the parabola
traced in the opposite direction. This gives

rhs =

∮
∂R

(−xy2 dx+ x2y dy)

= −
∫ 1

0

[−t(1− t2)2 + t2(1− t2)(−2t)] dt =
1

3
.

(ii)

lhs =

∫∫
R

(ex + 2x− 2x) dxdy =

∫ 1

0

(∫ x

0

ex dy

)
dx = 1.

and

rhs =

∮
∂R

[2xy dx+ (ex + x2) dy]

=

∫ 1

0

(e+ 1)dy +

∫ 0

1

(3t2 + et) dt = e+ 1− e = 1.

(Observe that f and dy are zero on the horizontal segment of the curve,
whereas on the vertical segment dx = 0.)

(2) (i) Here

f(x, y) = y2; g(x, y) = x.

Therefore, the given path integral is equal to∫∫
R

(1− 2y) dxdy =

∫ 2

0

∫ 2

0

(1− 2y)dy dx = 4− 4

∫ 2

0

dx = 4− 8 = −4.

(ii) Here∫∫
R

(1− 2y) dxdy =

∫∫
R

dxdy +

∫ 1

−1

∫ 1

−1

(−2y)dy dx = 4 + 0 = 4.

(iii) Here∫∫
R

(1− 2y) dxdy =

∫∫
R

dxdy +

∫ 2

−2

[∫ √
2−x2

−
√
2−x2

(−2y)dy

]
dx = 4π + 0.

(3) (i) A = 3πa2

2 . (ii) A = a2/2.



3.11. TUTORIAL SHEET 11 71

(4) (i) The required area is bounded by the curves

C1 : r = p(θ) = a(1− cos θ), 0 ≤ θ ≤ π/2

and C2 which is a portion of the y-axis. In any case, the required area is
equal to

1

2

∮
C

p(θ)2 dθ.

Since θ is a constant along the y-axis, this integral is to

1

2

∫ π/2

0

p(θ)2 dθ =
a2

8
(3π − 8).

(ii) The required area is
1

2

∮
C

xdy − ydx.

Here the boundary curve of the interval [0, 2π] and the cycloid above traced
in the opposite direction. But the integrand is zero on the x-axis, since both
y and dy vanish there. Hence the required area is

−a
2

2

∫ 2π

0

(t− sin t)d(1− cos t)− (1− cos t)d(t− sin t) = 2πa2.

(iii) Here we use the polar coordinate form as in the previous exercise:

A =
1

2

∮
C

p(θ)2dθ.

(This formula follows from Green’s Theorem.)
Since θ is a constant on the two axes, this integral is equal to

1

2

∫ π/2

0

(1− 2 cos θ)2 dθ =
1

2

(
3π − 8

2

)
.

(5) Observe that

xe−y2

dx+ (−x2ye−y2

)dy = d(
x2e−y2

2
).

Hence the integral of this term along a closed path vanishes. So the given integral
is equal to ∮

C

dy

x2 + y2.
We compute this directly. Observe that dy = 0 along the two horizontal parts.
But then the integral along one vertical segment cancels with that on the other
since the integrands are the same and the segments are traced in the opposite
direction. So the value of the required integral is equal to 0.

(6) Take f = −y3 and g = x3 and apply Green’s theorem. We get

rhs =

∫∫
D

(3x2 + 3y2) dxdy = 3I0.

(7)
u · v = (ax − ay)a+ (bx − by)b.

Therefore taking f = (a2 + b2)/2 = g, we see that∫∫
D
u · v dxdy =

∫∫
D
(gx − fy) dxdy

=
∮
∂D

(f dx+ g dy)
= 1

2

∮
∂D

(1 + y2)(dx+ dy) = 0.
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(The last equality follows by considering the parametrizaton (cos θ, sin θ), 0 ≤
θ ≤ 2π). Likewise we see that∫∫

D

u · w dxdy =

∮
∂D

(ab)(dx+ dy) = −
∫ 2π

0

sin2 θ dθ = −π.

(8) Since ∇2(x2 − y2) = 0, using one of Green’s identities (refer to (9),(i)) one has∮
C

∇(x2 − y2).n|ds| =
∮
C

∂(x2 − y2)

∂n
|ds| =

∫∫
R

∇2(x2 − y2) dxdy = 0.

(9) (a)

∇2w = 0 hence,

∮
C

∂w

∂n
dS = 0

(b) Put H = F −G. Then curlH = 0. Since D is simply connected, there exists
u such that grad u = H. Now div H = 0 implies that ∇2u = 0, i.e., u is
harmonic. Finally H · n = 0, i.e.,∇u · n = ∂u

∂n = 0 on the boundary implies,
using (9),(ii), that u is a constant. But then H = gradu = 0 and hence
F = G.

(10) (i) There are two distinct cases to be considered:
Case (a): Suppose the curve does not enclose the origin. Take

f(x, y) =
y

x2 + y2
, g(x, y) =

x

x2 + y2

and apply Green’s theorem in the region R bounded by C. So the integral
is equal to ∫∫

R

(gx − fy) dxdy.

A simple computation show that gx = fy and hence the integral vanishes.
Case (b): Suppose the curve encloses the origin, i.e, (0, 0) ∈ R. (Now the
above argument does not work!) We choose a small disc D around the origin
contained in R and apply Green’s theorem in the closure of R′ = R \D. As
before, the double integral vanishes. But since the boundary of R′ consists
of C and −∂D it follows that∮

C

y dx− x dy

x2 + y2
=

∮
∂D

y dx− x dy

x2 + y2
.

We can compute this now by using polar coordinates and see that this is
equal to −2π.

(ii) Here again, we take D to be a small disc of radius ϵ around the origin and
contained in the square R and apply Green’s theorem in the closure of R\D.
Taking

f(x, y) =
x2y

(x2 + y2)2
, g(x, y) =

x3

(x2 + y2)2
,

we once again observe that the double integral vanishes since gx = fy =
(x2+y2)(x4−3x2y2)

(x2+y2)4 . Hence the given line integral is equal to the corresponding

line integral taken over the boundary of D. This can be computed by using
the parametrizaton (ϵ cos θ, ϵ sin θ), 0 ≤ θ ≤ 2π. The answer is −π/4.

(iii) We have

∂(log r)

∂y
=

y

x2 + y2
and

∂(log r)

∂x
=

x

x2 + y2
.
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By part (i), the required line integral is −2π.
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3.12. Tutorial sheet 12

( 1) (i) On S,

z =
1

2
(4 + y − x) = h(x, y) so that

Φ(x, y) = (x, y,
1

2
(4 + y − x)), (x, y) ∈ R2

can be chosen as one parametrization. The normal vector is

Φx × Φy = (
1

2
,−1

2
, 1).

(ii) For S : y2 + z2 = a2, a parametrization is

Φ(u, v) = (u, a sin v, a cos v), u ∈ R, 0 ≤ v ≤ 2π.

The normal vector is

Φu × Φv = (0, a sin v, a cos v).

(iii ) If e =
(1, 1, 1)√

3
, then e is a unit vector along the axis of the cylinder.

Consider the planar cross-section of the cylinder through the origin O. This

is a circle C of radius 1. Fix a point P on C. Then
−−→
OP is a unit vector, say

u. Let v = e× u. Then a point on the cylinder is parameterizable as

Φ(θ, t) = cos θu+ sin θv + te, 0 ≤ θ ≤ 2π, t ∈ R.

The normal vector is

Φθ × Φt = cos θu+ sin θv.

(2) (a) The area SA of the surface S with projection R on the xy-plane is given by

SA =

∫∫
R

sec γdxdy

where γ is the acute angle between n and (0, 0, 1) at a generic point on the surface.
Thus, if this angle is the same at every point on S, we have

SA = sec γ

∫∫
R

dxdy = sec γSAxy,

where SAxy is the area of R. Hence,

SAxy = SA cos γ.

(b) By (a) above, one has (for appropriate α, β and γ)

S1 = S cosα,

S2 = S cosβ,

S3 = S cos γ.

Thus S2
1 + S2

2 + S2
3 = S2(cos2 α+ cos2 β + cos2 γ) = S2 in view of the fact that

cosα, cosβ, cos γ are the direction cosines of n.
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(3) There are two pieces of the surface - one below and one above the xy-plane,
both having the same area. Let S be the upper piece. Then one has

Area(S) =

∫∫
T

√
1 + z2x + z2ydxdy,

where T is the disc

{x2 + y2 ≤ ay} =
{
x2 + (y − a

2
)2 ≤ (

a

2
)2
}
,

and z =
√
a2 − x2 − y2. Since

zx = −x
z
andzy = −y

z
,

it follows that

Area(S) =

∫∫
T

adxdy

z
=

∫∫
T

adxdy√
a2 − x2 − y2

.

Now T is described in polar coordinates by

x = r cos θ, y = r sin θ; 0 ≤ θ ≤ π, 0 ≤ r ≤ a sin θ.

Therefore,

Area(S) =

∫ π

0

(∫ a sin θ

0

ardr√
a2 − r2

)
dθ

= a

∫ π

0

[−
√
a2 − r2]|a sin θ

0 dθ

= a

∫ π

0

(−a| cos θ|+ a)dθ = (π − 2)a2.

Thus the required area is 2(π − 2)a2.
(4) (i) A point (x, y, z) on the surface satisfies z = x2 + y2. (The surface is thus a

portion of a paraboloid of revolution). The given portion lies between the planes
z = 0 and z = 16. u = c gives a horizontal circular section, while v = c gives a
profile curve which is the portion of a half parabola.

(ii) Φu × Φv = (−2u2 cos v,−2u2 sin v, u).

(iii) S =
∫ 2π

v=0

∫ 4

u=0
|Φu × Φv|dudv = 2π

∫ 4

0
u
√
4u2 + 1du = π

6 (65
√
65 − 1).

Therefore, n = 6.
(5) The area of the paraboloid x2 + z2 = 2ay between y = 0 and y = a is given by

S =

∫∫
T

√
1 +

(
∂y

∂x

)2

+

(
∂y

∂z

)2

dxdz

where T is the region {z2 + x2 ≤ 2a2} in the zx-plane. Hence,

S =

∫∫
T

√
1 +

x2

a2
+
z2

a2
dxdz

=

∫ 2π

0

∫ a
√
2

0

√
1 +

r2

a2
rdrdθ

=
2π

3
(3
√
3− 1)a2.
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(6) We choose the coordinate system in such a way that the center of the sphere is
located at the origin and the central axis of the cylinder coincides with the z-axis.
We consider the case when one plane is cutting the sphere at height h above the
xy-plane and the other plane is cutting the sphere at depth k below the xy-plane.
(Other cases can be treated similarly). We compute the surface areas S1 and S2

of the ‘upper’ and ‘lower’ caps of the sphere and subtract their sum from 4πa2.
We are expected to get the result to be 2πa(h+ k).
Note that the plane cutting the sphere at height h above the xy-plane intersects
the sphere in the circle x2 + y2 = a2 − h2. A parametrization for the upper cap

of the sphere is thus given by Φ(x, y) = (x, y,
√
a2 − x2 − y2) with (x, y) ∈ D =

{(x, y) : x2 + y2 ≤ a2 − h2}. We have then

S1 =

∫∫
D

√
1 + (

−x√
a2 − x2 − y2

)2 + (
−y√

a2 − x2 − y2
)2 dxdy

∫∫
D

a√
a2 − x2 − y2

dxdy =

∫ 2π

0

∫ √
a2−h2

0

a√
a2 − r2

rdrdθ

= 2πa(−h+ a).
Similarly, S2 = 2πa(−k+a); and then 4πa2− (S1+S2) = 2πa(h+k), as desired.

(7) (i) Note that Φu × Φv = −2(1, 1, 1) has negative z-component. Thus,

F · n|dS| = −F · (Φu × Φv)dudv = 2(x+ y + z)dudv = 2dudv,

one has ∫∫
S

F · n|dS| = 2Area(S∗),

where S∗ is the parametrizing region in the uv-plane. As the components of Φ
are affine-linear in u and v, S∗ is also a triangle whose vertices are pre-images of

the vertices of S. Now the vertices of S∗ are (0, 0), (
1

2
,
1

2
), and (

1

2
,−1

2
) so that

the area of S∗ is
1

4
, and hence

∫∫
S
F · n|dS| = 1

2
.

(ii) The surface S satisfies z = 1− x− y ≥ 0, x ≥ 0, y ≥ 0. Thus,

F · n|dS| = (x, y, z) · (−zx,−zy, 1)dxdy = (x+ y + z)dxdy = dxdy

and S∗
1 = {x+ y ≤ 1, x ≥ 0, y ≥ 0} as the parametrizing region, one has∫∫

S

F · n |dS| =
∫∫

S∗
1

dxdy = Area(S∗
1 ) =

1

2
.

(8) A parametrization of S is

Φ(u, v) = (a sin v cosu, a sin v sinu, a cos v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ π

and

Φu × Φv = a sin v Φ(u,v)

is the outward normal. The integrand is

F · (Φu × Φv) = a4 sin3 v cos v(1 + cos2 u).

Thus the required integral is∫ 2π

u=0

∫ π

v=0

a4 sin3 v cos v(1 + cos2 u)dudv
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= a4
(∫ π

0

sin3 v cos v dv

)(∫ 2π

0

(1 + cos2 u)du

)
= 0.

(9) The hemisphere satisfies

z =
√
1− x2 − y2, x2 + y2 ≤ 1.

Using

(−zx,−zy, 1) = (
x

z
,
y

z
, 1)

and

F · n|dS| = (x,−2x− y, z) · (x
z
,
y

z
, 1)dxdy =

(1− 2xy − 2y2)

z
dxdy

and T = {(x, y) : x2 + y2 ≤ 1} as the parametrizing region, one has∫∫
S

F · n|dS| =
∫∫

T

(1− 2xy − 2y2)√
1− x2 − y2

dxdy

=

∫ 2π

0

∫ 1

0

(1− r2 sin 2θ − 2r2 sin2 θ)rdrdθ√
1− r2

=
2π

3
.

(10) The flux through the base T is∫∫
T

F · (0, 0,−1)dxdy = 0,

as F · (0, 0,−1) = −z = 0 along T . The total flux is therefore the same as in the

previous problem, namely,
2π

3
.
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3.13. Tutorial sheet 13

(1) We have

W = {(x, y, z)|y2 + z2 ≤ x2, 0 ≤ x ≤ 4} and

∂W = S1

⋃
S2, where

S1 : Φ(x, θ) = (x, x cos θ, x sin θ), 0 ≤ θ ≤ 2π,

S2 : x = 4, y2 + z2 ≤ 16.

Along S1, Φx × Φθ = (x,−x cos θ,−x sin θ) = (x,−y,−z) so that the outward
normal is −Φx × Φθ = (−x, y, z). Thus

∫∫
S1

F · n|dS| =

∫ 4

0

∫ 2π

0

(−x2y2 + y2z2 + z2x2)dxdθ

=

∫ 4

0

∫ 2π

0

x4(− cos2 θ + cos2 θ sin2 θ + sin2 θ)dxdθ

=

(∫ 4

0

x4dx

)(∫ 2π

0

(− cos2 θ + cos2 θ sin2 θ + sin2 θ)

)
=

45

5

π

4
= 44

π

5
.

Also, along S2, the outward normal (to x = 4 ≡ f(y, z)) is (1, 0, 0). Thus

∫∫
S2

F · n|dS| =

∫∫
S2

4y2|dS| =
∫∫

y2+z2≤16

4y2dydz

= 4

∫ 2π

0

∫ 4

0

r3 cos2 θdrdθ = 44π.

Now,

∫∫∫
W

div F d(x, y, z) =

∫∫∫
y2+z2≤x2

0≤x≤4

(x2 + y2 + z2)d(x, y, z)

=

∫ 4

0

(∫ x

0

(∫ 2π

0

(x2 + r2)rdrdθ

)
dx

)
= 2π

∫ 4

0

(∫ x

0

(x2r + r3)dr

)
dx

= 2π

∫ 4

0

3x4

4
dx = 44

6π

5
.

Since 44
6π

5
= 44

π

5
+ 44π, the divergence theorem is verified.
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(2) We have divF = (y + z + x) and

I =

∫∫∫
W

(x+ y + z)d(x, y, z) =

=

∫∫∫
W

xd(x, y, z) +

∫∫∫
W

yd(x, y, z) +

∫∫∫
W

zd(x, y, z)

=

∫ c

0

∫ b(1− z
c )

0

∫ a(1− y
b −

z
c )

0

xdxdydz + (· · · ) + (· · · )

=
a2bc

24
+
ab2c

24
+
abc2

24

=
abc

24
(a+ b+ c).

Now,∫∫
S

F · n|dS| =
∫∫

S1

F · n|dS|+
∫∫

S2

F · n|dS|+
∫∫

S3

F · n|dS|+
∫∫

S4

F · n|dS|

where
S1 : z = 0;

x

a
+
y

b
≤ 1, x, y ≥ 0 and

S2 : y = 0;
x

a
+
z

c
≤ 1, x, z ≥ 0 and

S3 : x = 0;
z

c
+
y

b
≤ 1, y, z ≥ 0 and

S4 :
x

a
+
y

b
+
z

c
= 1, x, y, z ≥ 0.

Also,
along S1, n = (0, 0,−1) ⇒ F · n = −xz = 0 (as z = 0 on S1);
along S2, n = (0,−1, 0) ⇒ F · n = −yz = 0 (as y = 0 on S2);
along S3, n = (−1, 0, 0) ⇒ F · n = −xy = 0 (as x = 0 on S3).

Along S4, the outward normal (to z = c(1− x
a − y

b ) ≡ f(x, y)) is ( ca ,
c
b , 1) so

that ∫∫
S4

F · n|dS| =

∫∫
x
a+ y

b ≤1;x,y≥0

(cxy
a

+
cyz

b
+ zx

)
d(x, y)

=

∫ a

0

∫ b(1− x
a )

0

cxy

a
dxdy + (· · · ) + (· · · )

=
ab2c

24
+
abc2

24
+
a2bc

24

=
abc

24
(a+ b+ c).

(3) Consider F = uv(1, 0, 0). By the divergence theorem, one has∫∫
∂W

uvnx|dS| =

∫∫∫
W

∂

∂x
(uv)d(x, y, z)

=

∫∫∫
W

u
∂v

∂x
d(x, y, z) +

∫∫∫
W

v
∂u

∂x
d(x, y, z)

Hence ∫∫∫
W

u
∂v

∂x
d(x, y, z) =

∫∫
∂W

(uvnx)|dS| −
∫∫∫

W

v
∂u

∂x
d(x, y, z).
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(4) Since ∇· (ϕ∇ϕ) = ∥∇ϕ∥2+ϕ∇2ϕ, we have ∇2ϕ = 10ϕ−4ϕ, i.e., ∇2ϕ = 6. Thus∫∫
S

∂ϕ

∂n
|dS| =

∫∫
S

gradϕ · n|dS|

=

∫∫∫
W

div(gradϕ)d(x, y, z) = 6

∫∫∫
W

d(x, y, z)

= 6 (Volume of the sphere) = 6× 4π

3
= 8π.

(5) Let F = (x, 0, 0). Using the divergence theorem, we get

V =

∫∫∫
W

d(x, y, z) =

∫∫
S

xnx|dS|

Similarly, letting F = (0, y, 0), we get

V =

∫∫
S

yny|dS|

and letting F = (0, 0, z), we get

V =

∫∫
S

znz|dS|.

(6) Let W denote the solid cube. Consider

I =

∫∫
S

x2dy ∧ dz + y2dz ∧ dx+ z2dx ∧ dy

=

∫∫
S

(F · n)|dS|,

where F = (x2, y2, z2). We have then, using the divergence theorem,

I =

∫∫∫
W

(div F )d(x, y, z) =

∫ 1

0

∫ 1

0

∫ 1

0

2(x+ y + z)dxdydz = 3.

(7) The required integral is I =

∫∫
∂W

(F · n)|dS|, where F = (yz, zx, xy).

Since div(F ) = 0, one has

I =

∫∫∫
W

(divF )d(x, y, z) = 0.

(8) By the divergence theorem, one has∫∫
S
⋃

S1

(∇× F ) · n|dS| =
∫∫∫

W

∇ · (∇× F )d(x, y, z) = 0,

where S1 is the disc x2 + y2 + z2 = 1, z = 1/2. Thus∫∫
S

(∇× F ) · n|dS| =
∫∫

S1

(∇× F ) · n|dS|,

where n in the rhs integral is the vector (0, 0, 1); so rhs =
∫∫

S1
(∇×F )·(0, 0, 1)|dS|.

But the coefficient of (0, 0, 1) in curl(F ) is 0. Hence, curl(F ) · (0, 0, 1) = 0. Thus∫∫
S1

(∇× F ) · (0, 0, 1)|dS| = 0.
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This gives ∫∫
S

(∇× F ) · n|dS| = 0.

(9) Note that

p = n · (x, y, z) =
( x
a2 ,

y
b2 ,

z
c2 )√

x2

a4 + y2

b4 + z2

c4

· (x, y, z) = 1√
x2

a4 + y2

b4 + z2

c4

.

(a) Let F = (x, y, z). Then∫∫
S

F · n |dS|

=

∫∫
S

p |dS| =
∫∫∫

W

divF d(x, y, z) = 3

∫∫∫
W

d(x, y, z) = 3

(
4π

3
abc

)
= 4πabc.

(b) Let F = 1
p2 (x, y, z). Then∫∫

S

1

p
|dS|

=

∫∫
S

F · n |dS| =
∫∫∫

W

divF d(x, y, z)

= 5

∫∫∫
W

(
x2

a4
+
y2

b4
+
z2

c4

)
d(x, y, z).

Let x = ar sinφ cos θ, y = br sinφ sin θ, z = cr cosφ. Then∫∫
S

1

p
|dS|

= 5abc

∫ π

0

∫ 2π

0

∫ 1

0

r4
(
sin3 φ cos2 θ

a2
+

sin3 φ sin2 θ

b2
+

sinφ cos2 φ

c2

)
drdθdφ

= abc

∫ π

0

∫ 2π

0

(
sin3 φ cos2 θ

a2
+

sin3 φ sin2 θ

b2
+

sinφ cos2 φ

c2

)
dθdφ

= πabc

∫ π

0

(
sin3 φ

a2
+

sin3 φ

b2
+

2 sinφ cos2 φ

c2

)
dφ

=
4

3
πabc

(
1

a2
+

1

b2
+

1

c2

)
=

4π

3abc
(b2c2 + c2a2 + a2b2).

(We used the fact that the Jacobian of (x, y, z) with respect to (r, φ, θ) is abcr2 sinφ).

Aliter: If ψ = x2

a2 + y2

b2 + z2

c2 , then∫∫
S

1

p
|dS| =

∫∫
S

(
n

(x, y, z) · n

)
· n |dS| =

∫∫
S

∇ψ
(x, y, z) · ∇ψ

· n |dS|

=

∫∫
S

∇ψ
2

· n |dS|

=

∫∫∫
W

∇2ψ

2
d(x, y, z) =

(
1

a2
+

1

b2
+

1

c2

)∫∫∫
W

d(x, y, z)

=
4

3
πabc

(
1

a2
+

1

b2
+

1

c2

)
.
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(10) For a simple closed (and sufficiently smooth) plane curve C : γ(u) = (x(u), y(u)),
parametrized by the arc length u, the outward unit normal at x(u) is n =
(y′(u),−x′(u)). Let D be the region enclosed by the curve C.

Let F = (Q,−P ) be a continuously differentiable vector field in a region
including C

⋃
D. Then

div(F ) =
∂Q

∂x
− ∂P

∂y
and F · n = Qy′ + Px′.

Thus one has∮
C

(F · n) |ds| =
∮
C

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
d(x, y)

=

∫∫
D

div(F ) d(x, y).
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3.14. Tutorial sheet 14

(1) The cone z =
√
x2 + y2 is parametrized as Φ(x, y) = (x, y,

√
x2 + y2). One has

then n|dS| = (− x√
x2+y2

,− y√
x2+y2

, 1)dxdy. Further, curlF = (0, 0, 2).

(a) If S is the surface lying on the cone z =
√
x2 + y2 and bounded by the

intersection C of the hemisphere x2 + (y − a)2 + z2 = a2, z ≥ 0 with the cone,
then the projection R of S onto the xy-plane is given by x2 + (y− a/2)2 ≤ a2/4.

Thus one has∫∫
S

curlF · n|dS| =
∫∫

2 dxdy = 2

∫∫
R

dxdy = πa2/2.

With the choice of the normal n to S as indicated above, the induced orientation
on C is counterclockwise (when viewed from high above). The projection of C
onto the xy-plane can then be described by (a2 cos θ,

a
2 + a

2 sin θ) (0 ≤ θ ≤ 2π).
Thus, ∮

C

F · ds =

∮
C

(x− y)dx+ (x+ z)dy + (y + z)dz

=

∮
C

(xdy − ydx) + d(yz) +
1

2
d(x2 + z2)

=

∮
C

(xdy − ydx) = 2π
a2

4
= πa2/2.

Stokes’ Theorem now stands verified.
(b) If S is the surface lying on the cone z =

√
x2 + y2 and bounded by the

intersection C of the cylinder x2 + (y − a)2 = a2, z ≥ 0 with the cone, then the
projection R of S onto the xy-plane is given by x2 + (y − a)2 ≤ a2.

Thus one has∫∫
S

curlF · n|dS| =
∫∫

2 dxdy = 2

∫∫
R

dxdy = 2πa2.

With the choice of the normal n to S as indicated above, the induced orientation
on C is counterclockwise (when viewed from high above). The projection of C
onto the xy-plane can then be described by (a cos θ, a+ sin θ) (0 ≤ θ ≤ 2π).

Thus, ∮
C

F · ds =

∮
C

(x− y)dx+ (x+ z)dy + (y + z)dz

=

∮
C

(xdy − ydx) + d(yz) +
1

2
d(x2 + y2)

=

∮
C

(xdy − ydx) = 2πa2.

Stokes’ Theorem now stands verified.
(2) For F = (yz, xz, xy),

curl (F ) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

yz zx xy

∣∣∣∣∣∣ = (x− x, y − y, z − z) = 0.

Thus the required line integral is∫∫
S

curl(F ) · n|dS| = 0.
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(3) By Stokes’ theorem, we have∫∫
S

curl (F ) · n|dS| =
∮
C1

F · ds+
∮
C2

F · ds

where C1 is the circle x2 + y2 = 4, z = −3 with the counterclockwise orientation
when viewed from high above, and C2 is the circle x2 + y2 = 4, z = 0 with the
opposite orientation. Now,

curl F = (−3zy2 − 3xz2)(1, 0, 0) + (z3 − 1)(0, 0, 1) and

F · ds = ydx+ xz3dy − zy3dz.

Along C2, z = 0 ; F · ds = ydx and

∮
C2

ydx = −
∫ 2π

0

(−4 sin2 θ| dθ = 4π.

Along C1, z = −3 ; dz = 0; F · ds = ydx− 27xdy = d(xy)− 28xdy and∮
C1

d(xy)−
∮
C1

28xdy = −28

∫ 2π

0

4 cos2 θdθ = −112π.

Hence ∫∫
S

curl (F ) · n|dS| = −108π.

(4) Note that, to apply Stokes’ Theorem, one would have to work inside U = R3 \
z−axis, as F would not make sense at a point on the z-axis. But there is no
surface in U = R3 \ z−axis whose boundary is C. Hence Stokes’ theorem cannot
be applied.

Using the parametrization (cos θ,− sin θ), (0 ≤ θ ≤ 2π) one has∮
C

F · ds =
∮
C

−ydx+ xdy

x2 + y2
= −

∫ 2π

0

dθ = −2π.

(5) Note that

F = (y2 − z2, z2 − x2, x2 − y2),

curl F = (−2y − 2z,−2z − 2x,−2x− 2y),

and n =
(1, 1, 1)√

3
.

Thus, along the surface S which is part of the plane x+ y+ z = 3a
2 and which is

bounded by C, one has

curlF · n = − 2√
3
(y + z + z + x+ x+ y)

= − 4√
3
(x+ y + z) = − 4√

3

3a

2
.

Hence ∫∫
S

curl F · n|dS| = −2
√
3a

∫∫
S

|dS| = (−2
√
3a)(Area of S).

The surface S is a regular hexagon with vertices (a/2, 0, a), (a, 0, a/2), (a, a/2, 0), (a/2, a, 0),
(0, a, a/2), (0, a/2, a). Hence its area is

3

√
3

2
(length of side)

2
=

3
√
3

2

a2

2
.
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Stokes’ theorem then yields that∮
C

(y2 − z2)dx+ (z2 − x2)dy + (x2 − y2)dz = −9a3

2
.

(6) We have

F = (y, z, x),

curl F = −(1, 1, 1).

Parametrize the surface lying on the hyperbolic paraboloid z = xy/b and bounded
by the curve C as (x, y, xyb ) (x2+ y2 ≤ a2) so that n|dS| = (−y

b ,−
x
b , 1)dxdy and∫∫

S

curl F · n|dS| =
1

b

∫∫
x2+y2≤a2

(y + x− b)dxdy

=
1

b

∫ 2π

0

∫ a

0

(r sin θ + r cos θ − b)rdrdθ = −πa2

(7) Letting r = (x, y, z) and using S to denote the planar area enclosed by C, one
has

I :=
1

2

∮
C

a(ydz − zdy) + b(zdx− xdz) + c(xdy − ydx)

=
1

2

∮
C

n× r · ds

=
1

2

∫∫
S

∇× (n× r) · n|dS|

=
1

2

∫∫
S

2n · n|dS| =
∫∫

S

|dS| = Area(S).

If C is parametrized as u cos t+ v sin t (0 ≤ t ≤ 2π), then

Area(S) =
1

2

∮
C

n× r · ds

=
1

2

∫ 2π

0

n× (u cos t+ v sin t) · (−u sin t+ v cos t)dt

=
1

2

∫ 2π

0

n · (u cos t+ v sin t)× (−u sin t+ v cos t)dt

=
1

2

∫ 2π

0

n · u× v dt

so that, letting n = u×v
||u×v|| , we get

Area(S) =
1

2

∫ 2π

0

||u× v|| dt = π||u× v||.
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