IIT Bombay Makerspace (MS101) 2024 (Autumn) EE-Lecture-10

Introduction to Transistors Using Bipolar Junction Transistor (BJT) and Metal Oxide Field Effect Transistor (MOSFET) as Switch

Transistors: Introduction

A transistor is a semiconductor device with three terminals, used in analog & digital applications. It can be modelled as a 'two-port network', with 'input-dependent output variable'.

Commonly used transistors

(a) Bipolar Junction Transistor (BJT)

(b) Metal Oxide Field Effect Transistor (MOSFET)

Bipolar Junction Transistor (BJT)

Types	NPN, PNP
Terminals	emitter (E), base (B), collector (C)
Controlling quantity	Current-controlled current source: Base Current (I_B) controls Collector Current (I_C).
BJTs have lower input resistance (≈ 10 kΩ to 1 MΩ in	

common-emitter mode) and hence consume more power from the input signal source than MOSFETs.

Bipolar Junction Transistor Operation

NPN transistor biased in active mode (BE junction: forward biased , BC junction: reversed biased)

Source: Fig 6.3:-Sedra A S, Smith K C, "Microelectronic Circuits", Oxford University Press, 7Ed. ISBN: 9780199339136

BJT Operation

Cricket analogy

- The emitter is the bowler who shoots balls (electrons) toward the base.
- The base is the batsman, a tail-ender who swings away but connects with only 1-2% of the incoming balls (electrons).
- Most of the balls (electrons) are collected by the wicketkeeper.

Current relations

KCL: $I_E = I_B + I_C$ Transistor action $\Delta I_C = \alpha \Delta I_E \quad (\alpha \approx 0.90 - 0.99)$ $\Delta I_C = \beta \Delta I_B$ $I_C = \beta I_B$ is used as an approximate relation. Relation between $\alpha \& \beta$ $\Delta I_E = \Delta I_B + \Delta I_C \implies \Delta I_B = \Delta I_E - \Delta I_C = (1/\alpha - 1) \Delta I_C$ $\Rightarrow \Delta I_C = \alpha/(1-\alpha) \Delta I_B = \beta \Delta I_B$ $\Rightarrow \beta = \alpha/(1-\alpha)$ Example: $\alpha = 0.98 \Rightarrow \beta = 0.98/0.02 = 49$

MOSFETs: Introduction

N-Channel Enhanement-mode MOSFET Operation

Device ON / OFF operation

ON: Low resistance for drain-source current flow. OFF: Very high resistance for drain-source current flow.

Enhancement mode: No channel is available at V_{GS} = 0. The channel is formed for V_{GS} above the threshold voltage V_T (+ve for N-channel).

Source: https://www.electricaltechnology.org/2021/06/mosfet.html

Commercially Available Transistor Packages

Switching Characteristics of BJT (on V_{cE} -I_c Plane)

BJT is switched ON / OFF by changing the base current I_B .

OFF: $V_{BE} < V_{\gamma}$. $(V_{\gamma} \approx 0.5 \text{ V})$ $I_B \approx 0$. $V_{CE} \approx V_{CC}$. $I_C \approx 0$. Heavily ON: $I_B > I_C / \beta$. $V_{BE} = V_{BES}$. $V_{CE} = V_{CES}$. $I_C = (V_{CC} - V_{CES}) / R_L$ $(V_{BES} \approx 0.8 \text{ V}. \quad V_{CES} \approx 0.2 \text{ V})$

Typical 'V_{CE} - I_C' characteristics for BJT (base currents: $I_{B1} < I_{B2} < I_{B3} < I_{B4} < I_{B5} < I_{B6} < I_{B7}$). Operating points for switching action: A (on) & B (off).

Switching Characteristics of N-Channel Enhancement-Mode MOSFET (on V_{DS} - I_D Plane)

- Enhancement MOSFET starts conducting when the drain-source channel is formed.
- N-Channel MOSFET: N-channel is formed.
- V_{τ} is the minimum value of V_{GS} for the channel formation. $V_{GS} > V_{\tau}$ for MOSFET to be ON. Channel resistance decreases as V_{GS} increases further.

OFF: $V_{GS} < V_T$. $I_G \approx 0$. $I_D \approx 0$. $V_{DS} \approx V_{DD}$

ON: $V_{GS} > V_T$ + a few V. $I_G \approx 0$. $V_{DS} \approx 0$. $I_D \approx V_{DD} / R_L$.

Typical ' V_{DS} - I_D ' characteristics for N channel Enhancement mode MOSFET A & B: operating points for switching action

BJT & MOSFET Switching with Vin as Control Input

Switch circuit using NPN BJT & control input V_{in}.

 R_B is for limiting I_B .

OFF: $I_B \approx 0$. ON: $I_B > I_C / \beta$. Switch circuit using N-Channel MOSFET & control input V_{in}.

 R_{in} and R_{GS} are for voltage attenuation, if V_{in} -peak is large.

OFF: $V_{GS} < V_T$. ON: $V_{GS} > V_T$ + a few V.

BJT Switching Operation

- (a) $V_{IN} = 0$
- $V_{BE} = 0 < 0.5 V$.
- BJT operates as open switch.

$$I_B \approx 0.$$
 $V_{CE} \approx V_{CC}.$ $I_C \approx 0.$

• BE junction is not forward biased. BC junction is reverse biased.

(b) $V_{IN} = V_{CC}$

- BE junction is forward biased, with I_B limited by R_B , with V_{BE} reaching its saturation value V_{BES} (≈ 0.8 V). Collector voltage drops until BC junction gets forward biased with V_{BE} reaching its saturation value V_{CES} (≈ 0.2 V).
- BJT operates as closed switch.

•
$$V_{BE} = 0.8 \text{ V}. V_{out} = V_{CES} = 0.2 \text{ V}.$$

 $I_B = (V_{CC} - 0.8) / R_B.$
 $I_C = (V_{CC} - V_{CES}) / R_L.$

PNP Switch for Load Connected to -ve Supply End R1Vcc Q1Vin I_B R2 $\downarrow I_L$

 $V_{cc} = 5 \text{ V.}$ V_{in} : 0 (LED off), 5 V (LED on). $\beta > 50$. I_L for full brightness = 10 mA. LED drop = 2 V.

$$\begin{split} &I_L = [V_{CC} - V_{LED} - V_{CES}]/R_2 = [5 - 2 - 0.2]/R_2 > 10 \text{ mA} \\ \Rightarrow R_2 < 2.8/10 \text{ k}\Omega = 280 \Omega . \\ &\text{Let } R_2 = 270 \Omega . \Rightarrow I_L = 10.3 \text{ mA}. \\ &I_B = [(V_{in})_{\text{high}} - V_{BES} - 0]/R_1 > I_L/\beta_{\text{min}} \\ \Rightarrow (5 - 0.8 - 0)/R_1 > 10.3/50 \Rightarrow R_1 < 20.38 \text{ k}\Omega. \\ &\text{Let } R_1 = 18 \text{ k} \Omega. \end{split}$$

 $V_{cc} = 5 \text{ V.}$ $V_{in} : 0 \text{ (LED on), } 5 \text{ V (LED off). } \beta > 50.$ $I_L \text{ for full brightness} = 10 \text{ mA. LED drop} = 2 \text{ V.}$

$$\begin{split} I_L &= [V_{CC} - V_{ECS} - V_{LED}]/R_2 = [5 - 0.2 - 2]/R_2 > 10 \text{ mA} \\ \Rightarrow R_2 < 2.8/10 \text{ k}\Omega = 280 \Omega . \\ \text{Let } R_2 &= 270 \Omega, \Rightarrow I_L = 10.3 \text{ mA.} \\ I_B &= [V_{CC} - V_{EBS} - (V_{in})_{\text{low}}]/R_1 > I_L / \beta_{\min} \\ \Rightarrow (5 - 0.8 - 0)/R_1 > 10.3/50 \Rightarrow R_1 < 20.38 \text{ k}\Omega . \\ \text{Let } R_1 &= 18 \text{ k} \Omega. \end{split}$$

Relay Operation Using a BJT Switch

A Similar circuit can be made using MOSFETs.

Relay Switching Using Micro-Controller (Arduino)

Arduino Relay Control Circuit Diagram

Source: https://www.electronicshub.org/arduino-relaycontrol/

Example

Control of a relay with 'Arduino' digital output pin (PD7) and NPN transistor (2N2222).

Relay coil current = 60 mA. Transistor β_{min} = 30.

Set the pin PD7 to 'Hi'. It will put the transistor in ON state, allowing current to flow through the relay coil making the relay ON. $I_B > Relay current / \beta_{min} = 2 mA.$

Diode connected in parallel with the relay avoids sudden change of current in the relay coil.

Some Logic Gates using MOSFETs

- CMOS Inverter
- CMOS NAND Gate Universal gate
- CMOS NOR Gate Universal Gate
- CMOS Tri-State Inverter

<u>Complementary Metal Oxide Semiconductor Circuits</u> 1. Combination of NMOS and PMOS Transistors 2. Usually same gate signal goes to NMOS and its complementary PMOS transistors for logic circuits 3. Negligible steady-state power consumption in CMOS digital circuits

CMOS 2-INPUT NAND Gate

CMOS 2-INPUT NOR Gate

CMOS Tri-State Inverter

Questions and Discussions