EE Lecture 3: Diode Circuits

MS101 Makerspace 2024-25/I (Autumn)

1. Rectifier Circuits

• Half-Wave Rectifier

- Full-wave Rectifier
 - Bridge rectifier circuit

Step-Down Transformer (230 V - 12 V RMS)

Fig. 1 Step-down Transformer

MS101-EE-Lect 3

A) Half-wave Rectifier

Fig. 2

Output voltage (assuming an ideal diode, i.e. zero voltage drop)

Output voltage (assuming a practical diode with voltage drop)

MS101-EE-Lect 3

B) Full-wave (Bridge) Rectifier

• Bridge Rectifier: in every half cycle, two diodes will be in the current path

- 1st half cycle (output A is +ve w.r.t. Output B): current path – from output A \rightarrow D1 \rightarrow R_L \rightarrow D4 \rightarrow B; D2 and D3 will not conduct.
- 2nd half cycle (Output B is +ve w.r.t. output A): current path – from $B \rightarrow D2 \rightarrow R_L \rightarrow D3 \rightarrow A$; D1 and D4 will not conduct.

V_D: voltage drop across two diodes (D1&D4, D3&D2)

MS101-EE-Lect 3

- Full-wave Rectifier: Input and Output waveforms (considering diode drops)
- Peak output voltage will have the *two diode drops* lower than the input voltage. Typ. diode drop = 2x 0.5 V = 1 V

2. Unregulated Power Supply (Capacitive filter)

- Case B): Full-wave bridge rectifier with a large value capacitor (>> 10 $\mu F)$

Unregulated Power Supply (Using Half-wave Rectifier and a Capacitive filter)

Note:

 Large value capacitors are usually "electrolytic" type capacitors, with the terminals having + and - polarities and should be connected across a dc voltage with matching terminal polarities.

Fig. 7

When there is no load (or open circuit), V_{out} has no ripple (i.e. V_{out} is a constant dc voltage)

• The half-wave rectifier with C is very seldom used due to its higher ripple voltage

Operation with C across $\rm R_L$

- C charges during Δ_t , and discharges during $(T \Delta_t)$.
- Ripple voltage, V_r increases with i_L(load current).
- Ripple voltage can be decreased by increasing C (not a good solution).
- For a given i_L , as $C \uparrow$, $\Delta_t \downarrow$ (which will make $i_D \uparrow \uparrow$)

Fig. 9

Operation with C across R_L

- C charges during Δ_t , and discharges during $(T \Delta_t)$.
- Ripple voltage, V_r increases with i_L(load current).
- Ripple voltage can be decreased by increasing C (not a good solution).
- For a given i_L , as $C \uparrow$, $\Delta_t \downarrow$ (which will make $i_D \uparrow \uparrow$)

Unregulated Power Supply

(Using Full-wave Bridge Rectifier and a Capacitive filter)

Fig. 10

- Much better than the half-wave (HW) rectifier
 - For the same C and R_L, peak-to-peak ripple voltage gets reduced to half that of HW

- Full-wave rectifier output waveform (blue)
- Less Ripple voltage, compared to the Halfwave rectifier circuit
 - Discharge interval for C almost half that of HW case)

NGSPICE Simulation Results (Bridge Rectifier)

- To show the effect of changing C
 - $\, on \, V_{\text{out}}$
 - on the diode currents
- Four values of C considered ($R_L = 500 \Omega$, $V_{in(peak)} = 17 V$)
 - $-C = 10 \ \mu F$
 - $-C = 50 \ \mu F$
 - $-C = 100 \ \mu F$
 - $-C = 1000 \ \mu F$

200.0

150.0

- the effect of C on
 - Output ripple voltage
 - Diode currents

- V_{in}(peak) = 17 V
- C = 1,000 μF ; R_L = 500 ohms
- $I_L = V_{out(avg)}/R_L \approx 30 \text{ mA}$
- Peak-to-peak ripple $\approx 0.3 \text{ V}$

MS101-EE-Lect 3

Problems of Unregulated Power Supply

- Output voltage fluctuates
 - When ac input voltage fluctuates
 - When load current fluctuates

- Ripple voltage increases with load current
 - Ripple voltage for a given load current (*i*_L) can be reduced only by increasing *C*
 - Increasing C beyond a certain value can cause diode damages (as the peak diode current will always be many times the average load current)

3. Regulated Power Supply

- Problems of the unregulated power supply
 - Output voltage fluctuates with the input voltage (for a given load current) - Line regulation
 - Output voltage fluctuates for load current (for a given input voltage) Load regulation
- Regulated Power Supply
 - Output voltage stays constant (reasonably well):
 - For varying input voltages
 - For varying load currents

Two solutions

- Solution 1
 - Zener diode regulator circuit (usable for small variations in input voltage & load current)
- Solution 2
 - Voltage Regulator IC
- We will consider only Solution 2

3B: 7812 Three-terminal Voltage Regulator

Major blocks of the 7812 Voltage Regulator IC:

- Series-pass transistor (Q16)
- Stable Zener reference voltage
- Error amplifier
- Short-circuit protection

Source: 7812 Data sheet, National Semiconductor Corp., 2000

Features of an IC Regulator

• V_{out} will be steady for a large range of V_{in} and I_L values

• Minimum V_{in} to the IC regulator: V_{out} + 2 or 3 V (typical)

- A small value of capacitor, typically 1 μF is put at the output for stability (i.e. to prevent oscillations)
 - The regulator IC uses a negative feedback error amplifier circuit, which could result in instability.

Other Popular Three-terminal Voltage Regulator ICs

- Positive Voltage Regulator ICs
 - 1. 7805 : V_{out} = 5 V
 - 2. 7806 : V_{out} = 6 V
 - 3. 7809 : V_{out} = 9 V

- Negative Voltage Regulator ICs
 - 1. 7905 : V_{out} = -5 V
 - 2. $7906 : V_{out} = -6 V$
 - 3. 7909 : V_{out} = -9V
 - 4. 7912 : V_{out} = -12 V