
MS-101

Digital Logic: Implementation

EE Department
IIT Bombay, Mumbai

Book References
“Digital Fundamentals” by Thomas L. Floyd, Pearson Education.

“Digital Design” by M. Morris Mano, Pearson Education.

August 18, 2024

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 1 / 40

Review

In the previous lecture, we had learnt about Boolean algebra, its

axioms and theorems and their use in expressing and manipulating

logic expressions.

We had also learnt how to minimize logic expressions to simplify their

implementation.

In this lecture, we discuss:

combinational and sequential logic,

how digital logic is implemented in hardware,

number systems using binary and hexadecimal representations,

digital to analog conversion (DAC) and analog to digital conversion

(ADC).

Book References

“Digital Fundamentals” by Thomas L. Floyd, Pearson Education.

“Digital Design” by M. Morris Mano, Pearson Education.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 2 / 40

Combinational and Sequential Logic

Combinational and Sequential Logic

The logic functions we have seen up to now produce an output as

a function of the combination of current values of input variables.

Logic of this kind is known as Combinational Logic.

However, some applications require the output to generate a

sequence of values as a function of a sequence of values at the

input. Logic functions of this kind constitute sequential logic.

Sequential logic requires

A way to mark points in time which separate the “previous” value
from the “current value” on any any input or output, and

means of storing information about previous values of data
(memory).

The signal, which marks points in time separating different

elements of the input and output sequences, is known as the

clock.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 3 / 40

Implementing Digital Logic Implementing Combinational Logic

Implementing Digital Logic

How can we implement Digital Logic in hardware?

One possibility is to use electronic devices as switches. Let us see

how switches may be used to implement logic functions.

First, consider two switches connected in parallel

across nodes A and B.

Obviously, node A is connected to node B if

either or both switches are ON.

This can be used to implement the logical OR.

When the switches are connected in series,

node A is connected to node B only if both

switches are ON.

This can be used for implementing AND logic.

A

B

A

B

X Y

X

Y

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 4 / 40

Implementing Digital Logic Implementing Combinational Logic

Logic Gates

In the early days, relays were used as controllable switches to

implement logic functions.

More recently, logic circuits have been implemented using diodes,

bipolar transistors and MOS transistors.

These days, digital circuits are implemented using a combination

of n and p channel MOS transistors. This is known as

complementary MOS or CMOS logic.

TTL (transistor-transistor-logic) was the dominant technology for a

long time and is still in use. It used bipolar transistors and

operates with a 5 V supply. Most TTL gates have type numbers of

the form 74xx.

CMOS B series uses complementary MOS transistors and can

operate with supply voltages of 3 to 15V. Typical type numbers are

CD 4xxx.

A TTL compatible logic series implemented with CMOS is also

available and carries type numbers like 74Cxx.
(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 5 / 40

Implementing Digital Logic Implementing Combinational Logic

CMOS Logic Gates

CMOS gates implement switch based logic that we had discussed

earlier. A ‘1’ at the input turns the nMOS ON and the pMOS OFF, while

a ‘0’ at the input turns the nMOS OFF and the pMOS ON.

A

B

A . B

VDD

A B

A + B

VDD

CMOS NAND CMOS NOR

pMOS

nMOS

nMOS nMOS

pMOS

pMOS

NAND output is pulled to ground

when both inputs are ‘1’.

It is pulled up to VDD when either

or both inputs are ‘0’.

NOR output is pulled to ground

when either or both inputs are ‘1’.

It is pulled up to VDD when both

inputs are ‘0’.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 6 / 40

Implementing Digital Logic Implementing Combinational Logic

Logic Gates and Symbols

Irrespective of the technology used for implementing the logic,

standard symbols are used to represent logic functions.

The term “Logic Gate” is used for each logic function implemented in

hardware. The figure below shows the symbols used for different types

of logic gates.

Inverter

Buffer

A A A

AAAA

A Out Out Out Out

OutOutOutOut

B B B

B B B

OR AND XOR

NOR NAND XNOR

Out = A Out = A+B Out = A.B Out = A + B

Out = A+B Out = A.B Out = A + BOut = A

If you leave an input to a TTL gate unconnected, it is taken as a ‘1’

Unused inputs to CMOS gates must never be left unconnected - this

may result in heavy current flow and may damage the IC.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 7 / 40

Implementing Digital Logic Implementing Combinational Logic

Some Commonly Used Logic Gates

Type numbers of TTL gates typically begin with 74 which is followed by

a sub type of TTL like low power Schottky (LS) or High speed (H) and

a number denoting the logic function.

CMOS B series has type numbers like CD 4xxx, while the TTL

compatible CMOS logic gates have type numbers like 74Cxx.

Logic No of gates TTL CMOS

Function on chip implementation B Series

Inverter 6 7404 4069

2 input AND 4 7408 4012

2 input NAND 4 7400 4011

4 input AND 2 7421 4082

4 input NAND 2 7420 4012

2 input OR 4 7432 4071

2 input NOR 4 7402 4001

2 input XOR 4 7486 4070

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 8 / 40

Implementing Digital Logic Some Common Combinational Circuits

Multiplexing and Demultiplexing

We often want to select one out of two bits A and B depending on

the value of C being ‘1’ or ‘0’. The function C · A + C · B evaluates

to A when C = ‘1’ and to B when C = ‘0’.

This can be used to select one out of two bits and put the selected

bit on the output line. Circuits of this kind are called multiplexers.

A

B

C

Out

C

A . C

B . C

In

C
Out 1

C

Multiplexer Demultiplexer

Out 0

(= In when C=1)

(= In when C=0)

= A when C=1
= B when C=0

Demultiplexers do the opposite. The input data comes on a

single line and depending on a line number code, it is put on one

out of multiple output lines.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 9 / 40

Implementing Digital Logic Some Common Combinational Circuits

Decoding

What can we do if we want to multiplex from or demultiplex to more

than two lines?

– We use multi-bit decoders which provide select lines to replace C in

the previous example.

b0b1

b0

b0

b1

b1

b0

b0

b1

b1

b1

Sel-0

Sel-1

Sel-2

Sel-3

The circuit on the left shows a 2 bit decoder

which provides 4 Select lines. The select

signals replace C and C when we have more

than 2 lines to multiplex or demultiplex.

Apart from their use in multiplexers and

demultiplexers, these are widely used for

address decoding and enabling selected

devices connected to processors etc.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 10 / 40

Implementing Digital Logic Storage Elements

Storage Elements: RS Latch

Digital circuits require storage elements in addition to combinational

logic functions. Consider the cross connected NOR gates in the circuit

shown below.
R

S

Q

Q

For R = ‘0’ and S = ‘0’, the circuit can remain in one

of these two states:

1 Q = ‘0’ and Q = ‘1′, (reset state)

2 Q = ‘1’ and Q = ‘0′. (set state)

It is easy to see that for R = 0,S → ‘1’ will force the

circuit into its ‘set’ state (Q = 1, Q =‘0’).

S → ‘1’ ⇒ Q = ‘0’, R = ‘0’, Q = ‘0’ ⇒ Q = ‘1’

Now even if S returns to ‘0’, the circuit will remain in its set state. Thus

this circuit “remembers” that S had been ‘1’ in the past.

Similarly, R = ‘1’ while S = ‘0’ will force the circuit in its ‘reset state’ and

it will remain in reset state even after R returns to ‘0’.
(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 11 / 40

Implementing Digital Logic Storage Elements

RS Latch: Set and Reset Action

R

S

Q

Q

R

S

Q

Q

Time

0 t1 t2 t3 t4

Initially R = S = ‘0’ and the latch

is in reset (Q = ‘0’, Q = ‘1’) state.

At t1, S goes to ‘1’ and it forces

Q to ‘0’ unconditionally.

Since R = ‘0’ and Q = ‘0’,

Q goes to ‘1’.

At t2, S returns to ‘0’, and the

latch remains in set (Q = ‘1’, Q =

‘0’) state.

At t3, R goes to ‘1’. It forces Q to ‘0’ unconditionally.

Since S = ‘0’ and Q = ‘0’, Q goes to ‘1’.

at t4, R returns to ‘0’. With R = 0, S = 0,

the latch remains in reset (Q = ‘0’, Q = ‘1’) state.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 12 / 40

Implementing Digital Logic Storage Elements

RS Latch: Set and Reset Action

R

S

Q

Q

Since the S input sets Q to ‘1’, it is called the ‘Set’

input.

R input returns Q to ‘0’ and is termed as the ‘Reset’

input.

The latch retains its set (Q = ‘1’, Q = ‘0’) state even

after S returns to ‘0’. Thus, it “remembers” that S had

gone to ‘1’ before it returned to ‘0’.

Similarly, the latch retains its reset (Q = ‘0’, Q = ‘1’) state even after R

returns to ‘0’. Thus it “remembers” that R had gone to ‘1’ before it

returned to ‘0’.

If Set and Reset are simultaneously applied, both Q and Q are forced

to ‘0’.

The latch will go to set or reset state when R and S return to ‘0’,

depending on which input is returned to ‘0’ last.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 13 / 40

Implementing Digital Logic Storage Elements

Other Storage Circuits: D Flipflop

There are other useful circuits which show a ‘memory’.

Many of these are used in sequential circuits with a clock.

Their action occurs whenever the clock has a specified transition, say

from ‘0’ to ‘1’. This transition is known as the active edge of the clock.

D

Ck

Q

Q

D flipflop: This is circuit with a ‘D’ (Data) input and a

clock. At the active clock edge, it copies the value of D

to its Q output and the complement appears at Q.

The symbol for a D flipflop is shown above. The little triangle at the

clock input shows that the flipflop transfers D to Q on the rising edge of

the clock. A little circle is placed with the triangular symbol if the active

edge is the falling edge of the clock.

Many circuit diagrams omit the indication for the active edge.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 14 / 40

Implementing Digital Logic Storage Elements

Other Circuits with Memory: JK Flipflop

Ck

Q

Q

J

K
JK flipflop:

This circuit has two inputs J and K –

These act similarly to S and R inputs in the RS latch.

At the active edge of the clock,

If J = ‘0’ and K = ‘0’, the flipflop outputs remain unchanged.

If J = ‘1’ and K = ‘0’, Q goes to ‘1’ and Q goes to ‘0’.

If J = ‘0’ and K = ‘1’, Q goes to ‘0’ and Q goes to ‘1’.

If J = ‘1’ and K = ‘1’, it complements the values at Q and Q.

(This and the presence of clock distinguish it from RS latch).

Toggle flipflop: In this, the J and K inputs are tied together and are

used as the T input.

When T = ‘0’, the flipflop outputs Q and Q remain unchanged.

When T = ‘1’, it toggles ie complements the values at Q and Q at the

active clock edge.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 15 / 40

Implementing Digital Logic Storage Elements

Finite State Machines

In a sequential circuit, the output sequence is a function of input

sequence.

The sequences between which we want to establish a functional

relationship have to be of finite length to be implementable.

A new set of input values are

presented during each new

clock period.

It is not necessary to store all

the past values of input

variables.

Combinational
Logic

Combinational
Logic

Input

State
D Q

Storage

Current State

Output

Current State

Next

State

Finite
State
Machine

A (possibly multi-bit) state is stored, which is a digital value with

sufficient information about the past inputs so that the current element

of the output sequence can be generated as a combinational function

of the state and the current inputs.
(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 16 / 40

Implementing Digital Logic Storage Elements

Finite State Machines . . . contd.

In each clock period, as fresh

inputs arrive, a new value of

state is generated which is a

combinational function of the

current value of state and

current inputs.

The state is thus a recursive

function of previous inputs.

Combinational
Logic

Combinational
Logic

Input

State
D Q

Storage

Current State

Output

Current State

Next

State

Finite
State
Machine

The state represents the “history” of input variables as relevant to

production of the output sequence.

Systems which use this approach to generate sequential logic are

called Finite State Machines or FSMs.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 17 / 40

Implementing Digital Logic Storage Elements

FSM Example: Penny in the Slot Machine

Consider a Penny in the slot machine which accepts 1 Re and 2Re

coins. It dispenses a packet worth 3 Rs. and returns coins if required.

Init
0 1 2

1 Re/

2 Re/

2 Re/Drop packet

1 Re/

1 Re/Drop packet

2 Re/Drop packet + 1 Re

The state diagram on the left shows the

evolution of ‘states’ in response to a

sequence of inputs.

At any time, one of two inputs may

occur – insertion of a 1 Re coin or

insertion of a 2 Re coin.

In response, the machine may –

i) do nothing, ii) Drop the packet or

iii) Drop the packet and a 1 Re coin.

The machine can be designed with 3 states and combinational logic to

determine the action and the next state in response to specific inputs.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 18 / 40

Implementing Digital Logic Storage Elements

FSM Example: Penny in the Slot Machine . . . contd.

Init
0 1 2

1 Re/

2 Re/

2 Re/Drop packet

1 Re/

1 Re/Drop packet

2 Re/Drop packet + 1 Re

At power on, the machine wakes up in

state 0.

At any time, The machine is in one

of the three states shown.

In any state, only two external inputs

are possible: Arrival of a 1 Re coin

or arrival of a 2 Re coin.

Curr st Input Output Next St Input Output Next St

0 1 Re Nothing 1 2 Re Nothing 2

1 1 Re Nothing 2 2 Re Drop packet 0

2 1 Re Drop packet 0 2 Re Drop packet 0

+ 1 Re

We can implement this with 2 flipflops to encode the state number and

combinational logic to determine next state and output from current

input and state.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 19 / 40

Implementing Digital Logic Storage Elements

Registers

A group of D flipflops in parallel can be used to store a multi-bit

value. This is called a register.

We can also connect D flipflops in series as shown below. This

arrangement is called a Shift Register.

Ck Ck Ck Ck

Serial in Serial Out

Parallel Data

D0 Q0D1D2D3 Q3 Q2 Q1

Clock

At each active edge of the clock,

Q0 → Serial Out, Q1 → Q0,

Q2 → Q1, Q3 → Q2, Serial In

→ Q3.

Thus data is shifted to the right by

one location.

This can be used for serial to parallel conversion by feeding data

in serially and after all data has been fed, collecting it in parallel.

Shift registers are also used for parallel to serial conversion. Data

is loaded in parallel to all the D flipflops and shifted out serially.

These are also used for data delay, as a serial memory etc.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 20 / 40

Implementing Digital Logic Storage Elements

Number Systems

We have already seen how we can represent natural numbers in a

base-2 system (binary representation).

The bit pattern bn−1 . . . bi . . . b1b0 represents the number:

N =
∑

n−1
i=0 2i · bi .

Given a decimal number N, how do we determine bi?

Take N and divide by 2. The remainder is b0.

Repeat this process by dividing the quotient by 2 and retaining the

remainder as b1, b2 Continue till the quotient becomes 1 or 0.
This is then the most significant bit.

For somewhat larger numbers, it is more efficient to convert the
number to base-16 or Hex format, by using the above procedure

but dividing by 16 every time.

The resulting Hex number can be converted to binary easily by
replacing each hex digit by its binary equivalent.

An n bit binary number can represent any natural number in the range

0 ≤ N ≤ 2n − 1.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 21 / 40

Implementing Digital Logic Storage Elements

Representation of Natural Numbers

Let us illustrate the conversion procedure by a few examples.

Given N = 55.

Divide successively by 2.

55 = 27 ∗ 2 + 1, so b0 = 1

27 = 13 ∗ 2 + 1, so b1 = 1

13 = 6 ∗ 2 + 1, so b2 = 1

6 = 3 ∗ 2 + 0, so b3 = 0

3 = 1 ∗ 2 + 1, so b4 = 1

Quotient = 1, go b5 = 1

Thus decimal 55 = binary 110111

Given N = 1000. Divide by 16.

1000 = 62 ∗ 16 + 8,

so least significant hex digit is 8.

62 = 3 ∗ 16 + 14,

so the next digit is 14 or E.

3 < 16, so the most significant digit

is 3. Thus 1000 = 3E8 in Hex.

Expanding each hex digit to binary,

this can be written as:

0011 | 1110 | 1000.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 22 / 40

Implementing Digital Logic Storage Elements

Binary Addition

Binary numbers can be added just like decimal numbers, with a

carry being transferred to a more significant bit position whenever

the sum exceeds 1.

We can represent positive numbers between 0 and 2n − 1 using n

bits.

What happens if the sum exceeds the largest representable

number?

Consider an example using 4 bit numbers. Using 4 bits we can

represent numbers between 0 and 15

Now consider the addition of 11 to 7 in binary arithmetic using 4 bits.

1011 + 0111 = 10010. The overflowing 5th bit can be used to signal

that overflow has occurred and the result is not valid.

However, this provides us with a clue to a method for representing

negative numbers.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 23 / 40

Implementing Digital Logic Storage Elements

Representing Negative Numbers

In arithmetic, we define a negative number by the property:

x + (−x) = 0.

To represent negative numbers, we take the magnitude of the

number and then choose a number which when added to it will

give zeros in the defined bit width, (albeit with an overflow).

For example, the decimal number 5 is 0101 using 4 bit

representation. When we add decimal 11 to it we get 0101 + 1011

= 10000. (5+11=16). If we ignore the overflow (fifth bit), the result

is zero.

Thus, if x = 0101, (-x) = 1011. Now, x + (-x) = 0, if we ignore the

overflow.

Obviously, we cannot use 1011 to represent 11 as well as -5!

So we adopt a convention where numbers with 0 in the most

significant position are positive, while numbers with 1 in the most

significant position represent negative numbers.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 24 / 40

Implementing Digital Logic Storage Elements

Representing Negative numbers . . . contd.

We use the convention where numbers with 0 in the most

significant position are positive, while numbers with 1 in the most

significant position represent negative numbers.

With this convention, signed 4 bit numbers can be represented in

the range -8 to + 7, inclusive of Zero.

How do we find the number which when added to x will give zero

(with overflow)?

Notice that when we add a number to its complement (changing

all 0’s to 1 and 1’s to zero), the sum will have 1 in all positions.

Now if add 1 to this, we’ll get all zeros with an overflow.

So to get the negative of a number, we take its complement (also

called 1’s complement) and add 1 to it. (This is called 2’s

complement).

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 25 / 40

Analog to Digital and Digital to Analog

Digital to Analog Conversion

Consider the production of an analog quantity – say voltage,

proportional to a given digital numbers. This is Digital to Analog

conversion or DAC.

R 2R

Vref

4R

0 1 0 01 1

R

Vout+

-

A digital number: bn−1 . . . bi . . . b1b0

represents
∑n−1

0 2ibi .

If we use resistors with resistance values

proportional to 2i and use these to draw

current from a reference voltage Vref (with the

other end of the resistors at ground potential),

the currents will be in binary ratio.

We put a two way switch at the end other than Vref which connects

either to ground or to the virtual ground of an opamp.

Since these two choices are at the same potential, the current remains

unchanged if we switch it between either of these.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 26 / 40

Analog to Digital and Digital to Analog

Digital to Analog Conversion . . . contd.

R 2R

Vref

4R

0 1 0 01 1

R

Vout+

-

Each two way switch is controlled

by a bit of the digital number which

we want to convert. Since the two

way switches direct the current

either to ground or to the virtual

ground of an opamp, the current

through the resistors remains

unchanged if we switch it between

either of these.

The current going into the inverting terminal is then proportional to the

digital number. The output voltage is −R times this current and thus

proportional to the digital number.

This method of D to A conversion is intuitive, but getting accurate

values of resistors over a wide range is a difficult task.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 27 / 40

Analog to Digital and Digital to Analog

Analog to Digital Conversion

A flash ADC is a fast converter which uses a separate comparator for

each digital value possible. A resistor divider creates equally spaced

N-1 reference levels.
Vin

T
he

rm
om

et
er

 t
o

B
in

ar
y

D
ec

od
er

out

+

+

+

-

-

-

A bank of comparators compares the input

to each of the reference levels.

All comparators with reference level below

the input value go to ‘1’ while all those

above it go to ‘0’.

This is known as Thermometer coding.

A decoder is then used to transform the

thermometer code to binary.

Flash converters are used for A to D conversion with a small number of

bits, since its complexity grows exponentially with each additional bit.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 28 / 40

Analog to Digital and Digital to Analog

Analog to Digital Conversion . . . contd.

Many other types of A to D converters are available, providing a

compromise between speed, power and complexity.

A successive approximation ADC uses a DAC whose Digital input

is provided by a register. The ADC sequentially adjusts the bits of

this register and compares the output of the DAC with the input

voltage, till they match. This type of ADC is widely used in

medium speed applications.

A dual slope ADC provides low complexity at low conversion rates.

It converts its input voltage to a time interval, which is measured

using a counter. This kind of ADC is used by most DMMs.

From the user’s view point, a “start conversion” signal is sent to the

ADC (of whatever type) and when the conversion is complete, it sends

an “end of conversion” signal. The output of the ADC can be read as a

digital number once the conversion is complete.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 29 / 40

Analog to Digital and Digital to Analog

And That’s all
for now!

(for Digital Design).

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 30 / 40

Analog to Digital and Digital to Analog

Recovery of RS latch from R=1, S=1

The R and S inputs of RS latch are not supposed to be ‘1’

simultaneously. However, what would happen if these go to ‘1’

simultaneously?

R

S

Q

Q

While R = 1 and S = 1, both Q and Q are ‘0’.

Notice that these are not complements of each

other in this case.

The latch will be found in its ‘Set’ or ‘Reset’ state

when RS returns to its quiscent state R,S = 0,0
depending on the sequence of change of R and

S inputs.

R,S can return to 0,0 through two paths:

1 R,S = 1,1 → 1,0 → 0,0, (R returns to 0 after S).

2 R,S = 1,1 → 0,1 → 0,0, (S returns to 0 after R).

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 31 / 40

Analog to Digital and Digital to Analog

Recovery of RS latch from R=1, S=1 . . .

1 R,S = 1,1 → 1,0 → 0,0, (R returns to 0 after S)

R S Q Q Remark

1 1 0 0

1 0 0 1 Reset Condition

0 0 0 1 Reset state retained

2 R,S = 1,1 → 0,1 → 0,0, (S returns to 0 after R).

R S Q Q Remark

1 1 0 0

0 1 1 0 Set Condition

0 0 1 0 Set state retained

So the final state corresponds to activation of the input which returned

to ‘0’ last.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 32 / 40

Analog to Digital and Digital to Analog

DAC with R-2R Ladder Network
R R R

2R 2R 2R 2R

Vref V1 V2 V3

I1 I2 I3

Consider a network with resistors of value R in

series and those of value 2R in parallel in a

ladder network as shown on the left.

Notice the extra 2R resistor at the end of the chain.

At the end, we have 2 resistors to ground, each of value 2R. This

is equivalent to a single resistor of value R.

This equivalent resistance of R and the series resistance R from

V2 form a potential divider such that V3 = V2/2.

The series resistor from V2 and the equivalent resistor R to

ground provide a total resistance of 2R to ground from V2.

Extending this argument, V2 = V1/2 and V1 = Vref/2

Correspondingly, the current to ground through the 2R resistors is

in binary ratio.

by inserting a two way switch at the ground end and switching

between ground and virtual ground, we can generate a voltage

proportional to the digital value.
(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 33 / 40

Analog to Digital and Digital to Analog

DAC with R-2R Ladder Network . . . contd.

The Circuit below shows a D to A converter using the R-2R ladder

network.

R R R

2R 2R 2R 2R

Vref V1 V2 V3

I1 I2 I3

R

+
-

Vref/2 Vref/4 Vref/8

0 0 01 1 1
D2 D1 D0

Bits of the digital value choose whether the current through the 2R

resistors will go to ground or to virtual ground.

Total current going into the virtual ground is converted to a voltage

using a feedback resistor.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 34 / 40

Analog to Digital and Digital to Analog

DAC with R-2R Ladder Network . . . contd.

R R R

2R 2R 2R 2R

Vref V1 V2 V3

I1 I2 I3

R

+
-

Vref/2 Vref/4 Vref/8

0 0 01 1 1
D2 D1 D0

Implementing the DAC is easier this way, because it requires only

two resistance values. In fact, two identical resistors are put in

series to get the 2R value.

Accurate matching of resistors is much easier here compared to

the binary weighted resistor case.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 35 / 40

Analog to Digital and Digital to Analog

ADC with Successive Approximation

This is a widely used architecture for ADCs.

It uses a DAC and a comparator.

At the first step, the most significant bit for the DAC is set.

The comparator indicates if the unknown voltage is above or

below the DAC output. If the unknown value is below the DAC

value, the bit which was last set is cleared.

Now the next significant bit for the DAC input is set. The unknown

voltage is compared to the DAC output again.

This process is continued till the least significant bit has been

determined.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 36 / 40

Analog to Digital and Digital to Analog

Logic Families: DTL

Earliest implementation of Digital logic used relays connected in

series/parallel to implement logic.

With the advent of semiconductor devices,

diodes and transistors were used to implement

digital logic. The circuit on the right is a DTL

NOR gate.

A HIGH voltage (close to VCC) represents a

logic ‘1’, while a LOW voltage (close to ground)

represents a logic ‘0’.

A

B

A+B

A+B

VCC

When either A or B (or both) are HIGH, base current flows, saturating

the bipolar transistor. This pulls the output LOW.

The transistor is OFF when both A and B are LOW as there is no base

current. The output is then connected to VCC through the collector

resistor and is HIGH.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 37 / 40

Analog to Digital and Digital to Analog

Logic Families: TTL

Diode-Transistor Logic was eventually replaced by

Transistor-Transistor Logic or TTL.

This was the dominant digital technology for implementation of digital

logic for a long time.

TTL replaces the diodes at the input

in DTL by a bipolar transistor with

multiple emitters.

The circuit on the right shows a

NAND gate implemented in TTL

technology.

The output stage is called a “totem

pole” circuit.

VCC

Ground

A

B

A . B

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 38 / 40

Analog to Digital and Digital to Analog

Logic Families: CMOS

Modern digital circuits use MOS transistors.

A ‘1’ at the gate input turns the nMOS ON and the pMOS OFF

A ‘0’ at the gate input turns the nMOS OFF and the pMOS ON.

A

B

A . B

VDD

A B

A + B

VDD

CMOS NAND CMOS NOR

pMOS

nMOS

nMOS nMOS

pMOS

pMOS

NAND output is pulled to ground

when both inputs are ‘1’. It is

pulled up to VDD when either or

both inputs are ‘0’.

NOR output is pulled to ground

when either or both inputs are ‘1’.

It is pulled up to VDD when both

inputs are ‘0’.

By using complementary MOS transistor types (n channel and p

channel), high speed can be obtained at reasonably low power

consumption. This is known as CMOS logic.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 39 / 40

Analog to Digital and Digital to Analog

RS Latch with Cross Connected NAND Gates

Remember the duality property of Boolean logic?

R

S

Q

Q

We can also construct an RS latch using cross

connected NAND gates. Its operation is similar to

the cross connected NOR.

Here the circuit is idle when R and S inputs are at ‘1’,

while the ‘set’ and ‘reset’ action is triggered by S or R

going to ‘0’.

Like the cross connected NOR circuit, Set and Reset are not supposed

to go to their active level (‘0’ in this case) simultaneously.

If both R and S inputs go to their active level (‘0’) simultaneously, Q as

well as Q will go to ‘1’.

The output will settle to one of the two stable states depending on

which of the two inputs is removed from the active state last.

(IIT B) MS-101 Digital Logic: Implementation August 18, 2024 40 / 40

	Combinational and Sequential Logic
	Implementing Digital Logic
	Implementing Combinational Logic
	Some Common Combinational Circuits
	Storage Elements

	Analog to Digital and Digital to Analog

