
MS-101 Makerspace

Application Development with Microcontrollers

Department of Electrical Engineering
Indian Institute of Technology, Bombay

July 16, 2024

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 1 / 35



Event Driven Programs

Structure of a Traditional Program

Traditional computer programs start with some initialization code

which gives starting values to variables and configures devices as

desired.

The next task is computation of desired values. The program asks

for inputs as and when it needs them and may read values from

external devices which are connected to the system.

When outputs are ready, it provides these in the form of displays,

prints, plots or outputs to external devices.

The circuit simulation program “ngspice” is an example of such a

program.

The computation algorithm decides when inputs will be taken,

when output will be provided etc.

When all the outputs have been provided, the program terminates.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 2 / 35



Event Driven Programs

Structure of an Event Driven Program

The structure of an event driven microcomputer program is quite

different.

Microcomputers are typically used in embedded systems.

These are applications where the presence of a microprocessor or

a program is not apparent to the user.

For example, a digital camera has a microcomputer which is

running a program, but the user is not aware of this. The interface

presented to the user is that of a camera.

These applications are event driven. External events decide which

portion of the program will run at any time.

These programs never terminate ...

What would happen to a camera if its program terminated?

So the basic program structure is that of an initialization phase

followed by an endless loop.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 3 / 35



Event Driven Programs

Structure of an Event Driven Program . . . contd.

An event-driven program enters an endless loop after the initialization

phase.

Initialization

Event 0
Flag?

Run
Handler 0

No

Yes

Event 1

Event 2

Flag?

Flag?

...
Flag?

Event n

Run
Handler 1

Run
Handler 2

No

No

Yes

Yes

Flag?

No

Run

No

Handler ...
Yes

Run
Handler n

Yes

Clear Flag 0

Clear Flag 1Clear Flag 2

Clear flag ...

Clear flag n

Event Loop

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 4 / 35



Event Driven Programs

Structure of an Event Driven Program . . . contd.

The program is aware of multiple events which might occur in the

external world. It includes software (called an event handler) for every

such event. This software should run whenever the event occurs.

Initialization

Event 0
Flag?

Run
Handler 0

No

Yes

Event 1

Event 2

Flag?

Flag?

...
Flag?

Event n

Run
Handler 1

Run
Handler 2

No

No

Yes

Yes

Flag?

No

Run

No

Handler ...
Yes

Run
Handler n

Yes

Clear Flag 0

Clear Flag 1Clear Flag 2

Clear flag ...

Clear flag n

Event Loop

Each event is designed to set

a “Flag” when it occurs.

(A flag is just a bit or a

variable which is given a

recognizable value when the

event occurs).

The program runs in an

endless loop, checking if the

flag for any event is set.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 5 / 35



Event Driven Programs

Structure of an Event Driven Program . . . contd.

Initialization

Event 0
Flag?

Run
Handler 0

No

Yes

Event 1

Event 2

Flag?

Flag?

...
Flag?

Event n

Run
Handler 1

Run
Handler 2

No

No

Yes

Yes

Flag?

No

Run

No

Handler ...
Yes

Run
Handler n

Yes

Clear Flag 0

Clear Flag 1Clear Flag 2

Clear flag ...

Clear flag n

Event Loop

If any event flag is set, it

runs the corresponding

handler, clears the flag

and re-joins the loop.

If the flag is not set, it

just goes and examines

the next event flag and

so on . . . in an endless

loop.

A program with such a structure is said to be event driven.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 6 / 35



Event Driven Programs with Arduino

Event Driven Programs with Arduino

The software structure in the Arduino Integrated Development

Environment (IDE) is optimized for event driven programs.

The in-built main program (in C or C++) first calls a user supplied

function called setup( ).

All initialization code is to be put in this function by the user.

The library included in the IDE provides many functions which

make the user’s task easy.

For example, to make the digital pin 13 an output pin, one can just

call the library function pinMode as:

pinMode(13, OUTPUT);

And to set up the serial communication to use 9600 baud as the

data rate, one can call:

Serial.begin(9600)

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 7 / 35



Event Driven Programs with Arduino

Digital and Analog I-O

After the user supplied function “setup” returns, the main

program enters an endless loop.

In each iteration of the loop, it calls another user supplied function

called loop( ).

The user can place all operational details relevant to continuous

running of the application in this function.

The library included in the IDE provides many functions which

make it easy to input and output digital values.

The micro-controller used in Arduino (AVR 328P) has an in-built

10 bit ADC with 6 input channels which can be used to input

analog voltages. Library functions included in the IDE enable one

to convert the analog input at any of the 6 channels to a 10 bit

digital word.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 8 / 35



Event Driven Programs with Arduino

Digital and Analog I-O . . . contd.

The function analogRead provides the capability of reading the

analog voltage on any of the analog input pins and converting it to

a 10 bit digital value.

analogRead accepts a channel number as its input and returns a

10 bit integer – which is the converted value from the ADC.

For example,

int sensorValue = analogRead(A0);

declares the variable sensorValue to be a (16 bit) integer and

places the 10 bit ADC value corresponding to the analog input on

channel A0 in it.

Channels A0 to A5 are available for ADC input.

The library also has a mapping function which can map this 10 bit

range onto a given range – say 0 to 100.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 9 / 35



Event Driven Programs with Arduino

Digital and Analog I-O . . . contd.

AVR 328P does not have a built-in D to A converter. However, it can

output a Pulse Width Modulated (PWM) digital stream on selected

pins.
In Pulse Width Modulation, the ratio of

durations of ON and OFF periods is varied.

The ratio of ON time to total cycle time (ON duration + OFF

duration) is called Duty Cycle.

If this output is averaged, it will produce an analog value

proportional to the duty cycle.

Arduino IDE library provides functions for PWM output with the

desired duty cycle.

Explicit averaging may not be required for relatively slow devices

such as motors. Also, human responses are slow enough so that

the intensity of an LED driven by a PWM waveform will appear to

be proportional to the duty cycle.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 10 / 35



Event Driven Programs with Arduino

Digital and Analog I-O . . . contd.

Library function analogWrite permits writing PWM output to selected

pins.

The function is somewhat inaccurately named – since the output is not

really analog but a Pulse Width Modulated digital stream.

The function takes the pin number and the duty cycle as its

arguments. The duty cycle is provided as an integer between 0

and 255. (The actual duty cycle is the provided number/255).

For example, analogWrite(3, 128) will output a PWM waveform

on pin 3 with approximately equal ON and OFF times.

A low pass filter can be connected to the pin to provide explicit

averaging if required.

Of course an external D to A converter can always be used if more

accurate analog outputs are required.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 11 / 35



Library functions in Arduino Library

Manifest Constants Defined in Arduino Library

The Arduino library defines several symbolic names for constants.

These are known as manifest constants (because they make the

function of these constants clear).

Frequently used manifest constants are:

HIGH | LOW : represent the digital state of a pin.

INPUT | OUTPUT | INPUT PULLUP: represent the mode in which a

pin is to be used.

(INPUT PULLUP is an input for which an internal pull up is enabled.

This permits driving it with open collector outputs.)

LED BUILTIN: is the pin number to which the on-board LED is

connected. For Uno and Nano boards, this is pin number 13.

true | false: represent the logic value.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 12 / 35



Library functions in Arduino Library

Library Functions in Arduino Library: Digital I-O

The Arduino library provides many functions which permit one to use

the functionality provided by the micro-controller.

We have seen many of these already.

Digital I/O: digitalRead(pin); returns a HIGH or LOW value

depending on the voltage level on the pin.

digitalWrite(pin, value); writes HIGH or LOW to a pin.

pinMode(type); sets the direction for I-O on a digital pin.

The type can be INPUT, INPUT PULLUP or OUTPUT.

If the type is INPUT PULLUP, an internal pull up circuit is

attached to the input pin. This is useful when the external

driver is of open collector or open drain type.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 13 / 35



Library functions in Arduino Library

Arduino Library Functions for Analog I-O

int analogRead(pin); returns the 10 bit ADC value corresponding to

the analog voltage on the given pin.

void analogWrite(pin, PWMvalue); will output a PWM waveform on

the given pin with the specified duty cycle (range 0 to 255).

void analogReference (type); configures the reference voltage used

for A to D conversion. The argument “type” can be:

DEFAULT – to use the default analog reference of

5 volts (on 5V Arduino boards) or

INTERNAL – to use a built-in reference equal to

1.1 volts (= silicon band gap), or

EXTERNAL – to use the voltage applied to the

AREF pin (0 to 5V only) as the reference.

This function must be called before analogRead to

avoid shorting internal and external references.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 14 / 35



Library functions in Arduino Library

Arduino Library Functions for Timing and Delay

Timing: void delay(d milli); delays the execution of the following

statements of the program by the given number of

milliseconds.

void delayMicroseconds(d micro) is similar to delay, but

the argument is interpreted as microseconds.

int millis( ); returns the number of milliseconds which

have elapsed since the start of the program.

int micros( ); returns the number of microseconds which

have elapsed since the start of the program.

Some of these functions use the internal timers and

interrupts for their operation. Others use software timing.

Use of interrupts in the user program can interfere with

their functioning.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 15 / 35



Library functions in Arduino Library

Additional Library Functions in Arduino Library

Other I/O: void tone(pin, frequency, [duration] ); A call to this

function generates a square wave on the given pin with

the specified frequency for the given duration. The third

argument is optional. If duration is not given, the output

will continue till a call is made to the function:

void noTone(pin);

Only one frequency can be generated at a time. Multiple

frequencies cannot be generated on different pins using

this function.

Minimum frequency which can be generated is 31 Hz.

(This limitation comes from the maximum divider value

which can be loaded in the timer/counter chip).

This function should not be used along with PWM output,

because both use the same resources.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 16 / 35



Library functions in Arduino Library

Interrupting the Processor in Arduino

Interrupts in Arduino An interrupt stops the main program in order to

run a specified function. The main program resumes from

where it was stopped when the specified function returns.

A few library functions are used for managing interrupts.

void noInterrupts( ) disables interrupts from occurring,

while void interrupts( ) enables interrupts.

On Uno and Nano cards, external devices can interrupt

the running program by sending a pulse on digital pin 2 or

on digital pin 3.

Internal peripherals such as timers etc. also use

interrupts.

Therefore care has to be taken while disabling interrupts

– it may interfere with functions like serial communication.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 17 / 35



Library functions in Arduino Library

Interrupting the Processor in Arduino . . . contd.

Attaching an interrupt Function void attachInterrupt( ) is used for

causing an interrupt when a signal of a specified type is

seen on digital pins 2 or 3 in an UNO or Nano card.

The function takes 3 arguments. The first argument is the

interrupt number, the second is the name of the function

to be run when an interrupt occurs and the third argument

specifies the kind of signal on the interrupt pin which will

result in an interrupt.

The interrupt number should not be given directly, but

should be determined from a call to the function

digitalPinToInterrupt(pin).

The returned value from this function should be given as

the first argument to attachInterrupt.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 18 / 35



Library functions in Arduino Library

Interrupting the Processor in Arduino: Function

Arguments

Attaching an interrupt: contd. The second argument is the name of the

user supplied function which should be run after stopping

the main program.

The last argument specifies the type of input on pin 2 or 3

which will result in an interrupt. This argument can be one

of pre-defined manifest constants LOW, CHANGE,

RISING or FALLING.

LOW interrupts when the signal is ‘0’, RISING interrupts

when the signal changes from ‘0’ to ‘1’, FALLING

interrupts on a ‘1’ to ‘0’ transition and CHANGE interrupts

when either of these transitions occurs.

Once the interrupt is recognized, further interrupts are

disabled till the specified function has run.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 19 / 35



Library functions in Arduino Library

Interrupting the Processor in Arduino: Handler

Function

The function run after interrupting the main program should be short

and the processor should remain in interrupted state for as small a

time as possible.

Initialization

Event 0
Flag?

Run
Handler 0

No

Yes

Event 1

Event 2

Flag?

Flag?

...
Flag?

Event n

Run
Handler 1

Run
Handler 2

No

No

Yes

Yes

Flag?

No

Run

No

Handler ...
Yes

Run
Handler n

Yes

Clear Flag 0

Clear Flag 1Clear Flag 2

Clear flag ...

Clear flag n

Event Loop

Rather than running a

detailed computation as the

interrupt function, one uses

the interrupt function to just

set an event flag.

The handling of the event

then occurs in the main

program in the event loop as

outlined in the beginning of

this lecture.
(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 20 / 35



Library functions in Arduino Library

Pulse Width Measurement

Pulse width measurement

HIGH

LOW

pulseIn( );, pulseInLong( ); – these functions are

used for measuring the width of a high or a low

pulse. These take two arguments - the pin number

where the pulse will be applied and whether the

HIGH of LOW duration is to be measured.

The function pulseIn is suitable for use with interrupts

disabled. (The software timing used by this function stops

during interrupts and so the returned value will be

inaccurate if interrupts occur).

The function pulseInLong( ) uses hardware timing with

interrupts. So the interrupts must be enabled when this

function is called.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 21 / 35



Library functions in Arduino Library

Pulse Width Measurement . . . contd.

pulseIn( ) is more useful for short pulses since we can afford to

disallow interrupts for a short time.

As its name implies, pulseInLong( ) is more suitable for long pulses.

However, it may interfere with serial communications and delay

functions.

The syntax for calling these functions is:

pulseIn(pin, HIGH); or pulseIn(pin, LOW); and pulseInLong(pin,

HIGH); or pulseInLong(pin, LOW);.

pin is the pin number on which the pulse will arrive. The second

argument decides whether the width of the HIGH part of the pulse will

be measured or the LOW part.

These functions have an optional third argument which specifies the

maximum time for which the function will wait for the pulse to end.

If not provided, this time is taken to be 1 second.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 22 / 35



Library functions in Arduino Library

Other Libraries

We have taken a brief tour of many of the functions provided by

the built-in library of Arduino IDE.

There are hardware cards which plug directly into the connectors

of Arduino Uno. These are designed for specific functions – such

as driving stepper motors, speed control for battery operated (BO)

motors, communicating using bluetooth etc.

These cards are called shields (because of the way they sit on

the Arduino card).

Libraries to support these shields are available. One can

download these libraries and include them in the IDE.

Since these libraries are mostly developed by hobbyists and

placed in the public domain, documentation may be vague or

non-existent.

However, the source code for functions included in these libraries

is available and one can figure out how to use these functions for

projects.
(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 23 / 35



Other processors

Using Other Processors

One advantage of using high level languages for software

development is that the software can be targetted for a different

processor with ease.

The Arduino IDE makes it particularly convenient because one

can use high level functions (such as delay, map etc.) which will

work identically for different processors, simply by loading

additional libraries specific to these processors.

In our labs, we shall use the processor ESP-32 from Espressif

systems and program it through Arduino IDE for remote control.

The board ESP-WROOM-32 provides WIFI and bluetooth

connectivity along with the ESP-32 processor, which is a high

performance 32 bit micro-computer.

Availability of wireless connectivity makes this board convenient

for remote control.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 24 / 35



Other processors

ESP-Wroom32 Single Board Computer

ESP-32 provides digital and analog I-O,

like Arduino.

This is a high performance board. The

processor is 32 bit, with 2 12-bit ADCs,

each supporting upto 8 multiplexed analog

channels.

Additionally, it provides wireless

connectivity through WiFi and Bluetooth.

It can be powered through a USB

connection like an Arduino and can be

programmed in a similar way using the

same IDE as Arduino.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 25 / 35



Application Development with Single Board Computers

Application Development with Single Board

Computers

Application development using Arduino and other single board

computers like ESP-Wroom32 boards involves:

1 Choice of appropriate additional hardware,

2 Development of required algorithms

3 Implementation of algorithms in software

Many of the hardware techniques such as negative feedback,

hysteresis using Schmitt triggers etc. have their counterparts in

software.

We’ll review some of these briefly.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 26 / 35



Application Development with Single Board Computers

Application Development with Single Board

Computers . . . contd.

To illustrate some of the algorithms used for application development,

we’ll use temperature control of a water bath as an example.

We would like to keep the temperature of water in the bath as close as

possible to a given temperature (called set point) which is higher than

the room temperature (no cooling required) and which should be

programmable.

Let us first look at the hardware required for this:
We obviously need a heater. To control the temperature, we’ll
require some means of controlling power to the heater. This can
be done through

1 ON/OFF control through a relay, or
2 Pulse Width control through thyristors driven from Arduino, or
3 Voltage control through a programmable power source to the

heater.

Accordingly, we shall need drivers for relays/thyristors/DC source

which will be driven using digital signals from Arduino.(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 27 / 35



Application Development with Single Board Computers

Application Development: ON/OFF Control

We also require hardware for measuring the actual temperature (using

LM35 temperature sensor or a thermocouple), and means for adjusting

the set point (through a potentiometer or dialing it in through a

keyboard).

Let us first consider the simplest option – that of ON/OFF control.

We can measure the temperature at regular intervals and

compare it with the set point. If the actual temperature is higher

than the set point, we turn the relay OFF, if it is lower, we turn it

ON.

When the temperature is close to the set point, a small amount of

heating takes it above the set point which turns the relay OFF.

However, then the temperature quickly drops below the set point,

which turns the relay ON. This causes the relay to “chatter”.

How to stop the relay from chattering due to this frequent switching?

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 28 / 35



Application Development with Single Board Computers

Application Development: ON/OFF Control . . . contd.

To prevent the relay from chattering, we can use a small amount of

hysteresis in the decision to turn the relay ON or OFF.

Instead of comparing the temperature with a single set point, we

use a “high limit” and a “low limit” on either side of the set point.

We turn the relay ON only if the temperature is below the “low

limit”. We turn if OFF only if the temperature is above the “high

limit”.

We now have a trade off – if the high and low limit are too close to

the set point, the relay will turn ON and OFF fequently.

If these limits are set far from the set point, the temperature will

ramp between these two limits and the worst case error between

the actual temperature and the set point will be high.

You would have noticed this kind of control in many electric irons.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 29 / 35



Application Development with Single Board Computers

Application Development: Proportional Control

A smoother way to control the temperature of the bath would be to

apply power to the heater proportional to the error in temperature –

The farther away we are below the set point, higher is the power

applied.

However as we approach the set point, the error becomes less

and lower power will be applied.

If we are at or above the set point, no power will be applied.

This results in more accurate control of temperature.

However, the power applied when we reach the set point is zero!

So the bath will always start cooling down due to heat losses as soon

as it reaches the set point.

Proportionate control will always settle at non-zero error!

(A work around is to calculate the error from a point just above the set

point, so that the power is non zero at the set point).

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 30 / 35



Application Development with Single Board Computers

Application Development: Integral Control

We don’t want to reduce the power to zero when we reach the set

point. We want the heater to apply constant power, which keeps the

bath at the set point.

What operation gives a constant result when its argument reaches

zero? The integral, of course!

What we should do is to integrate the error and apply power

proportional to this integral. Now when the error becomes zero, a

constant power will be maintained which will keep the bath at the

set temperature.

If we overshoot the set point, error will become negative and the

integral will reduce in value. With lower applied power, we’ll come

back to the set point and keep the power at this lower value.

Since the proportional term is zero at the set point any way, we

can use a value for applied power which is the weighted sum of

proportional term and integral term. This is known as

Proportional-Integral or P-I control.
(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 31 / 35



Application Development with Single Board Computers

Application Development: PI Control

The integration of error should be taken over how much time?

Temperature error which was there long ago may be less relevant

for determining the power to be applied at the current instant.

Therefore we integrate the error over the recent history.

Contribution due to error from long ago needs to be dropped out

from the integral. This is known as the reset rate.

Proportionality constants for the P and I contributions, as well as

the reset rate have to be tuned for the specific system being

controlled.

PI control works reasonably well for keeping the bath temperature

constant. However, it is slow to react to sudden changes in the error.

To take care of this, we add a third term – the differential term.

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 32 / 35



Application Development with Single Board Computers

Application Development: PID Control

PI control is very slow to react to sudden changes in error.

For example, if we change the set point, suddenly there is a large

error from the current temperature. PI control will be sluggish to

react to it.

To take care of sudden changes in the error, we need a term which

will be proportional to the rate of change of the error. This can be

provided by a term proportional to the differential of the error.

When we include the differential term, the control strategy is

called Proportional-Integral-Differential – or PID control.

PID control is widely used for controlling various process parameters.

How do we implement it in a micro-controller based system?

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 33 / 35



Application Development with Single Board Computers

Implementing PID Control

We measure the temperature at regular intervals, compute the

error and store these values in an array.

Every time we compute the current value of error, we add it to a

moving sum and subtract the error which had been added “n”

steps before. (“n” is the reset rate).

We also compute the difference between the current and previous

errors and use it as the differential term.

We compute a weighted sum of the current error, current value of

the moving sum and the differential term by multiplying each of

these with their proportionality constants and adding them.

We output this weighted sum to the external hardware which will

apply power proportional to this value.

This algorithm is not restricted to temperature control. It can be applied

to any parameter which has to be kept at a set value.

For example, it could be used for a line follower robot where we control

the orientation to keep the robot centered on the line.
(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 34 / 35



Application Development with Single Board Computers

That is all folks!

(Department of Electrical Engineering, IIT Bombay)MS-101 Makerspace Application Development with MicrocontrollersJuly 16, 2024 35 / 35


	Event Driven Programs
	Event Driven Programs with Arduino
	Library functions in Arduino Library
	Other processors
	Application Development with Single Board Computers

