Quad Drone Frame Generative Design

Source: Autodesk User Manual https://www.youtube.com/watch?v=c48wejg4o8Y

KPR Institute of Engineering and Technology

Generative design

- Generative design is a computer-aided design (CAD) process that uses generative algorithms to produce a range of possible solutions for a given problem.
- The generative design process starts with a set of design criteria and objectives, which are then fed into generative algorithms.
- The generative algorithms generate a set of possible solutions for the criteria.
- Al can be used to identify the 'optimal' design from the generated solutions.

- Sketch on top plane
- 400 mm construction lines: Through origin perpendicular to each other.
- Circles of 100 (origin), 30 D. along the –X-axis 200 apart.
- 3 point arc of 250mm R touching the two circles tangentially.
- Mirror of the arc about the center line.
- Circles of 20, 50 mm concentric to 30mm circle.
- 4 circular pattern of the 3 concentric circles & the arcs connecting the 30mm and 100mm circles about the center of 100 mm circle.
- Trim the intersecting line portion making contact with the 100mm circle and use 50 mm fillet to smoothen the sharp line intersections.
- Extrude symmetrically by 20 mm excluding the concentric inner and outer 4 sets of circles as new body.

- Activate the sketch.
- Extrude the 4 inner circles symmetrically to 40 mm, operation as new body.

	• EXTRUDE			
	Туре	(
	Profiles	♦ 4 selected ×		
	Start	➡ Profile Plane ▼		
	Direction	🔀 Symmetric 🔹		
0	Extent Type	← Distance •	~ ~	
	Measurement			
	Distance	40 mm		
	Taper Angle	0.0 deg	4000	
6	Operation	▶ New Body	4000	
	0	OK Cancel		
			 ↓	

Fillet, select 32 edges and 5 mm radius to smoothen the edges

	• FILLET		
	Туре	Fillet	•
	32 Edges	🜔 10 mm	闷 Tangent (G1)
	1.0		
	+ ×		
	Radius Type	Constant	•
	Edges/Faces/Features	No. Select	
	Tangent Chain		
3	Tangency Weight	1	
	Corner Type	Rolling Ball	•
	0		OK Cancel

Use split body tool. Select main body to split. Select 4 outer circles as splitting tools. Extend splitting tool.

Extrude center circle twice. Offset by 25 and -25 mm. Thickness of 2 and -2 mm. Operation: New Body

Rename the bodies as

- 1. Front rotor holder
- 2. Left rotor holder
- 3. Right rotor holder
- 4. Back rotor holder
- 5. Front obstacle
- 6. Left obstacle
- 7. Right obstacle
- 8. Back obstacle
- 9. Center body
- **10.Top plate 11.Bottom plate**

From the Design drop down menu Select generative design

Expand model components From bodies inactivate center body

Select preserve geometry Select rotor holders, top & bottom plates

Select obstacle geometry Select 4 rotors as obstacle bodies

Edit model, edit model solid. Create sketch on top face of bottom plate.

Create circle of 40mm dia.

Create sketch on the top plane as shown

Create 4 circular pattern of the sketch about the center

Extrude the four sketches symmetrically

Extrude the four sketches symmetrically 50 mm Select the operation as new body Finish edit model

Extrude the two circle 145 and 100mm Offset 5mm, distance 10 mm as new body

EXTRUDE

Туре

Edit the model On the face (top plane) of the 100 mm circle Sketch approx. 150mm circle.

Repeat the create sketch and extrusion from the bottom circle face as new body.

Finish edit model

Add the two circular bodies as obstacle geometry

Select structural constraint from design conditions. Inactivate body17 (bottom circular obstruction) Select the bottom plate face as fixed constraint.

Activate all bodies except center body.

Drone frame generation -----

Select bottom face of the rotor holder for structural loads. Select 10 N as the force. Repeat the same for the other 3 rotor holder face.

Select study materials from the drop down of materials.

Materials from available material library can be added to the favorites library.

Click on the materials from favorites/material library and drag it into the in this study section.

Run the previewer from Generate menu

Preview from the generate shows the geometry

By inactivating body12-17

Stop previewer and activate all the bodies except center body

Generate shows the details the study

Click on the generate 1 study

					Show
<u>~</u>	Study	Name	Model	Status	Cloud Credits
	~	Study 1 - Structural Component	Generative Model 1	Â	11

Progress window of the design process

	NISH EXPLORE V		
Job Status			×
Data	Simulations	Generative Designs	
	Unitations		
Job Name	🚯 Info	×	Status Action
> 🐴 Study 1 - Structura			5% Cancel
	Thumbnails for your Outcomes will app	ear when they are processing.	
		ок	
			Close
	EXPORT CREATE FIN	EXPORT V CREATE V FINSH EXPLORE V Job Status Job Name Info V Study 1 - Structura Vumbnails for your Outcomes will app	EVENT: EVENT: CREATE: Into Job Info X Study 1 - Structure Thumbnails for your Outcomes will appear when they are processing. Oct

Design study outcome 1

Study 1 - Structur... - Outcome 1 Iteration 33 (final)

Properties

Status	Converged
Material	Aluminum 6061
Orientation	Z-
Manufacturing method	3 axis milling
Visual similarity	Ungrouped
Volume (mm ³)	459,393
Mass (kg)	1
Max von Mises stress (MPa)	8
Factor of safety limit	2
Min factor of safety	33
Max displacement global (mm)	1

Design study outcome 2

Study 1 - Structur... - Outcome 2 Iteration 32 (final)

Properties

Status	Converged
Material	Aluminum AlSi10Mg
Orientation	
Manufacturing method	Unrestricted
Visual similarity	Ungrouped
Volume (mm ³)	396,214
Mass (kg)	1
Max von Mises stress (MI	Pa) O
Factor of safety limit	2
Min factor of safety	1,205
Max displacement global	(mm) 0

Design study outcome 3

Study 1 - Structur... - Outcome 3 Iteration 32 (final)

Properties

Status	Converged
Material	Aluminum AlSi10Mg
Orientation	Z+
Manufacturing method	Additive
Visual similarity	Ungrouped
Volume (mm ³)	392,738
Mass (kg)	1
Max von Mises stress (MF	'a) O
Factor of safety limit	2
Min factor of safety	1,081
Max displacement global	(mm) 0

Thank you