- 1. Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- **2.** If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.
- **3.** Given any real number x > 0, prove that there is an irrational number between 0 and x.
- **4.** Suppose x and y are real numbers and for each $\epsilon > 0$, $|x y| \le \epsilon$. Show that x = y.
- **5.** Give an example of a bounded set S such that sup S is in S but inf S is not in S.
- **6.** Suppose A and B are two subsets of \mathbb{R} such that A is bounded from above and B is bounded from below. Show that the intersection $A \cap B$ is bounded from both above and below.
- 7. Let S be a (nonempty) set of real numbers such that $\sup S$ and $\inf S$ exist. Show that $\sup S$ and $\inf S$ are uniquely determined.
- **8.** Let A and B be two sets of positive numbers which are bounded above, and let $a = \sup A$, $b = \sup B$. Let C be the set defined by

$$C = \{xy : x \in A \text{ and } y \in B\}$$

Prove that $ab = \sup C$.

- **1.** Find the sup and inf of the set S, where $S = \{x : 3x^2 10x + 3 < 0\}$.
- 2. Prove Lagrange's identity for real numbers:

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 = \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right) - \sum_{1 \le k < j \le n} (a_k b_j - a_j b_k)^2$$

Use this identity to deduce the Cauchy-Schwarz inequality.

- **3.** Let $f: S \to T$ be a function. Prove that the following statements are equivalent:
- (a) f is one-to-one on S.
- (b) $f^{-1}(f(A)) = A$ for every subset A of S.
- (c) For all subsets A and B of S with $B \subseteq A$, we have f(A B) = f(A) f(B)
- **4.** Let S be the relation given by defining S to be the set of all pairs of real numbers (x, y) that satisfy the given equation (or inequality). Determine in each case, whether S is reflexive, or symmetric, or transitive (it may satisfy more than one of these conditions).
 - (a) $x \leqslant y$
 - (b) $x^2 + y^2 = 1$
- **5.** Show that the following sets are countable:
- (a) the set of circles in \mathbb{R}^2 having rational radii and centers with rational coordinates.
- (b) any collection of disjoint intervals of positive length.
- **6.** Is the set of all irrational real numbers countable? Explain your answer.

- **1.** Let $S \subset \mathbb{R}^n$. Prove that int S (the interior of S) is an open set.
- **2.** Do S and \bar{S} always have the same interiors? Do S and intS always have the same closures?
- **3.** Determine all accumulation points of the following subsets of the given space \mathbb{R}^n and decide whether the sets are open or closed (or neither).
 - (a) $\mathbb{Z} \subset \mathbb{R}$
 - (b) $\mathbb{Q} \subset \mathbb{R}$
 - (c) $\left\{\frac{1}{n} + \frac{1}{m} : m, n \in \mathbb{Z}_+\right\} \subset \mathbb{R}$
 - (d) $\{(x,y): x \geqslant 0\} \subset \mathbb{R}^2$
 - (e) $\{(x,y): x^2 y^2 < 1\} \subset \mathbb{R}^2$
 - (f) $\mathbb{Q}^n \subset \mathbb{R}^n$
- 4. Give an example of a bounded set of real numbers with exactly three accumulation points.
- **5.** Given $S \subset \mathbb{R}^n$, prove that \bar{S} is the intersection of all closed subsets of \mathbb{R}^n containing S.
- **6.** The collection F of open intervals of the form $(\frac{1}{n}, \frac{2}{n})$, where $n \in \mathbb{Z}_+$, is an open over of the open interval (0,1). Prove that no finite subcollection of F covers (0,1).

EXTRA:

- 7. Prove that the set of open disks in the xy-plane with center at (x,x) and radius $x \in \mathbb{Q}_{>0}$, is a countable cover of the set $\{(x,y): x>0, y>0\} \subset \mathbb{R}^2$.
- **8.** Prove that a collection of disjoint open sets in \mathbb{R}^n is necessarily countable. Give an example of a collection of disjoint closed sets which is not countable.

- 1. Which of the following subsets of \mathbb{R}^2 are compact?
- (a) the set of all (x, y) such that $x^2 + y^2 = 1$
- (b) the set of all (x, y) such that $x^2 + y^2 \ge 1$
- (c) the set of all (x, y) such that $x, y \in \mathbb{Q}$ and $x^2 + y^2 \leqslant 1$
- **2.** Give an example of a countable open cover F for $\mathbb{Z} \subset \mathbb{R}$ such that F has no finite subcover.
- **3.** Which of the following functions defines a metric on \mathbb{R} ? (Here $x, y \in \mathbb{R}$.)
- (a) $d(x,y) = (x-y)^2$
- (b) $\tilde{d}(x,y) = |x 2y|$
- (c) $d^*(x,y) = \frac{|x-y|}{1+|x-y|}$

Consider the following two functions on $\mathbb{R}^n \times \mathbb{R}^n$:

$$d_1(x,y) = \max_{1 \le i \le n} |x_i - y_i|, \qquad d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

- **4.** Prove that (\mathbb{R}^n, d_1) is a metric space. Prove that (\mathbb{R}^n, d_2) is a metric space.
- 5. In each of the following metric spaces prove that the ball B(a;r) has the geometric appearance indicated:
 - (a) In (\mathbb{R}^2, d_1) , a square with sides parallel to the coordinate axes.
 - (b) In (\mathbb{R}^2, d_2) , a square with diagonals parallel to the coordinate axes.

1. Consider the two metrics on \mathbb{R}^n defined in HW 4:

$$d_1(x,y) = \max_{1 \le i \le n} |x - y|,$$
 $d_2(x,y) = \sum_{i=1}^n |x_i - y_i|.$

Prove that d_1 and d_2 satisfy the following inequalities for all $x, y \in \mathbb{R}^n$:

$$d_1(x,y) \le ||x-y|| \le d_2(x,y)$$
 and $d_2(x,y) \le \sqrt{n} ||x-y|| \le n d_1(x,y)$.

- **2.** Let (M,d) be a metric space, and let S,T be subsets of M such that $S \subset T$. Prove that (a) $\overline{S} \subset \overline{T}$. (b) $\operatorname{int}(S) \subset \operatorname{int}(T)$.
- **3.** Let (M, d) be a metric space, and let A, B, C be subsets of M such that A is dense in B and B is dense in C. Prove that A is dense in C.
- **4.** Let A and B denote arbitrary subsets of a metric space M.
- (a) Give an example in which $int(\partial A) = M$.
- (b) Give an example in which $int A = int B = \emptyset$ but $int(A \cup B) = M$.
- **5.** Using the **definition of the limit**, prove that:
- (a) $\frac{x^n}{n!} \to 0$ for all $x \in \mathbb{R}$.
- (b) If $\{x_n\}$ is a sequence such that $x_n \ge 0$ for all $n \in \mathbb{Z}_+$ and $x_n \to a$, then $\sqrt{x_n} \to \sqrt{a}$.
- **6.** In a metric space (S, d), suppose that $x_n \to x$ and $y_n \to y$. Prove that $d(x_n, y_n) \to d(x, y)$.
- 7. Let $f:[a,b]\to\mathbb{R}$ be a continuous function such that f(x)=0 when x is rational. Prove that f(x)=0 for every $x\in[a,b]$.
- **8.** Let f, g be defined on [0, 1] as follows:

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1 & \text{if } x \text{ is rational.} \end{cases} \qquad g(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ x & \text{is } x \text{ is rational.} \end{cases}$$

Prove that f is not continuous anywhere in [0,1], and that g is continuous only at x=0.

- **1.** Let f be defined and continuous on a closed set $S \subset \mathbb{R}$. Let $A = \{x \in S : f(x) = 0\}$. Prove that A is a closed subset of \mathbb{R} .
- **2.** Let f be continuous on a compact interval [a, b]. Suppose that f has a local maximum at x_1 and a local maximum at x_2 . Show that there must be a third point between x_1 and x_2 where f has a local minimum.
- **3.** In each case, give an example of a function f, continuous on S and such that f(S) = T, or else explain why there can be no such f:
- (a) S = (0, 1), T = (0, 1].
- (b) $S = (0,1), T = (0,1) \cup (1,2).$
- (c) $S = \mathbb{R}$, $T = \mathbb{Q}$.
- (d) $S = [0,1] \times [0,1], \quad T = \mathbb{R}^2.$
- (e) $S = (0,1) \times (0,1), \quad T = \mathbb{R}^2.$
- **4.** Let $f:(S,d_S)\to (T,d_T)$ be a function between two metric spaces. Prove that f is continuous on S if and only if $f(\overline{A})\subseteq \overline{f(A)}$ for every subset A of S.
- 5. Prove that a metric space S is connected if and only if the only subsets of S which are both open and closed in S are the empty set and S itself.
- **6.** Prove that if S is connected and if $S \subset T \subset \overline{S}$, then T is connected. In particular, this implies that the closure of a set is connected.
- 7. If $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2$, prove that f is not uniformly continuous on \mathbb{R} .
- **8.** Assume $f:(S,d_S)\to (T,d_T)$ is uniformly continuous on S. If $\{x_n\}$ is any Cauchy sequence in S, prove that $\{f(x_n)\}$ is a Cauchy sequence in T.

EXTRA:

9. Prove that the only connected subsets of \mathbb{R} are (a) the empty set, (b) sets consisting of a single point, (c) intervals (open, closed, half-open, or infinite).

- **1.** Let $f: \mathbb{R} \to \mathbb{R}$, and suppose that $|f(x) f(y)| \leq (x y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is constant.
- **2.** Define $f: \mathbb{R} \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} e^{-(1/x^2)} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that:

- (a) f is continuous for all x.
- (b) $f^{(n)}$ exists and is continuous for all x, and $f^{(n)}(0) = 0$, $n = 1, 2, \cdots$.
- **3.** We say a function $g:(a,b)\to\mathbb{R}$ is of class C^k if the k^{th} derivative $g^{(k)}$ exists and is continuous on (a,b).

Let
$$f_n(x) = \begin{cases} x^n \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Prove that f_1 is continuous but not differentiable at 0. Prove that f_2 is differentiable but not of class C^1 . In general what can you say about f_n ?

- **4.** Let $f:[a,b] \to \mathbb{R}$ be continuous and assume that f is differentiable at all points in (a,b), and suppose f'(x) = 0 for all $x \in (a,b)$. Prove that f is a constant function.
- **5.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f'(x) exists for all $x \neq 0$ and such that $\lim_{x \to 0} f'(x) = 3$. Prove that f'(0) exists and f'(0) = 3.

Hint: Mean value theorem.

6. Assume f has a finite derivative in (a,b) and is continuous on [a,b], with $a \le f(x) \le b$ for all $x \in [a,b]$ and $|f'(x)| \le \alpha < 1$ for all $x \in (a,b)$. Prove that f has a unique fixed point in [a,b].

1. In this exercise we show that f'(c) > 0 at some point c is not sufficient to guarantee the existence of an open interval containing c on which f is increasing. Consider the function

$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \begin{cases} x + 2x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$

- (a) Compute f'(0) and f'(x) for $x \neq 0$.
- (b) Prove that there exists a sequence of points $\{x_n\}$ with $x_n \neq 0$, $x_n \to 0$ and $f'(x_n) < 0$.
- **2.** In class, we proved that if $f:(a,b)\to\mathbb{R}$ is r^{th} order differentiable at x, and $P(h):=\sum_{k=0}^r \frac{f^{(k)}(x)}{k!}h^k$, then R(h):=f(x+h)-P(h) satisfies the property: $\lim_{h\to 0} \frac{R(h)}{h^r}=0$.

Prove that P is the unique polynomial of degree $\leq r$ with this property.

3. (a) Suppose f is defined in an open interval containing a, and suppose f''(a) exists. Show that

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$$

Hint: Taylor's theorem.

- (b) Give an example where the limit of the quotient in part (a) exists but where f''(a) does not exist.
- **4.** Locate and classify the points of discontinuity of the following functions f defined on \mathbb{R} :

(a)
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

(b)
$$f(x) = \begin{cases} e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

- **5.** Let f be an increasing function defined on [a, b] and let x_1, \dots, x_n be n points in (a, b) such that $a < x_1 < x_2 < \dots < x_n < b$.
- (a) Show that $\sum_{k=1}^{n} [f(x_k+) f(x_k-)] \le f(b) f(a)$.
- (b) For each $m \in \mathbb{Z}_+$, let S_m be the set of points in [a, b] where the jump of f is greater than $\frac{1}{m}$. Use part (a) to show that S_m is a finite set.
- (c) Show that the set of discontinuities of f is countable.

1. Determine which of the following functions are of bounded variation on [0,1].

(a)
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$
 (b) $f(x) = \begin{cases} \sqrt{x} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$

2. A function f, defined on [a, b], is said to satisfy a uniform Lipschitz condition of order $\alpha > 0$ on [a, b] if there exists a constant M > 0 such that

$$|f(x) - f(y)| < M|x - y|^{\alpha}$$
 for all x and y in $[a, b]$.

If f is such a function, show that $\alpha > 1$ implies f is constant on [a, b], whereas $\alpha = 1$ implies f is of bounded variation on [a, b].

3. A function $f:[a,b]\to\mathbb{R}$ is said to be absolutely continuous on [a,b] if for every $\epsilon>0$ there is a $\delta>0$ such that

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \epsilon$$

for every n disjoint open subintervals (a_k, b_k) of [a, b], $n = 1, 2, \ldots$ satisfying $\sum_{k=1}^{n} (b_k - a_k) < \delta$.

Prove that every absolutely continuous function on [a, b] is continuous and of bounded variation on [a, b].

- **4.** Let $f:[a,b]\to\mathbb{R}$ be a function which is Riemann-integrable, and let c be any real number. Show that the function cf is Riemann-integrable on [a,b] and $\int_a^b cf(x)dx = c\int_a^b f(x)dx$.
- **5.** Let $f, g : [a, b] \to \mathbb{R}$ be Riemann-integrable functions. Show that the function f + g is Riemann-integrable on [a, b] and $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.
- **6.** Let $f, g : [a, b] \to \mathbb{R}$ be Riemann-integrable functions such that $f \ge g$. Show that $\int_a^b f(x)dx \ge \int_a^b g(x)dx$.
- 7. Let $f:[a,b]\to\mathbb{R}$ be a non-negative continuous function satisfying $\int_a^b f(x)dx=0$. Prove that f=0.

1. Let $f:[a,b]\to\mathbb{R}$ be continuous, and suppose $\int_a^b f(x)dx=0$. Prove that there exists a point $c\in[a,b]$ such that f(c)=0.

Hint: Use Problem 7 from HW 9.

2. Let $f:[a,b]\to\mathbb{R}$ be continuous. Prove that there exists $c\in[a,b]$ such that

$$\int_{a}^{b} f(x)dx = (b-a)f(c).$$

Hint: Use Problem 1.

3. Suppose g is Riemann-integrable on [a,b], and $f:[a,b]\to\mathbb{R}$ is a function such that f(x)=g(x) except at a finite number of points x. Prove that f is Riemann-integrable and

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

4. Let $f:[0,1]\to\mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational or zero} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ in lowest terms.} \end{cases}$$

(Here the second description means: if $x \in \mathbb{Q}$, $x \neq 0$, and $x = \frac{p}{q}$ where $p, q \in \mathbb{Z}_{>0}$ such that p and q have no common factors other than 1.)

Prove that f is Riemann-integrable on [0,1] and has integral zero.

- **5.** A function $f:[a,b] \to \mathbb{R}$ is called *piecewise-monotone* if there is a partition P of [a,b], on each subinterval of which f is either increasing or decreasing. Prove that every piecewise monotone function is Riemann-integrable.
- **6.** Give an example of a bounded function $f:[a,b]\to\mathbb{R}$ such that |f| is Riemann-integrable but for which $\int_a^b f(x)dx$ does not exist.

1. Let $f:(0,1] \to \mathbb{R}$ be a function, and suppose that f is Riemann-integrable on [c,1] for each c>0. Recall the definition of the improper integral:

$$\int_{0}^{1} f(x)dx := \lim_{c \to 0} \int_{c}^{1} f(x)dx$$

if this limit exists and is finite.

- (a) If f is Riemann-integrable on [0,1], show that this definition agrees with the old one.
- (b) Construct a function f such that the above limit exists, but it fails to exist with |f| in place of f.
- **2.** Let $\gamma_1:[a,b]\to\mathbb{R}^k$ be a path. Let $\phi:[c,d]\to[a,b]$ be a continuous, 1-1, onto map such that $\phi(c)=a$. Define $\gamma_2(s)=\gamma_1(\phi(s))$.
 - (a) Prove that γ_2 is a rectifiable curve if and only if γ_1 is a rectifiable curve.
 - (b) Prove that γ_2 and γ_1 have the same length.
- **3.** For any two real sequences $\{a_n\}$ and $\{b_n\}$ which are bounded below, show that

$$\lim \sup_{n \to \infty} (a_n + b_n) \leqslant \lim \sup_{n \to \infty} a_n + \lim \sup_{n \to \infty} b_n.$$

- **4.** Let $\{a_n\}$ be a sequence of real numbers. Prove that:
- (a) $\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$.
- (b) The sequence $\{a_n\}$ converges if and only if $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$ are both finite and equal, in which case, $\lim_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n$.
- **5.** Assume that $\{a_n\}$ and $\{b_n\}$ are two sequences such that $a_n \leq b_n$ for each n. Prove that $\limsup_{n \to \infty} a_n \leq \limsup_{n \to \infty} b_n$ and $\liminf_{n \to \infty} a_n \leq \liminf_{n \to \infty} b_n$.
- **6.** In each case, test for convergence of $\sum_{n=1}^{\infty} a_n$.

(a)
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 (b) $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$ (c) $a_n = (\sqrt[n]{n} - 1)^n$

1. Find the radius of convergence of each of the following power series:

(a)
$$\sum n^3 x^n$$

(b)
$$\sum \frac{2^n}{n!} x^n$$

2. Given that the power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence 2, find the radius of convergence of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} a_n^k x^n$$
, where k is a fixed positive integer.

(b)
$$\sum_{n=0}^{\infty} a_n x^{n^2}.$$

- **3.** Prove that every uniformly convergent sequence of bounded functions $\{f_n\}$ is uniformly bounded. That is, show that there is an M > 0 such that $|f_n(x)| \leq M$ for all x in the common domain S of the functions f_n and for all $n \in \mathbb{Z}_+$.
- **4.** Construct a sequence $\{f_n\}$ of functions on \mathbb{R} which converge pointwise to 0, but such that none of the functions f_n is bounded.
- **5.** If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n + g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.
- **6.** Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, such that $\{f_ng_n\}$ converges pointwise on E, but such that $\{f_ng_n\}$ does not converge uniformly on E.
- 7. (a) Let $f_n(x) = \frac{1}{nx+1}$ for $x \in (0,1)$ and n = 1,2,... Prove that $\{f_n\}$ converges pointwise but not uniformly on (0,1).
- (b) Let $g_n(x) = \frac{x}{nx+1}$ for $x \in (0,1)$ and n = 1, 2, ... Prove that g_n converges to 0 uniformly on (0,1).

Consider the set $\mathcal{C}([0,2\pi])$ of all continuous functions $f:[0,2\pi]\to\mathbb{R}$.

- **1.** Prove that $\mathcal{C}([0,2\pi])$ is a vector space over \mathbb{R} .
- **2.** Consider the function $\|\cdot\|_{\sup}: \mathcal{C}([0,2\pi]) \to \mathbb{R}$, given by

$$||f||_{\sup} := \sup\{f(x) : x \in [0, 2\pi]\}.$$

Prove that $\|\cdot\|_{\sup}$ defines a norm on the vector space $\mathcal{C}([0,2\pi])$.

3. Consider the metric d_{sup} on $\mathcal{C}([0, 2\pi])$ defined by

$$d_{\sup}(f,g) := \|f - g\|_{\sup}.$$

If $f, g \in \mathcal{C}([0, 2\pi])$ are defined by $f(x) = \sin(x)$, $g(x) = \cos(x)$, find the values of:

- (a) $||f||_{\sup}$ (b) $||g||_{\sup}$ (c) $d_{\sup}(f,g)$.
- **4.** Let $\{f_n\}$ be a sequence of functions defined on an interval I. Let $x \in I$ be a point and suppose that each f_n is continuous at x. Suppose that $\{f_n\}$ converges uniformly to f on I. Show that if $\{x_n\}$ is a sequence of points in I satisfying $x_n \to x$ as $n \to \infty$, then $f_n(x_n) \to f(x)$ as $n \to \infty$.

Is the conclusion still true if the convergence $f_n \to f$ is not uniform?

- 5. In class we proved that if $\{f_n\}$ is a sequence of functions which are Riemann-integrable on a compact interval [a,b], and $f_n \to f$ uniformly on [a,b], then $\lim_{n\to\infty} \int_a^b f_n(t)dt = \int_a^b f(t)dt$. Show that the theorem fails for improper integrals, by producing a sequence $\{f_n\}$ of continuous functions on $[0,\infty)$, such that each f_n vanishes outside a bounded interval, and such that $\int_a^b f_n(t)dt = 1$ for each n, but for which $\{f_n\}$ converges uniformly to 0 on $[0,\infty]$.
- **6.** Consider the sequence of functions $\{f_n\}$, where $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$.
- (a) Identify the pointwise limit function f.
- (b) Prove that the sequence $\{f_n\}$ converges uniformly to the limit function f.
- (c) Is f differentiable? What goes wrong? Does $\{f'_n\}$ converge uniformly?