- 1. Let H be a finite non-empty subset of a group G. If H is closed under multiplication then H is a subgroup of G.
- 2. Show that a subgroup of a cyclic group is cyclic.
- 3. Let G be a finite cyclic goup of order n. Show that for every divisor d of n, G has a unique subgroup of order d.
- 4. Compute:
 - a) $Hom(\mathbb{Z}|_{4\mathbb{Z}}, \mathbb{Z}|_{6\mathbb{Z}})$.
 - b) $Hom(\mathbb{Z}|_{4\mathbb{Z}}, \mathbb{Z}|_{7\mathbb{Z}})$
 - c) $Hom(\mathbb{Z}|_{4\mathbb{Z}},\mathbb{Z})$
- 5. Show that a group of order 4 is abelian.

- 1. Show that every continuous homomorphism from \mathbb{R} to itself is of the form $x \mapsto \alpha x$ for some fixed $\alpha \in \mathbb{R}$
- 2. Show that any finite subgroup of \mathbb{C}^* is cyclic.
- 3. Let G be an abelian group which has elements of order m, n. Show that G has an element of order lcm(m, n).
- 4. In the group $G = \mathbb{C}^*$, find the cosets of the subgroup $H = \{z \in G \text{ such that } |z| = 1\}$ and describe them geometrically.
- 5. Let H be a subgroup of G such that $x^2 \in H$ for all $x \in G$. Show that H is a normal subgroup and G/H is abelian.
- 6. Let G be a finite group. Suppose for all $x \in G$, there exists $y \in G$ such that $y^2 = x$, then G has odd order, and conversely.

- 1. Prove that the quotient group \mathbb{R}/\mathbb{Z} is isomorphic to the circle (with respect to multiplication).
- 2. Let H and K be subgroups of a group G of finite index. Show that $H \cap K$ also has finite index.
- 3. Let G be a finite group and H and K are subgroups of G. Prove that :

$$|HaK| = \frac{|H|K|}{|H \cap aKa^{-1}|}$$

for all $a \in G$.

- 4. Suppose H is a subgroup of G such that whenever $Ha \neq Hb$, then $aH \neq bH$. Show that H is normal in G.
- 5. Let G be a finite abelian group such that the number of solutions of $x^n = e$ is at most n for every positive integer n. Show that G is cyclic.

- 1. Show that $Z_4 \oplus Z_6 \simeq Z_2 \oplus Z_{12}$
- 2. Show that if G is a finite group and H is a proper subgroup of G, then G cannot be written as a union of conjugates of H.
- 3. Show that any finite group with more than 2 elements has a non-trivial automorphism.
- 4. Prove that any finite group of even order contains an element of order 2. Hint: Show that $t(G) = \{g \in G : g^2 \neq e\}$ has an even number of elements.
- 5. Show that if G/Z(G) is cyclic, then G is abelian.

- 1. Consider the action of the group of upper triangular matrices in $GL_n(\mathbb{R})$ (non-zero entries on the diagonal allowed) acting on $\mathbb{R}^n \{0\}$. Is this action : a) Faithful? b) Free? c) Transitive?
- 2. Show that if p is a prime and G is a group of order p^n , then for every m < n, G has a subgroup of order p^m .
- 3. Show that \mathbb{Z} is not isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
- 4. Let G be a group of order pn where p is a prime number and p > n. Show that if H is a subgroup of order p then it is a normal subgroup of G.
- 5. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing 56.

- 1. Show that $Z_4 \oplus Z_6 \simeq Z_2 \oplus Z_{12}$. (This was remaining from the earlier assignment)
- 2. Compute:
 - a) $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ for a prime p.
 - b) Aut($\mathbb{Z}/8\mathbb{Z}$).
- 3. Show that the dihedral group of order 8 is not isomorphic to the Quaternions.
- 4. Compute the center of the group D_{2n} .
- 5. Let G be a group of order p^n and let H be a proper subgroup of G. Show that there exists $x \in G H$ such that $xHx^{-1} = H$.

- 1. Show that the Quaternion group is not a semidirect product of two proper subgroups.
- 2. Show that if p is a prime, a group of order 2p is either cyclic or the dihedral group.
- 3. Describe the (unique) non-abelian group of order 21 using generators and relations.
- 4. Show that any group of order 75 is a semidirect product of two proper subgroups.
- 5. Show that product of two solvable groups is solvable.

- 1. Show that if \mathbb{Z}^r has an injective homomorphism to \mathbb{Z}^s , then $r \leq s$. Furthermore show that if such a homomorphism exists and r = s, then the image is a finite index subgroup of \mathbb{Z}^s .
- 2. Characterize those integers n for which all abelian groups of order n are cyclic.
- 3. List the elements of order 2 and 3 in $\mathbb{Z}_4 \oplus \mathbb{Z}_6$. Also find all the index 2 subgroups.
- 4. Prove that every finite abelian group is isomorphic to a direct product of cyclic groups of the form $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_r}$, where $n_i | n_{i+1}$ for $i = 1, 2, \cdots, r-1$. (Note that this was proved for p-groups in the lectures)
- 5. Show that \mathbb{Q} can be written as an increasing union of subgroups, each of which is a free group.

(Assume all rings are commutative with multiplicative identity)

- 1. Show that any ring automorphism of \mathbb{R} is identity.
- 2. If R is an integral domain, compute the unit group of R[X] and R[[X]].
- 3. Let $f: R \to R'$ be a ring homomorphism. Show that if I is an ideal in R', then $f^{-1}(I)$ is an ideal in R. Also show that if I is a prime ideal, so is $f^{-1}(I)$. Is the same true for maximal ideals?
- 4. Let X be a metric space and let $p \in X$ be a point. Let $\mathcal{C}(X)$ be the ring of all continuous real-valued continuous functions on X. Show that :
 - a) $\mathfrak{m}_p = \{ f \in \mathcal{C}(X) \mid f(p) = 0 \}$ defines a maximal ideal in $\mathcal{C}(X)$.
 - b) Show that if X is compact, every maximal ideal is of this type.
- 5. Give an example of a ring which is not a field but has a unique maximal ideal.

(Assume all rings are commutative with multiplicative identity)

- 1. Let X be a metric space and let $p \in X$ be a point. Let $\mathcal{C}(X)$ be the ring of all continuous real-valued continuous functions on X. Show that :
 - a) $\mathfrak{m}_p = \{ f \in \mathcal{C}(X) \mid f(p) = 0 \}$ defines a maximal ideal in $\mathcal{C}(X)$.
 - b) Show that if X is compact, every maximal ideal is of this type.

(This was pending from the previous tutorial)

- 2. Show that $\mathbb{Z}[X]$ is not a PID.
- 3. Given two rings R and S, show that every ideal in $R \times S$ is of the form $I \times J$ for some ideals $I \subset R$ and $J \subset S$. Which ones of these are prime ideals?