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CHAPTER 1

Introduction

There are many events that we can predict with certainty. Newto-
nian mechanics allowed physicists to accurately predict the motions of
planets, comets, distant stars and other celestial bodies with great ac-
curacy, while also allowing them to precisely determine the movements
of bodies on earth – projectiles, vehicles, pendula, rolling bodies and
ships. By 1814, Pierre-Simon Laplace wrote:

“We may regard the present state of the universe as the effect of its
past and the cause of its future. An intellect which at a certain moment
would know all forces that set nature in motion, and all positions of
all items of which nature is composed, if this intellect were also vast
enough to submit these data to analysis, it would embrace in a single
formula the movements of the greatest bodies of the universe and those
of the tiniest atom; for such an intellect nothing would be uncertain
and the future just like the past could be present before its eyes.”

In other words, if we know everything about our present state of
the universe, we can predict its evolution for all future time. There
is no room for chance or uncertainty. And yet, the paragraph above
appeared in an essay entitled “A Philosophical Essay on Probabilities”.

The idea that our present circumstances uniquely specify the future
is called determinism. Physics would not be done with the determinism
of Laplace’s demon, the name given to Laplace’s omniscient “intellect”
for another fifty years (or perhaps, it was determinism that would not
be done with physics). James Clerk Maxwell’s field theory, brought
moving charges and electromagnetic waves into the fold of the pre-
dictable.

The first challenge to determinism within physics was presented
by thermodynamics. It had become clear that the gross properties of
gases like pressure and temperature, the properties that we can actually
measure, are the cumulative result of billions of collisions every second
of the microscopic gas molecules. The motion of the molecules is cer-
tainly governed by Newton’s Laws but, as a practical matter, one can-
not possibly simultaneously measure the positions and velocities (not
to mention the forces acting on each of them) of the 1022 molecules in
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4 1. INTRODUCTION

a litre of air at standard temperature and pressure to then determine
their future course. No useful physics can possibly emerge from such
an approach. Much more succesful in explaining the laws of thermody-
namics was the application of statistical and probabilistic techniques
by Maxwell, Boltzman and Gibbs.

A more serious threat to determinism was the advent of quantum
mechanics. “Uncertainty” was literally built into Heisenberg’s theory
and Schrödinger’s equation, the equation which governs the motion of
all sub-atomic particles, is a partial differential equation for the wave
function Ψ, where |Ψ|2 represents merely the probability density of find-
ing a particle at a particular position in space, at a given time. Worse,
the very act of measurement disturbs the experiment. Heisenberg’s
Uncertainty Principle destroys the possibility that Laplace’s demon
could exist. It says that it is not possible to simultaneously measure
both the position and the momentum of a particle accurately, however
powerful your instruments. The accurate measurement of one quan-
tity forecloses the accurate measurement of the other (in mathematics
the Uncertainty Principle has a much more ordinary formulation – a
function and its Fourier transform cannot both have small support).
Probability thus becomes intrinsic to our understanding of the natural
world, not something we turn to, merely because we have exhausted
our finite resources.

Laplace is sometimes regarded as the first mathematician to take
probability really seriously, although the history of modern probability
is often thought to start with the correspondence between Blaise Pascal
and Pierre de Fermat in 1654 (see https://www.york.ac.uk/dep

ts/maths/histstat/pascal.pdf) where a version of the following
problem posed by Antoine Gambaud, known as the Unfinished Game,
was solved:

“Two gamblers, Blaise and Pierre, place equal bets on who will win the
best of five tosses of a fair coin. On each round, Blaise chooses heads,
Pierre tails. But they have to abandon the game after three tosses,
with Blaise ahead, 2 to 1. How do they divide the pot?”

For all the vaulting philosophy of our introduction, we can see that
the mathematical study of probability had a thoroughly disreputable
origin in gambling and games of chance.

Let us clarify what is meant by “How do they divide the pot?”.
It means the money they bet should be divided in proportion to the
probability that they would have won had all five rounds been played.

Solution: There are two remaining rounds of tosses. We use H for
heads and T for tails. There are four possible outcomes for the two

https://www.york.ac.uk/depts/maths/histstat/pascal.pdf
https://www.york.ac.uk/depts/maths/histstat/pascal.pdf
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coin tosses: HH, HT, TH and TT. Since Blaise needs only one more
head to win the game, three out of the four possible outcomes favour
him. Thus the money should be divided in the ratio 3 : 1 between
Blaise and Pierre.

In fairness to Pascal, he did not think of probability only in the
context of gambling. In philosophy he is known for the eponymous
“Pascal’s wager”:

“Pascal argues that belief in God is a gamble with infinite potential re-
wards (heaven) and finite potential losses (minor inconveniences in life).
Not believing, on the other hand, offers finite potential rewards (minor
enjoyments in life) but carries the infinite risk of eternal damnation.”

(From my AI overview search “Pascal’s wager”.)

The study of probability gathered steam in the seventeenth and
eighteenth centuries. Christian Huygens wrote the first major treatise
on the subject in 1657 and Jacob Bernoulli discovered (a special case
of) the law of large numbers in 1714. De Moivre and Bernoulli both
wrote texts placing probability on a sound mathematical footing. At
the same time, statistics and probability were finding more substan-
tial applications in the actuarial and annuities industries. John Gaunt
can lay claim to being the first applied probabilist. His methods al-
lowed for an estimation of the population of London in 1662, while
the Prime Minister Johan de Witt of the Dutch Republic used sta-
tistical technques in A Treatise on Life Annuities published in 1671.
Huygen’s extended Gaunt’s work and created the first continuous prob-
ability distribution. A continuous probability distribution arises in our
next example which is pretty frivolous in comparison to the questions
of mortality addressed by Gaunt and de Witt.

“Buffon’s needle problem is a question first posed in the 18th century
by Georges-Louis Leclerc, Comte de Buffon: Suppose we have a floor
made of parallel strips of wood, each the same width, and we drop a
needle onto the floor. What is the probability that the needle will lie
across a line between two strips?”

From https://en.wikipedia.org/wiki/Buffon%27s needle probl

em

Solution: We assume that the width of the strips of wood is 2 and the
length of the needle is 1 (our argument will work for arbitary widths
t and lengths `). In the picture below, the needle is represented by a
red line. The length of the blue segment is the distance of the end of
the needle from the nearest vertical line.

https://en.wikipedia.org/wiki/Buffon%27s_needle_problem
https://en.wikipedia.org/wiki/Buffon%27s_needle_problem
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Let d be the distance of the centre of the needle from the vertical
lines and θ the angle it makes with the vertical lines. What are all
the possible outcomes when throwing the needle? Clearly, we have
0 ≤ d ≤ 1 and 0 ≤ θ ≤ π. The area of this rectangle is π.

For one end of the needle to intersect a vertical line, d should not
exceed r/2 = sin θ

2
. Thus, the needle will cut one of the vertical lines

only if d ≤ sin θ
2

and π
2
≤ θ ≤ π

2
. This is the region between the graph

of the function d = sin θ
2

and the segment [0, π] of the x-axis. The area
of this region is given by ∫ π

0

sin θ

2
dθ = 1.

The ratio of the favourable outcomes to all possible outcomes is given
by 1

π
, and this is clearly the desired probability (in general, for strips of

width t and needles of length l, the probability of the needle intersecting
a vertical line will be 2

π
l
t
).

In both the historical examples I have discussed, I have implicitly
used the classical definition of probability first given by Laplace:

“The probability of an event is the ratio of the number of cases favourable
to it, to the number of all cases possible when nothing leads us to ex-
pect that any one of these cases should occur more than any other,
which renders them, for us, equally possible.”

In the Unfinished Game problem, this definition works without any
issues. But in Buffon’s needle problem the “ratio of the number of cases
favourable to it, to the number of all cases possible” is a ratio of two
uncountable infinities, which does not make any sense. We have used
another measure of the size of the sets involved, namely their areas.
This turns out to be quite a subtle business – the notion of area or
measure cannot be defined for all subsets - only for certain privileged
classes of subsets which are called measurable sets. It was Kolmogorov
in 1933 who laid down the modern measure theoretic foundations of
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probability. We will return to this issue several times in this course as
time permits.

Both the Unfinished Game and Buffon’s needle problem can be
viewed as examples of random or statistical experiments which we will
define as follows.

Definition 1.0.1. A random experiment is an experiment in which

(1) all possible outcomes of the experiment are known in advance,
(2) any performance of the experiment results in an outcome that

is not known in advance, and
(3) the experiment can be repeated under identical conditions.

Probability theory is the study of uncertainty in random experi-
ments. Mathematically, random experiments can be modelled as fol-
lows.

We are given a set Ω (of all possible outcomes) called the sample
space. We are also given a non-empty collection of subsets S of Ω.
This collection of subsets is called a σ-field and will be required to
satisfy certain properties (these are the measurable sets we made a
reference to above). The pair (Ω,S ) is called a sample space. An
element in S is called an event.

In the Unfinished Game problem, the sample space Ω is the set
{HH,HT, TH, TT}. The σ-field S is simply the power set of Ω and
the even we are interested in is E = {HH,HT, TH}.

In Buffon’s needle problem, Ω = [0, 1]× [0, π]. This is an uncount-
able set, and describing the relevant S in this case is complicated and
will be deferred to later in the course. The set we are interested in is
the subset of points E =

{
(d, θ) ∈ Ω | d ≤ sin θ

2

}
. It does lie in S , so it

is an event.
When the sample space is finite or countably infinite it is not easy

to be more precise without developing a lot of extra machinery. Ac-
cordingly, we study probability in this context first.

1.1. Discrete probability spaces

Definition 1.1.1. Let Ω be a finite or countable set. Let p : Ω→
[0, 1] be a function such that

∑
ω p(ω) = 1. The pair (Ω, p) is called a

discrete probability space.

• The set Ω is called the sample space.
• The values p(ω) are called elementary probabilities.

Definition 1.1.2. Let (Ω, p) be discrete probability space. A sub-
set A ⊂ Ω is called an event. The probability of the event A, denoted
P (A) is defined as P (A) :=

∑
ω∈A p(ω).
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Notice that the assignment A → P (A) gives a function P : S →
[0, 1].

Definition 1.1.3. A function X : Ω → R is called a random
variable.

Definition 1.1.4. The mean or expected value of a random vari-
able X is defined as the quantity E[X] =

∑
ω∈ΩX(ω)p(ω).

All of probability in one line (following Manjunath Krishnapur):

Take a probability space (Ω, p) and an interesting event A. Find P (A).

You might wonder why there is no mention of a collection S of
subsets when defining discrete probability spaces. This is because S =
P(Ω) in this case. In other words, all subsets of Ω are measurable.

We continue following Manjunath Krishnapur’s notes (see https:

//math.iisc.ac.in/~manju/UGstatprob18/Prob.pdf) with some
minor modifications of our own. It is very easy to find examples of
discrete probability spaces. Take any finite set and just assign non-
negative numbers to each element of the set so that the sum of these
numbers is 1.

Example 1.1.1. Ω = {0, 1} and p(0) = p(1) = 1
2
. There are our

possible events here:
∅, {0}, {1}, and Ω.

We have P (∅) = 0, P ({0}) = 1
2

= P ({1}) and P (Ω) = 1.

Example 1.1.2. Ω = {0, 1} and p(0) = q and p(1) = 1 − q. The
sample space and set of events are the same as in the previous example.
The probabilities of the our events are different, though:

P (∅) = 0, P ({0}) = q, P ({1}) = 1− q, and P (Ω) = 1.

Example 1.1.3. Fix a positive integer n. Let Ω = {0, 1}n, and
let p(ω) = 2−n. Clearly, |Ω| = 2n and the cardinality of the set of all
possible events is |P(Ω)| = 22n .

Let Ak = {(ω1, . . . , ωn) |
∑n

i=1 ωi = k}. Clearly |Ak| =
(
n
k

)
, if

0 ≤ k ≤ n, and |Ak| = 0 if k > n. Thus, P (A) =
(
n
k

)
2−n, if 0 ≤ k ≤ n,

and P (A) = 0 if n > k

It is useful to adopt the convention that
(
n
k

)
= 0 if k > n. Then,

in the previous example, we can simply write P (A) =
(
n
l

)
instead of

splitting the problem into two cases according to whether k > n or
k ≤ n.

What “real world” situation(s) is the discrete probability space
above modeling? One situation is the tossing of n fair coins. A second

https://math.iisc.ac.in/~manju/UGstatprob18/Prob.pdf
https://math.iisc.ac.in/~manju/UGstatprob18/Prob.pdf
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situation is the tossing of a single fair coin n-times (assuming, of course,
that any one toss of the coin has no bearing on the future tosses of the
coin).

Example 1.1.4. Let [m] denote the set of integers k such that
1 ≤ k ≤ m. Let Ω = [m]r, and p(ω) = m−r. Clearly |P(Ω)| = 2m

r
.

Here are some “interesting” events.

(1) A = {ω = (ω1, . . . , ωr) ∈ Ω |wr = 1}.
(2) B = {ω ∈ Ω |ωi 6= 1 for all 1 ≤ i ≤ r}.
(3) C = {ω ∈ Ω |ωi 6= ωj, if i 6= j}.

We can easily compute the size of the sets A, B and C.

• A: For each 1 ≤ i < r there are m possible choices we can
make for ωi, while ωr = 1 is fixed. Hence, |A| = mr−1 and
P (A) = 1

m
.

• B: For each 1 ≤ i ≤ r, there are (m−1) choices we can make.

Hence |B| = (m− 1)r and P (B) = (m−1)r

mr
=
(
1− 1

m

)r
.

• C: If r > m, this event cannot occur. If r ≤ m, there are m
possible choices for ω1, m − 1 choices for ω2 and so on, until
we reach ωr, for which there are m−r+1 choices. Thus |C| =
m(m− 1) · · · (m− r + 1) = m!

r!
, and P (C) = m(m−1)···(m−r+1)

mr
.

Again, what situations are being modelled by the discrete proba-
bility space Ω? What do the events A, B and C model?

• Let m = 2 and r = n. Then, this is the same as the previous
example.
• Let m = 6. Then, this is a model for throwing a fair die
r times, where ωi represents the outcome of the i-th throw.
Then A is the event in which 1 is the outcome on the last
throw, B the event that the number 1 is not the outcome of
any throw, and C occurs if no two of the throws produce the
same outcome.
• Suppose there are r balls with labels and m bins with labels.

The balls are put into the bins (one by one) “at random”. Let
ωi be the label of the bin in which the i-the ball is placed.
• The birthday “paradox”. Let m = 365, and suppose we choose
r people and record their birthdays. Let ωi be the birthday of
the i-the person. Assume that all days areequally likely to be
birthdays. Then C is the event that no two people have the
same birthday. If r = 23, one can check that

P (C) =
365

365

364

365
· · · 343

365
∼ 0.4927,
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and if r > 23, P (C) is even smaller. Thus the probability that
two of the 23 people have the same birthday is ∼ 0.5073, that
is, more that 1/2. It strikes most people as paradoxical that
choosing just 23 people gives one more than an even chance
of picking a pair with the same birthday, given that there are
365 possible birth dates. This is why this is referred to as
the birthday paradox. If we take r = 60, P (C) ∼ 0.4%, so it
is almost certain that two of the chosen people will have the
same birthday.

Example 1.1.5. Suppose we have a coin that is not fair: the prob-
ability of throwing heads is p and the probability of throwing tails is
q = 1 − p. We can model the act of tossing n such identical coins as
follows. The sample space will be Ω = [0, 1]n (where 0 stands for heads
and 1 stands for tails). The function p : Ω → R is now defined as
p(ω) = pkqn−k for any n-tuple ω which has exactly k zeros and exactly
n− k tails. There are

(
n
k

)
such tuples. Hence,∑

ω∈Ω

p(ω) =
n∑
k=0

(
n

k

)
pkqn−k = (p+ q)n = 1n = 1.

Thus (Ω, p) is a discrete probability space.
As before, we may also view this as a model for tossing a single coin

n times in succession, assuming that the act of tossing the coin does
not change the probability of obtaining heads or tails on subsequent
tosses.

The preceding examples may give the feeling that probability is only
used to analyse silly games involving coin tosses or throwing needles
on the floor. We give a more involved historical example that literally
involved life and death. Of course, being a really concrete problem, we
cannot get exact answers, but we can get very reasonable numerical
approximations under very reasonable additional hypotheses.

1.1.1. The Legend of Abraham Wald. I have taken the mate-
rial in this section from an article of Bill Casselman in the outreach sec-
tion of the website of the American Mathematical Society https://ww

w.ams.org/publicoutreach/feature-column/fc-2016-06#mangel

“The year is 1943. American bombers are suffering badly from German
air defense. The military decides it needs some advice on how to cut
losses, so they consult the wizards in the Statistical Research Group
at Columbia University to see what their best options might be. One
possibility is to use more armor on planes, but armor weighs a lot, and
adding too much would lower performance considerably. So the Air

https://www.ams.org/publicoutreach/feature-column/fc-2016-06#mangel
https://www.ams.org/publicoutreach/feature-column/fc-2016-06#mangel
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Force brass ask the SRG, how much armor should we use for optimal
results, and where should we put it?

“The SRG was one of several collaborating groups of scientists
formed soon after America joined the war. The story of its beginning,
in the summer of 1942, is told well in W. Allen Wallis’ autobiographical
memoir. The SRG was staffed by a distinguished lot, including many of
the most prominent statisticians of the post-war world, the economists
Milton Friedman and George Stigler–who were later to receive Nobel
Prizes in economics–and the mathematician Abraham Wald. Norbert
Wiener was at one time a consultant to the group. Recruitment to the
SRG was by an ”old-boy” network (to use a phrase also applicable to
that other successful war-time operation across the ocean at Bletchley
Park), but it prided itself on what we would call diversity.

“Wald was born in the former Austrian-Hungarian empire in 1902,
in the city now called Cluj. It advertizes itself as the unoffical capital
of Transylvania, which is now a part of Romania but inhabited in the
past largely by Hungarians, and Hungarian was Wald’s mother tongue.
He started his professional life in Vienna as a pure mathematician, but
became interested in the mathematics of statistics in the mid-thirties.
As a Jew, he was deprived of his academic position in Austria, and
like others in his situation was lucky to be able to move to the United
States. At the time the SRG was founded, he was on the faculty of
Columbia University, which is where the SRG was located, and he was
one of its first members. By all accounts, he was impressively bright–
“smartest man in the room,” says one recent book (but keep in mind,
most of the time there were many smart men in the room).

“The problem of armoring planes is assigned to Wald. Along with
the assignment, he is given a fair amount of statistical data regarding
aircraft damage, for example the location of damage from hits by enemy
aircraft. It happens that most of the damage is located on the fuselage
and very little in the area around motors, and the military is expecting
to add armor to the fuselage, where the density of hits is highest. “Not
so fast,” said Wald. “What you should really do is add armor around
the motors! What you are forgetting is that the aircraft that are most
damaged don’t return. You don’t see them. Hits by German shells are
presumably distributed somewhat randomly. The number of damaged
motors you are seeing is far less than randomness would produce, and
that indicates that it is the motors that are the weak point.” The advice
is taken, and in fact Wald’s techniques for interpreting aircraft damage
statistics continue through two later conflicts.

“We are given data, such as the number of hits, only on returning
aircraft. The question Wald asked–or perhaps the one he was asked to
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look at–was, “Given these data, what can we say about the probability
of surviving a given number of hits?” Not a complicated question, but
with a complicated answer. All we know about the planes that didn’t
return is ... that they didn’t return. In truth, there might be a number
of reasons for this, since–for example–a number of fatalities in the war
were from mechanical failure. Of course Wald had to be very careful. It
was in principle possible, one might suppose, that all downed airplanes
ran out of gasoline. The point is that this was extremely unlikely. In
other words, any answer to the question is complicated by the missing
data associated to planes that were downed. Wald could only calculate
his probabilities by making certain reasonable assumptions, and being
very, very careful about how the assumptions played a role in results.
In all his works on statistics, in fact, he was renowned for being very,
very careful with assumptions.

“His first simplifying assumption is that planes are downed because
of enemy fire. Rather than mechanical failure, say.

“What data did Wald have to work with? This seems to have
varied from time to time, but at the least, in so far as this problem was
concerned, he was given the number of planes sent out on missions,
the number returning, and the number of hits on each plane that came
back.”

Let N be the total number of planes on a mission. Let S be the
number of planes that return (survivors) and L be the number of planes
that do not return (losses), so N = S + L. Let Ni, Si and Li be the
corresponding numbers of planes with exactly i hits. Clearly,

L =
∑
i

Li = N − S, Ni = Si + Li, and L0 = 0,

the last assertion following from the fact that we are assuming that all
planes that are lost are lost because they have been hit by enemy fire.
Problem: Find Li, or at least give some kind of estimate for these
numbers.
Wald’s solution: Let pi be the (conditional) probability that a plane
goes down on the i-the hit having survived i − 1 hits. Let N≥i =∑

j≥iNj. Then pi = Li/N≥i. We can rewrite this as

Li = pi
∑
j≥i

Nj = pi

(
N −

∑
j<i

Nj

)
= pi

(
N −

∑
j<i

Sj −
∑
j<i

Lj

)
.

Now the numbers Si are all known, and we know that L0 = 0. It follows
that we can solve for the Li inductively if we can estimate the numbers
pi.
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Now, the number of hits on an airplane is bounded, that is, N≥n = 0
for some n. Let qi = 1− pi be the probability of surviving i hits given
that there are at least i hits. Then

qi =
N≥i − Li
N≥i

Note that N≥i − Li = N≥i+1 + Si. Cross multiplying and rearranging
the terms, we get

N≥i =
N≥i+1

qi
+
Si
qi
.

This gives us a descending inductive formula which we can solve since
we know that N≥n+1 = 0. In particular, we have Sn = qnN≥n, so we
find (inductively) that

N≥0 = N =
Sn

q1 · · · qn
+ · · ·+ S1

q1

+ S0.

We can divide throughout by N , to write

sn
q1 · · · qn

+ · · ·+ s1

q1

= 1− s0,

where si = Si/N . This last equation is called Wald’s basic equation.
It can be used to estimate the qi (and hence, the pi) as Wald did, for
instance, in the worst case scenario.

To simplify the problem, assume that all the probabilities qi are
equal. Surely hits weaken an aircraft – definitely q1 ≥ q2 ≥ · · · ≥ qn
– but perhaps not by too much. This means that q1 · · · qn = qn. With
this assumption, Wald’s basic equation becomes

s1

q
+ · · · sn

qn
= 1− s0.

In the AMS article we have referred to we know that n = 5 - there are no
planes with more bullets. We are also given the values s0 = 0.20, s1 =
0.080, s2 = 0.050, s3 = 0.010, s4 = 0.005, s5 = 0.005. With the numeri-
cal data provided, this gives q = 0.85 (we can use the Newton-Raphson
method to solve the resulting degree 5 equation).

1.2. Countable sample spaces

So far, all our examples of discrete probability spaces have involved
only finite sample spaces. We give an example where the sample space
Ω needs to be countable.
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Example 1.2.1. We have a coin for which the probabilities for
heads and tails occurring after a coin toss are p and q = 1 − p re-
spectively. The experiment is to toss the coin repeatedly until a head
appears. As usual we will denote “heads” by 1 and “tails” by 0.

We let 0k1 denote the outcome of k tails followed by a head when
the coin is tossed k + 1 times. We 0∗ be the sequence consisting of all
tails. Let

Ω = {0, 011, 021, . . . , 0k1, . . .} ∪ {0∗}.
We define p(0) = p, p(0k1) = qkp and p(0∗) = 0. One checks easily
that

∑
ω p(ω) = 1. An (interesting) event is the event A such that at

least n tails fall before we get a head. Then

p(A) =
∞∑
k=0

p(0n+k1) =
∞∑
k=0

qn+kp = qn.

Let (Ω, p) be a discrete probability space. As part of the definition,
we require that

∑
ω∈Ω p(ω) = 1. When Ω is a countably infinite set,

we need to say what is meant by this sum. We can proceed as follows
guided by the example above.

Since Ω is countable, there is a bijection i→ ωi between N and Ω.
We may thus define ∑

ω∈Ω

p(ω) :=
∞∑
n=1

p(ωn).

There are many possible bijections between N and Ω and we should
check that our definition does not depend on the choice of bijection.
This boils down to proving the following lemma.

Lemma 1.2.1. Let {an}n∈N be a sequence of non-negative real num-
bers and let σ : N → N be a bijection. If

∑∞
n=1 an converges, then∑∞

n=1 aσ(n) also converges and
∞∑
n=1

aσ(n) =
∞∑
n=1

an.

Thus the lemma asserts that rearranging the terms of a convergent
series with positive terms produces a convergent series with the same
limit.

Proof. Let Sk =
∑k

n=1 an for k ∈ N and let limk→∞ Sk = S. Since
Sk is a monotonically increasing sequence, we know that Sk ≤ S for all
k ∈ N.

Let Tm =
∑m

n=1 aσ(n), m ∈ N. There exists N(m) ∈ N such that

σ(n) ≤ N for all n ≤ m. It follows that Tm ≤ SN(m) =
∑N

n=1 an.
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Now Sk is a monotonically increasing sequence which converges to
its least upper bound S. Hence, Tm ≤ SN(m) ≤ S is a monotoni-
cally increasing sequence bounded above. Thus, Tm converges, and
limm→∞ Tm ≤ limm→∞ SN(m) = S.

By reversing the roles of Tm and Sk in the argument above, we see
that limk→∞ Sk ≤ limk→∞ Tm(k), for a suitable subsequence m(k) of N,
whence limm→∞ Tm = S. �

We will not always be in a situation where only non-negative num-
bers occur. For instance, when computing the expectation of a random
variable X which takes negative values, we will be confronted with sums
of the form

∑∞
n=1 X(ωn)p(ωn), where the terms of the series may be

negative. In this case, we cannot necessarily rearrange the series and
expect the same result.

Example 1.2.2.

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · ,

and
1

2
log 2 =

1

2
− 1

4
+

1

6
− 1

8
+ · · ·

Adding the two equations and rearraning the terms, we see that 3
2

log 2 =
log 2, so log 2 = 0, which is absurd.

Definition 1.2.2. We say the series
∑∞

n=1 an converges condition-
ally if it converges and if

∑∞
n=1 |an| =∞.

The series for log 2 is an example of a series that converges condi-
tionally. The following theorem says that when we have a conditionally
convergent series, we can rearrange the terms so that the series sums
up to any prescribed real number.

Theorem 1.2.3 (Riemann). Let
∑∞

n=1 an be a conditionally con-
vergent series and let S ∈ R. There exists a bijection σ : N → N such
that

∑∞
n=1 aσ(n) converges to S.

Remark 1.2.4. In fact, we can take m = ∞ or m = −∞ and
theorem above remains valid. We can also rearrange the series so that
it remains bounded but fails to converge to any limit.

Exercise 1.2.1. Prove Theorem 1.2.3.

Thus, to meaningfully define the expectation of a random variable
on a countable sample space, we cannot use sequences that are merely
convergent.
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Definition 1.2.5. A series
∑∞

n=1 an is said to be absolutely con-
vergent if

∑∞
n=1 |an| converges.

Exercise 1.2.2. Show that an absolutely convergent series is con-
vergent.

Theorem 1.2.6. Let
∑∞

n=1 an be an absolutely convergent sequence
converging to S. Show that for any bijection σ : N → N,

∑∞
n=1 aσ(n)

converges and equals S.

Exercise 1.2.3. Use Lemma 1.2.1 to prove this theorem.

Given a sequence of real numbers an we can define an+ = max{an, 0}
and an− = max{−an, 0}. The advantage of dealing with an+ and
an− is that they are sequences of non-negative real numbers. Clearly
an = an+ − an−. We can formulate the following alternative definition
of an absolutely convergent series as follows. The series

∑∞
n=1 an con-

verges absolutely if and only if the series
∑∞

n=1 an+ and
∑∞

n=1 an− both
converge.

Let (Ω, p) be a discrete probability space. The function P : P(Ω)→
[0, 1] satisfies the following properties, which are sometimes called the
basic rules for probability. They are more or less simple consequences
of our definitions.

Proposition 1.2.7. Let {An}n∈N be a countable collection of sub-
sets of Ω.

(P1) P (∅) = 0 and P (Ω) = 1,
(P2) P (∪∞n=1An) ≤

∑∞
n=1 P (An), and

(P3) P (∪∞n=1An) =
∑∞

n=1 P (An), if Ai ∩ Aj = ∅ for all i 6= j,
i, j ∈ N.

Exercise 1.2.4. Prove Proposition 1.2.7.

Exercise 1.2.5. Suppose that {An}n∈N be a sequence of subsets of
Ω which are non-decreasing, that is, An+1 ⊇ An for all n ∈ N. Show
that

lim
n→∞

P (An) = P

(
∞⋃
n=1

An

)
.

This property is known as continuity of probability from below. Deduce
as a corollary that if {An}n∈N is a non-increasing sequence of subsets
of Ω, that is, An+1 ⊆ An for all n ∈ N, then

lim
n→∞

P (An) = P

(
∞⋂
n=1

An

)
.

This property is known as continuity of probability from above.
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Exercise 1.2.6. Let Ω = Z and let p(0) = 0 and p(k) = c
5|k|

.
Determine the value of c so that (Z, p) is a discrete probability space.

1.3. Rules for counting and probability

We continue to borrow liberally from Manjunath Krishnapur’s notes.
We will derive a few simple identities for probability using basic set
theory and counting arguments. The first is the inclusion-exclusion
formula.

Theorem 1.3.1. Let (Ω, p) be a discrete probability space and let
A1, . . . An be a collection of events and let

Sk =
∑

1≤i1<i2<···<ik≤n

P (Ai1 ∩ Ai2 ∩ · · ·Aik)

for 1 ≤ k ≤ n. Then

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1Sk. (1.3.1)

Proof. Let A =
n⋃
i=1

Ai. Then the left hand side of (1.3.1) is P (A).

By definition

P (A) =
∑
ω∈Ω

1Ap(ω),

where 1A denotes the indicator function of A. We also have

P (Ai1 ∩ Ai2 ∩ · · ·Aik) =
∑

ω∈Ai1∩Ai2∩···Aik

p(ω) =
∑
ω∈Ω

p(ω)
k∏
j=1

1Aij (ω).

Thus, the right hand side of (1.3.1) is given by

n∑
k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

∑
ω∈Ω

p(ω)
k∏
j=1

1Aij (ω)

=
∑
ω∈Ω

n∑
k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

p(ω)
k∏
j=1

1Aij (ω)

= −
∑
ω∈Ω

p(ω)
n∑
k=1

∑
1≤i1<i2<···<ik≤n

k∏
j=1

(−1Aij (ω))

= −
∑
ω∈Ω

p(ω)

(
n∏
l=1

(1− 1Al(ω))− 1

)
.
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If ω ∈ A, ω ∈ Ai for at least 1 ≤ i ≤ n. It follows that the expression
in the large parentheses above is identically −1. If ω /∈ A, the expres-
sion is identically zero. It follows that the sum above is nothing but∑

ω∈Ω 1Ap(ω), and this proves the desired result. �

We obtain the usual inclusion-exclusion formula for sets as a corol-
lary.

Corollary 1.3.2. If A1, . . . , An, is a collection of finite sets,∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ =
n∑
k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

|(Ai1 ∩ Ai2 ∩ · · ·Aik)|

Proof. We can take Ω = A and p(ω) = 1
|A| in the theorem and

the corollary follows immediately. �

Exercise 1.3.1. We retain the notation of the theorem for this
exercise. We are interested in calculating the probability of at least m
of the events Ai, 1 ≤ i ≤ n, occurring. Let

Bm =
∑

1≤i1<i2<···<im≤n

Ai1 ∩ Ai2 ∩ · · ·Aim .

Find expresssions for P (Bm) and P (Bm \ Bm+1), the latter being the
probability that exactly m events

Example 1.3.1. Let us return to Example 1.1.4 and view it as
modeling the situation where r labelled (or distinguishable) balls are
being randomly placed in m labelled bins (or urns). Recall that Ω =
[m]r and p(ω) = m−r in this case. Further, ωi is the label of the bin in
which the i-th ball is placed.

Let A be the event that some urn is empty. We are interested
in calculating P (A). Let Al = {ω ∈ Ω |ωi 6= l, 1 ≤ l ≤ r}. Then
A = ∪ml=1Al. We have

P (Ai1 ∩ Ai2 ∩ · · ·Aik) = (m− k)rm−r =

(
1− k

m

)r
.

Note that if k = r, we have P (Ai1 ∩ Ai2 ∩ · · ·Air) = 0, since all the
bins cannot be empty. There

(
m
k

)
such intersections, so using (1.3.1),

we obtain the formula

P (A) =
m−1∑
k=1

(−1)k−1

(
m

k

)(
1− k

m

)r
.

Example 1.3.2. We continue with the probability space from Ex-
ample 1.1.4, but now study the event C more closely. Let σ : [m]→ [m]
be a permutation, that is, a bijective map between [m] and itself. Let
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Ω = Sm be the set of all permutations, so |Ω| = m! and we will set
p(ω) = 1

m!
. Let A be the event that σ(i) 6= i for all 1 ≤ i ≤ m. We

would like to find P (A). Let Al be the event that σ(l) = l. Then,
A′ = ∪ml=1Al (here A′ is the complement of A). Clearly,

P (Ai1 ∩ Ai2 ∩ · · ·Aik) =
1

m(m− 1) · · · (m− k + 1)
.

As before, there are
(
m
k

)
of choosing such intersections, and we must

take the sum upto m. Hence, using (1.3.1), we obtain
m∑
k=1

(−1)k−1

(
m

k

)
1

m(m− 1) · · · (m− k + 1)
=

m∑
k=1

(−1)k−1 1

k!
.

This is the partial m-th sum for the number 1− 1
e
. If we take m to be

large we will get a very good approximation to this number. We have
P (A) = 1− P (A′) ≈ 1

e
= e−1 ≈ 0.3679.

Permutations that fix no number are called derangements. The
inclusion-exclusion principle has provided a method of counting the
number of derangements and thus estimating the probability of finding
a derangement. We see that as m → ∞ this probability approaches
e−1

To quantify how well this sum approximates e−1 we can use Tay-
lor’s theorem. Recall that the real point of Taylor’s theorem is that it
provides us with a remainder term which can be estimated quite well
in many cases. In the case at hand, we have for f(x) = e−x

e−x =
m∑
k=0

(−1)k
xk

k!
+

(−1)m+1e−c

(m+ 1)!
,

for some 0 < c < 1. Now e−c < 1, so the remainder is majorised by
1

(m+1)!
, which becomes very small, very rapidly, as m grows.

Exercise 1.3.2. Take two decks of 52 playing cards, shuffle each of
them (well) and lay them face down. We draw the first card from each
deck and compare them, the second card from each deck and compare
them and so on. If ρ(i) is the i-th card from the first deck and τ(i)
is the i-th card from the second deck, what is the probability that the
i-th cards do not match for all 1 ≤ i ≤ 52?

The reason the inclusion-exclusion formula is useful is because it
is sometimes easier to calculate the probabilities of the intersections
of collections of sets as the examples above show. Even if one cannot
calculate the probabilities exactly one can often give reasonable esti-
mates. These estimates can be even more useful in conjunction with
the Bonferroni inequalities.
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Proposition 1.3.3. With notation as in Theorem 1.3.1, but taking
m ≤ n, we get

P (A) ≤
m∑
k=1

(−1)k−1Sk if m is odd, and

P (A) ≥
m∑
k=1

(−1)k−1Sk if m is even.

Exercise 1.3.3. Prove Proposition 1.3.3 imitating the ideas in the
proof of Theorem 1.3.1.

As an application of Proposition 1.3.3 we return to situation of
Example 1.3.1.

Example 1.3.3. Recall that in Example 1.3.1 we had calculated

P (A) =
m−1∑
k=1

(−1)k−1

(
m

k

)(
1− k

m

)r
.

We take n = 1, 2 in Proposition 1.3.3, to obtain

m

(
1− 1

m

)r
−
(
m

2

)(
1− 2

m

)r
≤ P (A) ≤ m

(
1− 1

m

)r
when m is at least 3. For r = 40 and m = 10, we get 0.1418 < P (A) <
0.1478.

Exercise 1.3.4. Consider a population of n elements. Show that
the number of ways in which the population can be partitioned into k
subpopulations of sizes r1, r2, . . . , rk, respectively, with r1 + r2 + · · · +
rk = n, 0 ≤ ri ≤ n, is given by(

n

r1, r2, . . . , rk

)
=

n!

r1!r2! · · · rk!
.

Exercise 1.3.5. An urn contains R red and W white marbles.
Marbles are drawn from the urn one after another without replacement.
Let Ak be the event that a red marble is drawn for the first time on
the k-th draw. Find P (Ak).

Let p be the proportion of red marbles in the urn before the first
draw. Show that P (Ak)→ p(1− p)k as R +W →∞.

For the first part:

P (Ak) =
R

R +W − k + 1

k−1∏
i=1

W − i+ 1

R +W − i+ 1
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Exercise 1.3.6. Out of a class of 125 students, 20 play cricket,
50 play football, and 52 play tennis. Further, 17 play both cricket
and football, 19 play both football and tennis, and 7 play both cricket
and tennis. If 6 play all three games, then find the probability that a
randomly selected student plays NONE of these games.

Exercise 1.3.7. An absent-minded secretary places n letters at
random in n envelopes. What is the probability that every single letter
is misplaced?

1.4. Independence and Conditional Probability

Once again, we borrow heavily from Manjunath Krishnapur’s notes.

Definition 1.4.1. Let (Ω, p) be a (discrete) probability space and
let A and B be events. We will say that A and B are independent
events if P (A ∩B) = P (A)P (B).

Example 1.4.1. Recall that the probability space associated to
tossing a fair coin n-times is give by (Ω, p), where

Ω = {ω = (ω1, . . . , ωn) |ωi ∈ {0, 1}}
and p(ω) = 2−n. Let A = {ω ∈ Ω |ω1 = 0} and B = {ω ∈ Ω |ω2 = 0}.
Clearly, |A| = 2n−1 = |B|, so P (A) = 1/2 = P (B). Now |A∩B| = 2n−2.
Thus P (A ∩ B) = 1/4 = P (A)P (B). Thus A and B are independent
events.

The definition of independence is supposed to model the following
situation. If we have two physical processes ( tossing a coin repeatedly,
tossing several different identical coins, or throwing two different dice)
which do not affect each other in any way, then they should constitute
independent events.

Example 1.4.2. Let Ω = {(i, j) | 1 ≤ i, j ≤ 6} and let p(ω) = 1/36
for all ω ∈ Ω. This probability space obviously models the throw of 2
six-sided dice. Let

A = {(i, j) | i is odd}
B = {(i, j) | j = 1, 6} and

C = {(i, j) | i+ j = 4}.

It is easy to see that P (A ∩B) = 1/6 = 1/2× 1/3 = P (A)P (B), so A
and B are independent events. On the other hand, P (A∩C) = 1/18 6=
1/2× 1/12 = P (A)P (C). Thus, we see that A and C are not mutually
indpendent events.
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The intuition is clear here. The event A has to do with what hap-
pens to the first die and the event B has to do with what happens to
the second die, and presumably how one die rolls has nothing to do
with how the other die rolls. On the other hand, the event C depends
on the outcomes of both dice, so should not be independent of either
A or B.

In practice, the only way to show that events are independent is to
calculate the relevant probabilities and show that they multiply when
we take intersections, so it might seem that there is no real point to
this definition. However, as we will see, when collections of events are
known (or shown) to be independent, certain other collections can also
be shown to be independent. The exercise below provides the simplest
such example.

Exercise 1.4.1. Show that if A and B are independent events in
(Ω, p), then

(1) A′ and B are independent (and, by symmetry, A and B′ are
independent), and

(2) A′ and B′ are independent.

Definition 1.4.2. Let (Ω, p) be a (discrete) probability space and
let A and B be events. We will say that the events {Ak}, 1 ≤ k ≤ n,
are mutually independent events if given any subcollection of events
Ak1 , Ak2 , . . . Akr , 1 ≤ r ≤ n,

P (Ak1 ∩ Ak2 · · · ∩ Akr) = P (Ak1)P (Ak2) · · ·P (Akr).

Example 1.4.3. A biased coin is tossed until a head appears for
the first time. Let p be the probability of a head, 0 < p < 1. What is
the probability that the number of tosses required is odd? Even?

Exercise 1.4.2. Let A1, A2, . . . , An be a collection of (mutually)
independent events with P (Ak) = pk. Show that the probability of m
or more of the events occurring simultaneously is less than or equal to

(p1 + · · · pn)m

m!
.

Solution: Let M be the set of tuples 1 ≤ i1 < i2 · · · < im = n. For a
given tuple I ∈M , we set

AI = Ai1 ∩ Ai2 ∩ · · · ∩ Aim .

We are interested in the event A =
⋃
I∈M

AI . Because the events are

independent, P (AI) = P (Ai1)P (Ai2) · · ·P (Aim). By Bonferroni’s in-
equality (or, even more easily, by the second of the rules of probability
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that we stated),

P (A) ≤
∑
I∈M

P (AI) ≤
∑
I∈M

P (Ai1)P (Ai2) · · ·P (Aim) ≤ (p1 + p2 + · · ·+ pn)m

m!
.

Example 1.4.4. Let Ω = {0, 1}n and let p(ω) = 2−n for all ω ∈ Ω,
n ≥ 2. We define the following events:

A = {ω ∈ Ω |ω1 = 0}
B = {ω ∈ Ω |ω2 = 0}
C = {ω ∈ Ω |ω1 + ω2 = 0 or2}

It is easy to see that P (A) = 1/2 = P (B) and P (A ∩ B) = 1/4 =
P (A)P (B). Similarly, P (C) = 1/2 and P (A∩C) = 1/4 = P (B∩C), so
A, B, and C are pairwise independent events. However, P (A∩B∩C) =
1/4 6= P (A)P (B)P (C) = 1/8. Hence, A,B,C is not a collection of
(mutually) independent events.

Definition 1.4.3. Let (Ω, p) be a discrete probability space and
let A and B be events with P (B) 6= 0. The conditional probability
P (A |B) of A given B is defined as

P (A |B) =
P (A ∩B)

P (B)
.

Conditional probability reflects the fact that in real life, we often
receive new information relevant to our experiment and we usually
update the probabilities accordingly.

Example 1.4.5. Suppose we have two urns. Suppose urn 1 contains
one red ball R11 and two black balls B11 and B12, and suppose urn 2
contains one black ball B21 and two red balls R21 and R22. red balls. A
fair coin is tossed. If a head turns up, we draw a ball at random from
urn 1 and if a tail turns up we draw a ball at random from urn 2. Let
A be the event that the ball drawn is black.

The sample space Ω can be thought of as the set of pairs

{(H,R11), (H,B11, (H,B21), (T,R21), (T,R22), (T,B21)}.
Here, the first coordinate keeps track of whether heads or tails appeared
and the second tracks which ball has been picked. Clearly the event A
corresponds to having Bij in the second coordinate for some i, j. There
are exactly three such pairs out of six, so P (A) = 1/2.

Another way of thinking of the conditional probability P (A |B) is
the following. We are given that the event B has already occurred and
are trying to now estimate the probability that A will occur. We can
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do this by replacing the sample space Ω by the sample space B, since
we need only look at this subset of outcomes. Further, if A is to occur,
given that B has already occurred, this means that A ∩B will occur.

Given two events A and B, we have

P (A ∩B) = P (B)P (A |B) = P (A)P (B |A).

This allows us to state Bayes’ Theorem or Bayes’ Rule.

Theorem 1.4.4. Given two events A and B, we have

P (A |B) =
P (A)P (B |A)

P (B)
. (1.4.1)

Example 1.4.6. The Monty Hall Problem (from Craig F. Whitaker’s
letter quoted in Marilyn vos Savant’s “Ask Marilyn” column in Parade
magazine in 1990, see https://en.wikipedia.org/wiki/Monty Hal

l problem#cite ref-FOOTNOTEvos Savant1990a 3-1):

“Suppose you’re on a game show, and you’re given the choice of three
doors: Behind one door is a car; behind the others, goats. You pick
a door, say No. 1, and the host, who knows what’s behind the doors,
opens another door, say No. 3, which has a goat. He then says to you,
”Do you want to pick door No. 2?” Is it to your advantage to switch
your choice?”

More explicitly, the host is bound by the following rules:

(1) The host must always open a door that was not selected by
the contestant.

(2) The host must always open a door to reveal a goat and never
the car.

(3) The host must always offer the chance to switch between the
door chosen originally and the closed door remaining.

Let A be the event that the car is behind the door chosen initially
by the contestant. Call this door, D1. Let D2 and D3 be the other two
doors. Let B be the event that Monty Hall (the host) chooses D2 (and
reveals a goat). Since the contestant has no information initially, each
of the doors is equally likely to have the car. Hence P (A) = 1/3. If
A has occurred, the host can open either of the remaining doors with
equal probability to reveal a goat, so P (B |A) = 1/2, since Monty Hall
can choose either D2 or D3 with equal probability.

What is P (B)? The contestant chooses any given door with prob-
ability 1/3. By hypothesis, the car is behind D1. As we have seen
above, the probability that Monty Hall chooses D2 is 1/3 · 1/2 = 1/6.
If the contestant has chosen D2, then Monty Hall cannot choose D2,
so the probability of D2 being chosen is 1/3 · 0 = 0. Finally, if the

https://en.wikipedia.org/wiki/Monty_Hall_problem#cite_ref-FOOTNOTEvos_Savant1990a_3-1
https://en.wikipedia.org/wiki/Monty_Hall_problem#cite_ref-FOOTNOTEvos_Savant1990a_3-1
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contestant has chosen D3 then Hall must choose D2 (to open) with
probability 1/3 · 1. Thus, P (B) = 1/6 + 1/3 = 1/2. It follows that

P (A |B) = 1/6
1/2

= 1/3. Thus, the contestant has a probability of only

1/3 of winning the car if she sticks to her choice. Switching her choice
to D3 is to the advantage of the contestant, since she has a probability
of 2/3 of winning the car.

The rule above generalises as follows.

Theorem 1.4.5. Let {An}n∈N be a countable collection of pairwise
disjoint events which are mutually exhaustive, that is ∪∞n=1An = Ω.
Then

(1) For any event B,

P (B) =
∞∑
n=1

P (B |An)P (An),

and
(2) if P (B) > 0, then

P (Ak |B) =
P (Ak)P (B |Ak)∑∞
n=1 P (An)P (B |An)

.

Often useful in this context is the multiplication rule.

Proposition 1.4.6. Let A1, . . . , An be a finite collection of events
such that P (∩nk=1Ak) 6= 0. Then,

P (∩nk=1Ak) = P (A1)P (A2 |A1)P (A3 |A1 ∩ A2) · · ·P (An | ∩n−1
k=1 Ak)}.

Exercise 1.4.3. Prove the above proposition.

1.5. Model answers

Exercise 1.5.1. Show that if A and B are independent events is
in a probability space (Ω, p), then so are A′ and B.

Solution: Since B and B′ are mutually exclusive and exhaustive, we
have

P (A′ ∩B′) + P (A ∩B′) = P (B).

Hence,
P (A′ ∩B) = P (B)(1− P (A)) = P (B)P (A′).

Exercise 1.5.2. Suppose U1 is an urn with one white marble and
two black marbles, U2 is an urn with two white marbles and one black
marble, and U3 is an urn with three white and three black marbles. A
six-sided die is thrown. If 1, 2 or 3 is thrown, U1 is selected. If 4 is
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thrown, U2 is selected, and if 5 or 6 is thrown, U3 is selected. A marble
is drawn at random from the selected urn. Calculate the probability
that U2 was the selected urn, given that a while marble was drawn.

Solution: Let Ei be the event that the urn Ui is selected, i = 1, 2, 3.
Let A be the event that a white marble is drawn. We need to calculate
P (E2 |A).

The events E1, E2 and E3 are mutually exclusive and exhaustive.
Hence,

P (A) = P (A ∩ E1) + P (A ∩ E2) + P (A ∩ E3)

P (A ∩ E1) = P (A |E1)P (E1) = 1/3 · 1/2 = 1/6,

P (A ∩ E2) = P (A |E2)P (E2) = 2/3 · 1/6 = 1/9,

P (A ∩ E3) = P (A |E3)P (E3) = 1/2 · 1/3 = 1/6.

It follows that P (A) = 1/6 + 1/9 + 1/6 = 4/9. Since the events Ai are
mutually exclusive and exhaustive, P (E2 |A)

=
P (E2 ∩ A)

P (A)
=

P (E2 ∩ A)

P (A ∩ E1) + P (A ∩ E2) + P (A ∩ E3)
=

1/9

4/9
= 1/4.

Exercise 1.5.3. The probability of a family chosen at random hav-
ing exactly k ≥ 1 children is αpk, 0 < p < 1. The probability of a child
having blue eyes is 0 < b < 1. Find the probability that a family chosen
at random has exactly r children with blue eyes.

Solution: Let Fk be the event that a family with exactly k children
has been chosen. Let Br be the event that a family chosen at random
has exactly r (r ≥ 1) children with blue eyes. We wish to find Br.

We first find P (Br

⋂
Fk) for a fixed k ≥ 1. We have P (Br

⋂
Fk) =

P (Br |Fk)P (Fk). Given a family with k children, there exists
(
k
r

)
possible subsets of r children. The probability that all the children
in each such subset have blue eyes is pr, and the probability that
no child outside of the subset has blue eyes is (1 − p)k−r. Hence,
P (Br |Fk) =

(
k
r

)
pr(1− p)k−r, so

P (Br ∩ Fk) =

(
k

r

)
br(1− b)k−r · αpk = α(bp)r

(
l + r

r

)
[p(1− b)]l,

where k = r + l, l ≥ 0 (recall our convention that
(
k
r

)
= 0, if k < r).

Since the Fk are mutually exclusive events, and ∩∞k=1 ⊇ Br, we have

P (Br) =
∞∑
l=0

P (Br

⋂
Fr+l) = α(bp)r

∑∞
l=0

(
l+r
l

)
[p(1− b)]l,
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where we have used
(
l+r
r

)
=
(
l+r
l

)
to write the last equality.

Exercise 1.5.4. Show that N× N is countable.

Solution: The map n → (n, 0) is an injection from N to N × N.
Consider the f(m,n) = 2m3n from N × N to N. We claim that f is
injective. If 2m13n1 = 2m23n2 , then 2m1−m2 = 3n1−n2 . By the unique
factorisation of integers into prime numbers, m1 = m2 and n1 = n2.
Hence, f is injective. By the Schroeder-Bernstein theorem, N × N is
countable.

Exercise 1.5.5. If
∑∞

n=1 |an| is convergent, then so is
∑∞

n=1 an.

Solution: Let Sn =
∑n

k=1 ak and let Tn =
∑n

k=1 |ak|. Since Tn is given
to be a convergent sequence, Tn is a Cauchy sequence. Let ε > 0, and
let N ∈ N such that |Tn − Tm| < ε for all n,m such that n > m > N .
Now for all n,m such that n > m > N ,

|Sn − Sm| = |
n∑

k=m

ak| ≤
n∑

k=m

|ak| = |Tn − Tm| < ε.

This shows that Sn is Cauchy, and hence, a convergent sequence.

1.6. The probability mass function and the cumulative
distribution function

This section borrows very heavily from Section 12 of Manjunath
Krishnapur’s notes – in many places I have copied his notes verbatim
– but I have often added some extra explanation.

Let (Ω, p) be a (discrete) probability space.

Definition 1.6.1. A function X : Ω → R such that the range
X(Ω) of Ω is countable is called a a discrete random variable.

Definition 1.6.2. Given a random variable X : Ω → R we define
the associated probability mass function (pmf) fX(t) = P (X−1(t)).

If t /∈ X(Ω), we have fX(t) = P (∅) = 0. Note that fX(R) ∈ [0, 1].
If X(Ω) = {tn}n∈N, we set An = X−1(tn). We see that∑
t∈R

fX(t) =
∞∑
n=1

fX(tn) =
∞∑
n=1

P (An) =
∞∑
n=1

∑
ω∈An

p(ω) =
∑
ω∈Ω

p(ω) = 1,

where the third and fourth equalities follow from the facts that the
events An are mutually exclusive and exhaustive respectively. Alterna-
tively, we can also argue from the rules of probability that

∞∑
n=1

P (An) = P (
∞⋃
n=1

(An)) = P (Ω) = 1,



28 1. INTRODUCTION

since Ω is the disjoint union of the sets An, n ∈ N.
We may thus view (R, fX) as a probability space! If E ⊂ R, we

have P (E) =
∑

ti∈E fX(ti). The probability mass function fX allows
us to replace the study of the discrete probability space (Ω, p) by the
more familiar sample space R at the cost of using the potentially more
complicated mass function fX . Note that R is not countable, but be-
cause X is a discrete random variable, the pmf fX(t) is non-zero at
only a countable number of points, and we are essentially in the case
of a discrete probability space. Indeed, we can simply replace R above,
by the set N and we would not really lose anything. Eventually, we
hope to imitate this construction for uncountable spaces and contin-
uous random variables, that is, functions whose image need not be a
countable set.

Definition 1.6.3. The the cumulative distribution function (cdf)
associated to a random variable X is the function FX : R→ [0, 1] given
by FX(t) :=

∑
u≤t fX(u).

We can recover the pmf fX from the cdf FX . If tj ∈ X(Ω), there

is an interval Ij = (aj, bj) 3 tj such that Ij \ {tj}
⋂
X(Ω) = ∅. Clearly

fX(tj) = FX(tj)− FX(x) for any x ∈ (aj, tj).

Proposition 1.6.4. If F = FX is the cumulative distribution func-
tion of a random variable X it necessarily satisfies the following prop-
erties.

(1) FX(t) is an increasing function of t.
(2) limt→−∞ F (t) = 0 and limt→∞ F (t) = 1.
(3) It is right continuous, that is limh→0+ F (t+ h) = F (t).
(4) Assume that X(Ω) is a discrete subset of R (A subset S ⊂ R is

said to be discrete if for each P ∈ S there is an open interval

I ⊂ R containing x such that (I \ {P})
⋂
S = ∅). Then FX(t)

is a step function, that is, it is constant on semi-open intervals
and “jumps” at the points tj.

Proof. We give proofs using the rules of probability. This has
the advantage that the same proofs will work later when we consider
continuous random variables as well.

Let t ≤ s, and let Au = {ω ∈ Ω |X(ω) ≤ u} = X−1((−∞, u]) for
any u ∈ R. Clearly At ⊆ As. Hence, P (At) ≤ P (As), which proves (1).

We see that An ⊆ An+1 for all n ∈ N and that Ω =
∞⋃
n=1

An is an

increasing union of the events An. We also note that At ⊆ An if t ≤ n.
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By the continuity of probability from below, we have

lim
t→∞

FX(t) = lim
t→∞

P (
∞⋃
t∈R

At) = limn→∞ P (
∞⋃
n=1

An) = P (Ω) = 1.

A similar argument using the continuity of probability from above and

the fact that ∅ =
∞⋂
n=1

A−n shows that limt→−∞ F (t) = P (∅) = 0. This

shows (2).
Let xn be any sequence of non-negative real numbers such that

limn→∞ xn = 0. To show (3), we use the fact that At =
∞⋂
n=1

At+an .

Again, the continuity of probability from above shows that

FX(t) = P (At) = P (
∞⋂
k=1

At+xn) = limn→∞ FX(t+ xn).

Since the sequence xn was arbitrary, this shows that FX is right con-
tinuous.

The proof of (4) follows almost immediately from the fact that
the set X(Ω) is discrete in R. For each tj, there exists tj1 such that
X−1(tj, tj1) = ∅ (if tj = maxn{tn}, we take tj1 =∞). Clearly, FX(t) is
constant on [tj, tj1) and F (tj1) > F (x) for x ∈ [tj, tj1). �

Later, when dealing with continuous random variables, we will de-
fine a distribution function as a function that satisfies the first three
properties in the proposition above and show that it necessarily arises
from a random variable in a similar way.

Example 1.6.1. Let Ω = {(i, j) | 1 ≤ i, j ≤ 6}, and p((i, j)) =
1/36. Let X((i, j)) = i+ j. Write down the pmf and cdf corresponding
to X (this was partially done in class).

Example 1.6.2. Let p, q ∈ [0, 1] such that p + q = 1. Define
functions

f(t) =


q if t = 0,

p if t = 1 and,

0 otherwise,

and F (t) =


0 if t < 0,

q if t ∈ [0, 1),

1 if t ∈ [1,∞)

(1.6.1)

A random variable X such that fX = f or FX = F is said to have
Bernoulli distribution Ber(p) with parameter p. In this case we write
X ∼ Ber(p).

Let Ω = [10] and p(i) = 1/10, 1 ≤ i ≤ 10. Let X = 1[3], the
indicator (or characteristic) function of the subset [3] = {1, 2, 3}. We
see that P (X−1(0)) =

∑
ω∈[10]\[3] p(ω) = 0.7 and P (X−1(1)) = 0.3.
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Thus, X ∼ Ber(0.3). Any random variable taking only the values 0
and 1 has Bernoulli distributions.

Example 1.6.3. Let n ≥ 0 and p ∈ [0, 1] be fixed, and let q = 1−p,
as before. Define

f(t) =

{(
n
k

)
pkqn−k if t = k, 0 ≤ k ≤ n,

0 otherwise.
(1.6.2)

The associated distribution is called the binomial distribution Bin(n, p)
with parameters n and p.

Consider the probability space (Ω, p), where Ω = {0, 1}n, and
p(ω) = p

∑n
i=1 ωiqn−

∑n
i=1 ωi . Let X(ω) =

∑n
i=1 ωi. Then X ∼ Bin(n, p).

This is the model for tossing a coin n times and recording the num-
ber of heads (note that the corresponding cdf does not have a nice
expression).

Example 1.6.4. Let p ∈ [0, 1], q = 1− p. For k ∈ N, we define the
functions

f(t) =

{
qk−1p if t = k, and

0 otherwise,
and F (t) =

{
0 if t < 1,

1− qk, if t ∈ [k, k + 1).

(1.6.3)
This is called the Geometric distribution Geo(p) with parameter p. We
have seen that the random variable X obtained by counting the number
of times a coin is tossed before a head appears satisfies X ∼ Geo(p).

Example 1.6.5. Let λ ∈ R>0 and let

f(t) =

{
e−λ λ

k

k!
if t = k ∈ N ∪ {0}, and

0 otherwise.
(1.6.4)

This pmf defines the Poisson distribution Pois(λ) with parameter λ.

Example 1.6.6. Let b, w,m ∈ N be fixed with m ≤ b + w. We
define

f(t) =


(bk)(

w
m−k)

(b+wm )
if t = k ∈ N ∪ {0}, and

0 otherwise.
(1.6.5)

This pmf gives rise to the Hypergeometric distribution Hypergeo(b, w,m)
with parameters b, w and m.

Let X be the random variable that counts the number of men in a
random sample of size m from a population with b men and w women.
Then X ∼ Hypergeo(b, w,m).
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We can calculate the expectation of a random variable once one
knows the pmf. Indeed, one has

E[X] =
∑
ω

X(ω)p(ω) =
∞∑
n=1

∑
ω∈P (X−1(tn))

X(ω)p(ω) =
∞∑
n=1

tnfX(tn).

We may also consider the expectation E[X2] of the random variable
X2, or more generally, E[h(X)] for any function h : R→ R. The same
argument as above shows,

E[h(X)] =
∞∑
n=1

h(tn)fX(tn).

The quantity E[X2] is often called the second moment of the random
variable X.

Example 1.6.7. We calculate E[X] and E[X2] for a random vari-
able X ∼ Bin(n, p). We have

E[X] =
n∑
k=0

k

(
n

k

)
pkqn−k = np

n∑
k=1

(
n− 1

k − 1

)
pkqn−1−(k−1)

= np
n−1∑
k=0

(
n− 1

k

)
pkqn−1−k = np(p+ q)n−1 = np.

Similarly, we have

E[X2] =
n∑
k=0

k2

(
n

k

)
pkqn−k =

n∑
k=0

k(k − 1)

(
n

k

)
pkqn−k +

n∑
k=0

k

(
n

k

)
pkqn−k

=
n∑
k=0

(k2 − k)

(
n

k

)
pkqn−k + np

= n(n− 1)p2

n∑
k=2

(
n− 2

k − 2

)
pkqn−2−(k−2) + np

= n(n− 1)p2

n−2∑
k=0

(
n− 2

k

)
pkqn−2−k + np

= n(n− 1)p2(p+ q)n−2 + np = np− np2 + n2p2.

Exercise 1.6.1. Let Ω = [N ] and let X : [N ] → R have the
uniform distribution on [N ], that is, fX(k) = 1/N for 1 ≤ k ≤ N and
fX(t) = 0 otherwise. In this case, we say that X ∼ Unif(1/N) (this is
not standard notation). Calculate E[X] and E[X2].
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Solution: We have

E[X] =
n∑
k=1

kfX(k) =
N∑
n=1

k

N
=

1

N

N∑
k=1

k =
N(N + 1)

2N
=
N + 1

2
.

Similarly,

E[X2] =
N∑
k=1

k2

N
=
N(N + 1)(2N + 1)

6N
=

(N + 1)(2N + 1)

6
.

Exercise 1.6.2. Calculate E[X] and E[X2] for

(1) X ∼ Pois(λ),
(2) X ∼ Geo(p), and
(3) X ∼ Hypgeo(b, w,m).

Solution:
(1) Suppose X ∼ Pois(λ). Then

E[X] =
∞∑
k=0

ke−λ
λk

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λe−λeλ = λ,

and

E[X2] =
∞∑
k=0

(k2 − k)e−λ
λk

k!
+E[X] = λ2e−λ

∞∑
k=2

λk−2

(k − 2)!
+ λ = λ2 + λ.

(2) Suppose X ∼ Geo(p). Then

E[X] =
∞∑
k=0

kpqk−1 = p
∞∑
k=1

kqk−1 = p · 1

(1− q)2
=

1

p
.

Similarly,

E[X2] =
∞∑
k=0

k2pqk−1 =
∞∑
k=0

k(k − 1)pqk−1 + E[X] = pq
∞∑
k=0

k(k − 1)qk−2 +
1

p

=
2pq

(1− q)3
+

1

p
=

2q + p

p2
.

(3) X ∼ Hypgeo(b, w,m). Then

E[X] =
m∑
k=0

k

(
b
k

)(
w

m−k

)(
b+w
m

) =
mb

b+ w

m∑
k=1

(
b−1
k−1

)(
w

m−k

)(
b+w−1
m−1

)
=

mb

b+ w

m−1∑
j=0

(
b−1
j

)(
w

m−1−j

)(
b+w−1
m−1

) .
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The expression inside the last sum is the probability that a randomly
chosen sample of m − 1 people from a population of b + w − 1 has
exactly j men. When one sums over all j between 0 and m− 1, one is
summing the probabilities of mutually exclusive and exhaustive events.
Hence, the sum is 1, so E[X] = mb

b+w
.

Similarly,

E[X2] =
m∑
k=0

k2

(
b
k

)(
w

m−k

)(
b+w
m

) =
m∑
k=0

(k2 − k)

(
b
k

)(
w

m−k

)(
b+w
m

) + E[X]

=
m(m− 1)b(b− 1)

(b+ w)(b+ w − 1)

m−2∑
j=0

(
b−2
j

)(
w

m−2−j

)(
b+w−2
m−2

) +
mb

b+ w

=
m(m− 1)b(b− 1)

(b+ w)(b+ w − 1)
+

mb

b+ w
.

Exercise 1.6.3. Let pn be a sequence of real numbers such that
limn→∞ npn exists. Suppose this limit is λ > 0. Show that

lim
n→∞

(
n

k

)
pkn(1− pn)n−k = e−λ

λk

k!
.

How would you interpret this result in terms of probability distribu-
tions? This result is known as the law of rare events or the Poisson
Limit Theorem in probability.

Solution: We first note that n(n − 1) · · · (n − (k − 1)) = nk + fk(n)
where fk(n) is a polynomial of degree k − 1. It follows that there
exists C > 0 such that fk(n) ≤ Cnk−1 for all n ∈ N. It follows that

limn→∞
fk(n)
nk

= 0. Hence,

lim
n→∞

(
n
k

)
nk

nkpkn = lim
n→∞

[
1 +

fk(n)

nk

]
· 1

k!
· pknnk =

λk

k!
.

Because limn→∞ npn = λ, limn→∞ pn → 0, so limn→∞(1 − pn) → 1.
Further, given ε > 0, we can find N ∈ N such that

1− λ+ ε

n
< 1 +

npn
n

< 1− λ− ε
n

whenver n > N . It follows that

e−(λ+ε) ≤ lim
n→∞

(
1− λ+ ε

n

)n
≤ lim

n→∞

(
1 +

npn
n

)n
≤ lim

n→∞

(
1− λ− ε

n

)n
≤ e−λ+ε.
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Since, this is true for every ε > 0, we see that

lim
n→∞

(
1 +

npn
n

)n
= e−λ.

Hence,

lim
n→∞

(1− pn)n−k = lim
n→∞

(
1− npn

n

)n
(1− pn)−k = e−λ.

The result above tells us that the Poisson distribution can derived
as a limiting case of the binomial distribution as the parameter n in
Bin(n, p) goes to infinity provided the expectation (or the probability
of one success) is a fixed number λ – in other words npn ∼ λ. For
instance, a radioactive mass usually decays at a constant average rate,
and moreover, the events are independent and random. We also assume
that two atoms cannot decay simulataneously. This means that the
number of atoms decaying in a given time interval follows a Poisson
process. In a unit time interval the number of decays will be λ. If
we subdivide the time interval into n equal subintervals, the number of
decays in the sub-interval will be λ/n. The probability of k successes in
the whole interval will be precisely Bin(n, pn). As we have seen above,
this gives the Poisson distribution in the limit.

This approximation works well for “rare events”. Notice that the
probability of the event happening becomes small as the number of tri-
als increases. In this case the Binomial distribution may be somewhat
hard to compute, but the Poisson distribution gives a good approxi-
mation to the required answer.

1.7. Continuous random variables

We now explore the case when the image of a random variable is
not necessarily discrete. It is not so easy to describe this situation – the
point is that we cannot allow all functions X : Ω → R when Ω is not
countable, but must restrict ourselves to what are called measurable
functions. We avoid doing this for the time being and focus on the
distribution functions instead.

Definition 1.7.1. A distribution function is a function F : R→ R
satisfying

(1) FX(t) is an increasing function of t.
(2) limt→−∞ F (t) = 0 and limt→∞ F (t) = 1.
(3) It is right continuous, that is limh→0+ F (t+ h) = F (t).

Proposition 1.6.4 shows that if a function arises as the CDF of a dis-
crete random variable, it is necessarily a distribution function. For this
reason, we will use the terms distribution and CDF interchangeably.
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An important class of CDFs arises as follows.

Definition 1.7.2. Let f : R → R≥0 be a piecewise continuous
function such that

∫∞
−∞ f(u)du = 1. Such a function is called a proba-

bility density function (or PDF).

Let f be a pdf. Define

F (t) =

∫ t

−∞
f(u)du.

Then F is clearly a CDF. In fact, F is continuous at all points and
differentiable at all points except those where f is not continuous. If
F is a CDF for which arises from PDF f as above, we will say that F
has density f .

Example 1.7.1. The uniform distribution U(a, b) on an interval
[a, b] is given by the PDF and CDF

f(t) =

{
1
b−a if t ∈ [a, b], and

0 otherwise,
and F (t) =


0 if t ≤ a,
t−a
b−a if t ∈ (a, b), and

1 if t ≥ b

(1.7.1)
respectively.

Exercise 1.7.1. Can the uniform distribution F be the CDF of a
discrete random variable? More generally, can a continuous distribu-
tion be the CDF of a discrete random variable?

Solution: The uniform distribution F is a continuous function. Any
CDF arising from a discrete random variable cannot be a continuous. If
X is a discrete random variable, there must exist a point tj in the image
such that fX(tj) = m > 0. Then, for any t < tj, FX(t) ≤ FX(tj)−m.
It follows that FX is not (left) continuous at tj.

Example 1.7.2. The exponential distribution Exp(λ)with param-
eter λ is given by the PDF and CDF

f(t) =

{
0 if t ≤ 0, and

λe−λt, if t > 0
and F (t) =

{
0 if t ≤ 0, and

1− e−λt if t > 0

(1.7.2)
respectively.

To describe the gamma distribution (which generalises the expo-
nential distribution) we need to introduce the gamma function. The
gamma function will also arise in the study of the normal distribu-
tion, the single most important distribution in probability, so we will
describe this latter distribution first.
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Example 1.7.3. The normal distributionN (µ, σ2) with parameters
µ ∈ R and σ2 > 0 is given by the PDF and CDF

ϕµ,σ2(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 , and F (t) =

∫ t

−∞
ϕµ,σ2(u)du. (1.7.3)

respectively. We need to check that limt→∞ F (t) = 1. Thus, we need
to evaluate

lim
t→∞

1

σ
√

2π

∫ t

−∞
e−

(u−µ)2

2σ2 du =
1

σ
√

2π

∫ ∞
−∞

e−
(u−µ)2

2σ2 du.

We first make the change of variables v = (u−µ)
σ

to reduce to the case
µ = 0 and σ = 1. We then substitute v 7→ v√

2
, to get

lim
t→∞

F (t) =
1√
π

∫ ∞
−∞

e−v
2

dv =:
1√
π
I.

Recall that we can write

I2 =

∫ ∞
−∞

e−v
2

dv

∫ ∞
−∞

e−w
2

dw =

∫ ∞
−∞

∫ ∞
−∞

e−(v2+w2)dvdw.

Using polar coordinates, we see that

I2 =

∫ ∞
0

∫ 2π

0

e−r
2

rdrdθ =

∫ 2π

0

−e−r2

2

∣∣∣∞
0
dθ = π.

It follows that I =
√
π, which is what we want.

By convention, we write ϕ(t) for ϕ0,1(t).

We define the Γ-function by the integral formula

Γ(s) =

∫ ∞
0

e−tts−1dt

when s > 0. In fact, the integral above makes sense for s ∈ C if
<s = σ > 0. Indeed, ts−1 = e(s−1) log t. It remains to check that the
power series for ez converges for all z ∈ C and defines a complex valued
function. In fact, this function is continuous (and much more). The
integral of a complex valued function is simply defined as the sum of
the integrals of its real and imaginary parts.

In some ways it is better to rewrite the formula for the Γ-function
as

Γ(s) =

∫ ∞
0

e−ttsd×t,

where d×t = dt
t
. Note that d×t is invariant under scaling. We have

Γ
(s

2

)
=

∫ ∞
0

e−tt
s
2d×t =

∫ ∞
−∞

e−x
2|x|sd×x.



1.7. CONTINUOUS RANDOM VARIABLES 37

Integrating a function g(x) on R× = R \ {0} against the function |x|s
with respect to d×x is called the Mellin transform Mg(s). Thus Γ

(
s
2

)
=

Mϕ(s). In particular,

Γ
(s

2

)
=
√
π.

The function ϕ(x) is an example of what is called a Schwartz function
on R, that is, a function in C∞(R) such that for every polynomial p(x),
lim|x|→∞ p(x)ϕ(n)(x)→ 0. Thus, the Γ-function is the Mellin transform
of a Schwartz function on R (restricted to R×). The Mellin transform
should be viewed as the multiplicative analogue of the Fourier trans-
form.

The Gamma function is a generalisation of the factorial function.
Indeed, if n ≥ 0,

Γ(n+ 1) =

∫ ∞
0

e−ttndt = tne−t
∣∣∣∞
0

+n

∫ ∞
0

tn−1e−tdt = n

∫ ∞
0

tn−1e−tdt.

Proceeding inductively we see that

Γ(n+ 1) = n!

∫ ∞
0

e−tdt = n!

Note that this yields 0! = Γ(1) = 1. The formula Γ(s + 1) = sΓ(s) is
valid for any s such that <s > 0. But we can use the formula to define
Γ(s) even when <s < 0. Indeed, we have

Γ(s) =
Γ(s+ 1)

s
, (1.7.4)

for <s > 0. This is called the functional equation of the Gamma func-
tion. But the right hand side actually makes sense for <s > −1 as
long as s 6= 0! We can continue this process inductively: Γ(s + 2) =
(s+1)Γ(s+1) = (s+1)sΓ(s), which allows us to define Γ(s) for <s > −2
as long as s 6= 0,−1. In this way, we can define Γ(s) for all s ∈ C \Z≤0

(this is what is called an analytic or meromorphic continuation of Γ(s)
to C).

Example 1.7.4. The Gamma distribution Gamma(ν, λ) with shape
parameter ν and scalar parameter λ is given by the PDF and CDF

f(t) =

{
0 if t ≤ 0, and
λν

Γ(ν)
tν−1e−λt if t > 0,

and F (t) =

{
0 if t ≤ 0, and∫ t

0
f(u)du if t > 0

(1.7.5)
respectively. When ν = 1, this reduces to the exponential distri-
bution with parameter λ. A simple change of variable shows that
limt→∞ F (t) = 1.
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Exercise 1.7.2. Find an expression for the CDF of the Gamma
distribution when ν is a positive integer.

Solution: If ν is a positive integer, repeated integration by parts will
yield

F (t) = 1− e−λt
ν−1∑
k=0

(λt)k

k!
.

The Beta-function B(a, b) is defined by the equation

B(a, b) :=

∫ 1

0

ta−1(1− t)b−1dt

for α, β > 0.

Example 1.7.5. The Beta distribution Beta(a, b) with parameters
a and b, a, b > 0 is given by the PDF and CDF

f(t) =

{
0 if t /∈ (0, 1), and
ta−1(1−t)b−1

B(a,b)
if t ∈ (0, 1),

and F (t) =


0 if t ≤ 0,∫ t

0
f(u)du if t ∈ (0, 1), and

1 if t ≥ 1.

(1.7.6)
respectively.

Proposition 1.7.3. For a, b > 0,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Proof. We write

Γ(a)Γ(b) =

∫ ∞
0

e−uua−1du

∫ ∞
0

e−vva−1dv =

∫ ∞
0

e−(u+v)ua−1vb−1dudv.

We set u = st and v = s(1 − t), so s = u + v and t = u
u+v

and J = s.
This yields∫ ∞

0

e−ssa−1+b−1sds

∫ 1

0

ta−1(1− t)b−1dt = Γ(a+ b)B(a, b).

This proves the result. �

Example 1.7.6. The Cauchy distribution Cauchy(λ, a) with pa-
rameters λ > 0 and a ∈ R is given by the PDF and CDF

f(t) =
λ

π(λ2 + (t− a)2
and F (t) =

1

2
+

1

π
arctan

(
t− a
λ

)
(1.7.7)

respectively.
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Exercise 1.7.3. Show that the function f(x) = e−|x|

2
on R is a

PDF. Find its CDF.

Solution: The function f(x) = e−|x|

2
is not just piecewise continuous,

but actually continuous on all of R. Further,∫ ∞
−∞

e−|x|

2
dx = 2

∫ ∞
0

e−x

2
dx = 2 · −e

−x

2

∣∣∣∞
0

= 1.

Exercise 1.7.4. Which of the following functions are density func-
tions?

(1) f(x) = x(2− x) if 0 < x < 2 and 0 otherwise.
(2) f(x) = x(2x− 1) if 0 < x < 2 and 0 otherwise.
(3) f(x) = sinx if 0 < x < π/2 and 0 otherwise.

Solution:
(1) We have∫ ∞
−∞

f(x)dx =

∫ 2

0

x(2−x)dx =

∫ 2

0

(2x−x2)dx = x2
∣∣∣2
0
−x

3

3

∣∣∣2
0

= 10/3 6= 1.

Thus f(x) is not a density function.
(2) We have∫ ∞

∞
f(x)dx =

∫ 2

0

x(2x− 1)dx =

∫ 2

0

(2x2 − x)dx = 4/3 6= 1.

Thus f(x) is not a density function.
(3) We have ∫ ∞

∞
f(x)dx =

∫ π/2

0

sinxdx = 1.

Further, f(x) is continuous at all points x 6= π/2. Hence, f is piecewise
continuous. It follows that f(x) is a density function.

Exercise 1.7.5. Which of the following functions are CDFs? If
they are CDFs find the corresponding density function.

(1) F (x) = 0 if x < 0 and F (x) = 1− (1 + x)e−x if x ≥ 0.

(2) F (x) = 0 if x < 1, F (x) = (x−1)2

8
if 1 ≤ x < 3, and F (x) = 1

if x ≥ 3.

Solution:
(1) We see that F (x) is right continuous at 0 (in fact, it is continuous
at 0) since limx→0+ 1 − (1 + x)e−x = 0. Further, F ′(x) = xe−x > 0,
for all x > 0. It follows that F (x) is an increasing function of x.
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Finally, limx→∞ F (x) = 1. Hence, F (x) is a CDF. If x 6= 0, F (x) is
differentiable so

f(x) =

{
0 if x ≤ 0, and

xe−x if x > 0

is the corresponding density function.
(2) Once again, F (x) is not just right continuous, but continuous at 0.
Further, F ′(x) = (x − 1)/4 > 0 if 1 < x ≤ 3, so F (x) is an increasing
function of x. And finally, limx→∞ F (x) = 1. Hence F (x) is a CDF.
Its density function is

f(t) =


0 if x ≤ 1,

(x− 1)/4 if 1 < x < 3, and

0 if x ≥ 3.

Does every CDF arise from a PDF? Since a CDF that arises from a
PDF is an integral of a piecewise continuous function, it will necessarily
be a continuous function. Thus CDFs of discrete distributions which
have (jump) discontinuities cannot arise from PDFs. But continuity
is not sufficient – there exist continuous CDFs that do not arise from
PDFs. However, if a CDF F is differentiable outside of a discrete set
of points, and the derivative is continuous, then f(t) = F ′(t) is a PDF
from which F arises. This is nothing but the Fundamental Theorem of
Calculus.

1.8. The Cantor set

The “middle-thirds” Cantor set is constructed as follows. From
the interval I0 = [0, 1] we remove the open interval I0/3 = (1/3, 2/3).
From what remains, that is, [0, 1/3] ∪ [2/3, 1], we remove the middle
one third of each segment, that is, we remove (1/9, 2/9) ∪ (7/9, 8/9).
We continue this process iteratively. More formally, let I0 = [0, 1] and
let

In = In−1/3 ∪ (2/3 + In−1/3)

for n ≥ 1. Here, the set In−1/3 is the set of points of the form y/3 with
y ∈ In−1 and 2/3 + In−1/3 consists of x ∈ I0 of the from 2/3 + z with

z ∈ In−1/3. Let C =
∞⋂
n=0

In. This is the Cantor set.

Let us calculate the lengths of the intervals that we have removed
from I0 in order to construct the Cantor set. We see that `(In) =
2
3
`(In−1), so we have removed intervals of length `(In−1)

3
from In−1 to
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get In. Summing from n = 0 to ∞, we see that we have removed
disjoint intervals whose lengths add up to

1/3 + 1/3 · 2/3 + 1/3 · (2/3)2 + · · · = 1/3

1− 2/3
= 1.

Thus, what remains must have length 0, that is, `(C) = 0.
Another characterisation of the Cantor set is the following. It con-

sists exactly of those numbers between 0 and 1 with ternary expansions
not containing 1 (prove this!). This shows that C is uncountable. The
Cantor set is an example of an uncountable set which has length (mea-
sure) 0.

Using the Cantor set, we can construct the Cantor function. If
x ∈ C, x has a unique ternary expansion x =

∑∞
n=1 2an3−n, where

an ∈ {0, 1}. With this definition of the an, we define

c(x) =

{∑∞
n=1 an2−n if x ∈ C

supy≤x,y∈C c(y) if x ∈ I0 \ C

Exercise 1.8.1. The Cantor function c(x) is a distribution func-
tion. In fact, it is continuous (not just right continuous).

Exercise 1.8.2. (Hard) The Cantor function does not have a den-
sity, that is, it does not arise from a PDF.

1.9. σ-algebras and measures

Definition 1.9.1. Let Ω be a set and let F ⊂P(Ω) be a collection
of subsets of Ω. We say that F is an algebra (or a field) on Ω if it
satisfies the following properties.

(A1) Ω ∈ F .
(A2) If A ∈ F , then A′ ∈ F .

(A3) If A,B ∈ F , A
⋃
B ∈ F ,

(A4) If A,B ∈ F , A
⋂
B ∈ F .

Remark 1.9.2. (1) It follows from (A1) and (A2) that ∅ ∈ F .

(2) Since A \B = A
⋂
B′, it follows that if A,B ∈ F so is A \B.

Definition 1.9.3. An algebra M is called a σ-algebra (or σ-field)
if it has the following property

(A5) for every countable collection of pairwise disjoint sets {An}n∈N
in M, A =

∞⋃
n=1

An ∈M.
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The pair (Ω,M) is called a measurable space and the elements of M
are called measurable sets.

Exercise 1.9.1. Show that a σ-algebra cannot be countably infi-
nite.

Example 1.9.1. For any set Ω, P(Ω) is an algebra, and in fact,
a σ-algebra. When dealing with discrete probability spaces this is the
σ-algebra that arises.

It is difficult to explicitly describe other examples of algebras or
σ-algebras. We can give a general class of examples as follows.

Definition 1.9.4. Let T be any collection of subsets of Ω. We can
define the algebra (resp. σ-algebra) generated by T as

FT =
⋂

Σ⊃T
Σ,

where the intersection runs over all algebras (resp. σ-algebras) con-
taining T .

Given any T ⊂ P(Ω), we know that P(Ω) is an algebra (resp.
σ-algebra) containing T , so the intersection in the definition above is
definitely non-empty. Note that FT is the smallest algebra (resp. σ-
algebra) containing T – if Σ is any algebra (resp. σ-algebra) containing
T , it necessarily contains FT .

Example 1.9.2. Let Ω = R and T be the collection of open subsets
of R. The Borel σ-algebra B is the σ algebra generated by T .

This generalises to any set Ω for which the notion of an open subset
makes sense (for instance, Rn). Later on, you will learn that such sets
together with the collection of open sets are called topological spaces.
Thus, for any topological space we can associate a Borel σ-algebra.

The Borel σ-algebra is the single most important example of a σ-
algebra.

Exercise 1.9.2. Are the following sets elements of B?

(1) The set of natural numbers in R.
(2) The set of rational numbers in R.
(3) The set of irrational numbers in R.
(4) The “middle-thirds” Cantor set.

Exercise 1.9.3. Let I = {Ia,b} ∪ ∅, a ∈ R, b ∈ R
⋃
{∞}, where the

collection of subsets Ia,b of R is described as follows:

Ia,b =

{
(a, b] if a ∈ R ∪ {−∞} and b ∈ R, and

(a,∞) if a ∈ R and b =∞.
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Let I consist of those subsets of R which are finite disjoint unions of
elements of I.

(1) Show that I is an algebra.
(2) Show that σ-algebra generated by I (or I ) is the Borel σ-

algebra on R.

Definition 1.9.5. A collection of subsets M of Ω is called a mono-
tone class if given any sequence of non-increasing (resp. non-decreasing)

sets An in M ,
∞⋂
n=1

An ∈M (resp.
∞⋃
n=1

An ∈M).

For a non-increasing (resp. non-decreasing) sequence of sets An, it

is customary to use the notation limn→∞An for
∞⋂
n=1

An (resp.
∞⋃
n=1

An)

Exercise 1.9.4. Show that an algebra on Ω is a σ-algebra if and
only if it is a monotone class.

Exercise 1.9.5. The smallest monotone class generated by an al-
gebra is the same as the σ-algebra generated by it.

Definition 1.9.6. Let F be an algebra on Ω. A finitely additive
probability measure on F is a function P : F → R≥0 such that

(P1) P (Ω) = 1 and

(P2) P (A
⋃
B) = P (A) + P (B) for all pairs of disjoints subsets A

and B in F .

Note that (P1) is really not essential. Given a set function P : F →
R≥0 satisfying (P2), the function P1 : F → R≥0 given by P1(A) =
P (A)/P (Ω) also satisfies (P2) and also satisfies (P1). Thus, by dividing
by P (Ω) we can always reduce to the case that P (Ω) = 1.

Definition 1.9.7. Let M be a σ algebra on Ω. A countably addi-
tive probability measure on M is a function P : F → R≥0 satisfying
(P1) and

(P3) for every countable collection of pairwise disjoint subsets An
in M,

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P (An).

The triple (Ω,M, P ) is called a measure space or more accurately a a
probability measure space.

Exercise 1.9.6. Let (Ω, p) be a discrete probability space, and
let P (A) =

∑
ω∈A p(ω) for A ⊂ P(Ω). Show that (Ω,P(Ω), P ) is a

probability measure space.
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Exercise 1.9.7. Let Ω be any set and let {ωn}n∈N be a collection
of distinct points in Ω. Let pn ≥ 0 be such that

∑∞
n=1 pn = 1 and

define P (A) =
∑

n |ωn∈A pn for A ∈P(Ω). Show that (Ω,P(Ω), P ) is
a probability measure space.

When studying discrete probability spaces, we proved a number of
properties for the associated function P . It turns out all of these prop-
erties generalise to our current situation (where we no longer assume
that Ω is countable).

Exercise 1.9.8. Show that a finitely additive probability measure
P on a σ-algebra M is countably additive (that is, it satisfies (P3)) if
and only if it satisfies one of the following conditions:

(1) If An is a non-increasing sequence of sets in M, and A =
∞⋂
n

An,

P (A) = lim
n→∞

P (An), that is, P ( lim
n→∞

An) = lim
n→∞

P (An).

(2) If An is a non-decreasing sequence of sets in M, and A =
∞⋃
n

An,

P (A) = lim
n→∞

P (An), that is, P ( lim
n→∞

An) = lim
n→∞

P (An).

(This is the continuity of probability from above and below).

Exercise 1.9.9. Let F be an algebra on Ω and let P a finitely
additive probability measure on F . Let A,B ∈ F . Show that

(1) P (A
⋃
B) = P (A) +P (B)−P (A

⋂
B). Generalise this to the

union of n sets (This is the Inclusion- Exclusion Principle).

(2) P (A
⋂
B) ≤ P (A∆B), where A4B = (A \B)

⊔
(B \A) is the

symmetric difference of A and B.

Exercise 1.9.10. If P is a countably additive probability measure
on a σ-algebra M, show that for any sequence of sets An in M,

P (
∞⋃
n=1

An) ≤
∑∞

n=1 P (An).

Definition 1.9.8. We will say that a finitely additive probabil-
ity measure P on an algebra F is continuous at ∅ if given any non-
increasing sequence An in F such that limn→∞An = ∅, we have
limn→∞ P (An)→ 0.

Remark 1.9.9. In Varadhan’s book “Probability Theory”, P is said
to be a countably additive probability measure on an algebra F if it has
the property above. I prefer using the terminology “continuous at ∅”
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since there is already a notion of countably additive probability measure
on a σ-algebra, and because it is consistent with our earlier definition of
continuity from above in probability. As we shall see below, the property
above implies countable additivity for countable pairwise disjoint unions
that are elements of the algebra.

Assume continuity (from above) at ∅ holds. Let An, n ∈ N, be a

sequence of pairwise disjoint sets in F such A =
∞⋃
n=1

An ∈ F . Let Bn =

A \
n⋃
j=1

Aj. Since the sets An are pairwise disjoint, the sequence Bn is a

non-increasing sequence in F , and
∞⋂
n=1

Bn = ∅, that is, limn→∞Bn = ∅.

Hence, limn→∞ P (Bn) = 0. Since P is finitely additive,

P (A) = P (
n⋃
j=1

Aj) + P (Bn) =
∑n

j=1 P (Aj) + P (Bn).

Taking the limit as n→∞, we get P (A) =
∑∞

n=1 P (An).
Conversely, suppose that for every sequence An of pairwise disjoint

sets in F such that A =
∞⋃
n=1

An ∈ F , we have P (A) =
∑∞

n=1 P (An).

Let Bn be a non-increasing sequence in F such that limn→∞Bn = ∅.
We have

P (B1) =
N∑
n=2

P (B′n \B′n−1) + P (BN),

since the sets B′n \ B′n−1, 1 ≤ n ≤ N , and BN are pairwise disjoint.
Since

lim
N→∞

N∑
n=2

P (B′n \B′n−1) = P (B1),

we see that limN→∞ P (BN) = 0.
The point is that a countable (disjoint) union A of sets An in F

need not be in F , but when it is, a finitely additive probability measure
satisfies P (A) =

∑∞
n=1 P (An) if and only if P is continuous at ∅.

Theorem 1.9.10 (The Carathéodory Extension Theorem). A finitely
additive probability measure P on an algebra F which is continuous at
∅, extends uniquely to a countably additive probability measure on the
σ-algebra MF generated by F .

By Exercise 1.9.3 we know that I is an algebra which generates
the Borel σ-algebra B on R. Thus, by The Carathéodory Extension



46 1. INTRODUCTION

Theorem, to construct a countably additive probability measure on R,
we need only construct a finitely additive probability measure on I .

How can we get finitely additive probability measures on I ? The
answer comes from the CDFs! In fact, we do not even need right
continuity. So, let F : R → [0, 1] be a non-decreasing function which
satisfies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Define PF (Ia,b) = F (b) − F (a), where we adopt the convention that
F (−∞) = 0 and F (∞) = 1. Since any element B of I is a finite

disjoint union of the form
n⋃
j=1

Iaj ,bj , we can simply define P (B) =∑n
j=1 P (Iaj ,bj). It is easy to see that PF is a finitely additive prob-

ability measure on I . In general, PF will not be continuous at ∅. This
is where the right continuity of F comes in.

Theorem 1.9.11 (Lebesgue). The finitely additive probability mea-
sure PF is continuous at ∅ if and only if the function F is a CDF.
Thus, every CDF gives rise to a unique countably additive probability
on the Borel σ-algebra B of R. Conversely, every countably additive
probability measure P on B arises from some CDF F .

Example 1.9.3. Given any interval [a, b] ⊂ R, we can define the
Borel σ-algebra Ba,b on [a, b] as Ba,b = {B ∩ [0, 1] |B ∈ B}. Let
F be the Uniform distribution on [a, b]. Then the countably additive
probability measure PF on Ba,b has the property that PF ([c, d]) = d−c
for every closed subinterval [c, d] of [a, b].

From now on, we will simply use the words “probability measure”
instead of countably additive probability measure. Measurable spaces
with probability measures are examples of finite measure spaces. Much
of what we have developed in this section can be done for arbtirary
measures. A measure µ on a σ-algebra M on Ω is a function µ :
M→ [0,∞)∪{∞} = [0,∞] which is countably additive (we adopt the
convention that a +∞ = ∞ for any a ∈ [0,∞]). We are thus in the
same situation as before except that µ(A) =∞ is possible for A ∈M.
All the exercises and theorems in this section upto the Carathéodory
Extension Theorem remain valid in this setting. The latter theorem
has to be modified – the uniqueness part no longer holds in general.
Functions µ0 : F → [0,∞] which are only finitely additive on an
algebra F are called pre-measures. The Carath ’eodory Extension
Theorem says that pre-measures which are continuous at ∅ extend to
measures on the σ-algebra generated by F . The extension will be
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unique only if Ω is σ-finite, that is, it is the union of countably many
measurable sets of finite measure.

By defining µ0([a, b)) = b − a if b < ∞ and µ0([a,∞)) = ∞ we
obtain a pre-measure on the algebra I which extends to a measure µ
on the Borel σ-algebra B of R. This is a translation-invariant measure
on R, that is, µ(E) = µ(x + E) for any x ∈ R. The measure µ on R
is the one we are used to. It generalises the notion of the length of an
interval to more complicated sets.

1.10. Restart

Definition 1.10.1. Let (Ω,M ) be a measurable space. Let µ :
Ω → [0,∞] be a measure on M . The triple (Ω,M , µ) is called a
measure space. If µ(Ω) = 1, µ is called a probability measure and
(Ω,M , µ) is called a probability measure space.

Definition 1.10.2. A measure µ on M is said to σ-finite if there
exist a countable collection of sets Ωn ⊂ Ω such that µ(Ωn) < ∞ and

Ω =
∞⋃
n

Ωn.

Definition 1.10.3. We will say that a finitely additive measure (or
pre-measure) µ0 on an algebra F is continuous at ∅ if given any non-
increasing sequence An in F with at least one An such that µ0(An) <∞
and such that limn→∞An = ∅, we have limn→∞ P (An)→ 0.

Remark 1.10.4. When defining continuity at ∅ for a finitely addi-
tive probability measure P , the condition µ0(An) <∞ is automatically
satisfied for all n ∈ N since P (An) ≤ P (Ω) = 1. When the measure
of the whole space is infinite, we must impose this condition to get a
meaningful notion. If m is the Lebesgue measure on R and we take
An = (n,∞), we see limn→∞m(An) =∞ even though limn→∞An = ∅.
Thus, without this condition the Lebesgue measure would not be con-
tinuous at ∅. Note that we may as well assume that m(A1) <∞ since
the sequence An is non-increasing.

Theorem 1.10.5 (Carathéodory Extension Theorem). Let Ω be a
set and let F be an algebra on Ω. Let µ0 : F → [0,∞] be a pre-measure
which is continuous at ∅. Then, µ0 extends to a measure µ on the σ
algebra MF generated by F . If Ω is σ-finite, then the measure µ is
unique.
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We apply this to the situation when Ω = R, F = I , the algebra
we have previously defined, and the function

µ0(Ia,b) =

{
b− a if b 6=∞, and

∞ if b =∞.
.

Recall that any set Bn ∈ I has the form Bn =
rn⊔
j=1

Ianj ,bnj . We may

further assume that the interval Ianj ,bnj are maximal in the sense that
Ianj ,bnj ∪ Iank,bnk 6= Ia,b for any a, b, a ∈ (−∞,∞) and b ∈ (∞,∞], if
j 6= k. If {Bn}, n ∈ N, is a nested sequence of sets in I , we see that
we can assume that Ia(n+1)j ,b(n+1)j

⊂ Ianj ,bnj for all n ∈ N and 1 ≤ j ≤ r1

(if rn+1 < rn, we set Ia(n+1)j ,b(n+1)j
= ∅ for rn+1 < j ≤ rn). Thus, if

∞⋂
n=1

Bn = ∅, we know that
∞⋂
n=1

Ianj ,bnj = ∅ for each 1 ≤ j ≤ r1. Now anj

is a monotonically increasing sequence bounded above (by bmj for every
m) and bnj is a monotonically decreasing sequence bounded below (by
amj for every m). If limn→∞ anj = a 6= b = limn→∞ bnj , we see that

[a, b] ⊂
∞⋂
n=1

Bn, contradiction. It follows that

lim
n→∞

µ0(Ianj ,bnj) = lim
n→∞

(bnj − anj) = 0.

Since this is true for all 1 ≤ j ≤ r1, this shows that limn→∞ µ0(Bn) = 0.
By the Carathéodory Extension Theorem, µ0 extends to a measure

µ on B with the property that µ([a, b]) = b − a. This measure (or
rather its extension to a slightly larger σ-algebra) is called the Lebesgue
measure on R.

Suppose that E ∈ B and µ(E) = 0
We also saw that if F is a distribution function, the premeasure

defined by µ0(Ia,b) = F (b) − F (a) and extended to I extends to a
measure µ on Ω. In this case, µ(Ω) = 1 <∞ is finite so the uniqueness
of the extension is automatic. Lebesgue’s theorem says that every
probability measure arises in this way.

1.11. Measurable functions

Definition 1.11.1. Let (Ω,M ) be a measurable space. A measur-
able function or random variable X : Ω → R is a function for which
X−1(B) ∈M for all B ∈ B.

Exercise 1.11.1. To show that X : Ω → R is measurable, it is
enough to show that f−1(Ia,b) ∈M .
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More generally, let Y be any topological space and (Ω,M ) be a
measurable space. A function f : Ω → Y is said to be measurable if
X−1(U) ∈M for every open set U ⊂ Y (for instance, Y can be Rn, C
or any metric space). If g : Y → Z is a continuous map (of topological
spaces) and f is measurable, then g ◦ f is measurable.

Exercise 1.11.2. A set of the form (a, b)× (c, d) is called an open
rectangle in R2. Show that every open set in R2 is the countable union
of open rectangles.

(1) If we take Ω = R and M = B we see that every continuous
function f : R→ R is measurable.

(2) It should also be clear that if f : Ω→ R2 is measurable and g :
R2 → R is measurable, then so is g ◦ f . Thus the composition
of random variables is a random variable.

(3) If A ∈M , 1A is a measurable function.
(4) If f, g : Ω → R are measurable, so is the map h = (f, g) :

Ω→ R2: Let R = (a, b)× (c, d). Then h−1(R) = f−1((a, b)) ∩
g−1((c, d)) ∈ M . Since every open set in R2 is the countable
union of open rectangles, we see that h is measurable.

(5) If f, g : Ω→ R are measurable, so are f ± g and fg.
(6) If u, v : Ω → R are measurable, f = u + iv is a complex

measurable function. If f, g : Ω → C is complex measurable,
so are f ± g, fg and |f |.

(7) If f, g : Ω→ R are measurable, so are min{f, g} and max{f, g}.
(8) If f : Ω → R is measurable, so are f+ = max{f, 0} and

f− = −min{f, 0}. Note that f = f+− f− and |f | = f+ + f−.
Thus, |f | is

(9) If fn is a sequence of measurable functions so are supn fn,
infn fn, lim supn fn and lim infn fn.

Exercise 1.11.3. Prove (2), (3), (7) and (9) above.

Definition 1.11.2. Let (Ω,M , µ) be a measure space. Let Aj be
pairwise disjoint measurable sets and let cj ∈ R for 1 ≤ j ≤ n. The
function

f(ω) =
n∑
j=1

cj1Aj(ω)

is called a simple function.

Note that the range of a simple function is a finite set. By our re-
marks above, simple functions are measurable functions. When dealing
with probability spaces, there will be no loss of generality in assuming
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that Ω =
n⊔
j=1

Aj. Indeed, if this is not the case, we set An+1 = Ω\
n⊔
j=1

Aj

and cn+1 = 0, and the collection {A1, . . . , An, An+1} now satisfies this
property, and the function

∑n+1
j=1 cj1Aj(ω) = f(ω).

Remark 1.11.3. In the literature, a simple function is often defined
as one with a finite range. In this case, we can still write f(ω) =∑n

j=1 cj1Aj(ω) for pairwise disjoint sets Aj, but we will know if the
sets Aj are measurable. So what we have called a simple function is
often called a simple measurable function in the literature.

Proposition 1.11.4. Let (Ω,M ) be a measurable space and let
f : Ω→ [0,∞] be a measurable function. There exists simple functions
s1, s2, . . . sn, . . . such that

(1) 0 ≤ s1(x) ≤ s2(x) ≤ · · · ≤ sn(x) ≤ · · · ≤ f(x) for all x ∈ Ω,
and

(2) limn→∞ sn(x) = f(x) for all x ∈ Ω.

If f is a bounded measurable function, we see that sn → f uniformly.

Proof. Divide the interval [0, n) into equal sub-intervals of length
2−n. Thus each y ∈ [0, n) lies in a subinterval of the form [kn,y2

−n, (kn,y+
1)2−n) for some integer ky with 0 ≤ ky < n2n. Define

sn(x) =

{
kn,y2

−n if f(x) = y for y < n, and

n if f(x) = y ≥ n.

It is obvious that kn,y2
−n ≤ kn+1,y2

−n−1. Hence, sn(x ≤ sn+1(x) for all
x. If f(x) = y, for all n > y, we see that f(x) − sn(x) ≤ 2−n. This
shows that limn→∞ sn(x) = f(x). If f is bounded, we see that this
argument shows that sn → f uniformly. �

1.12. Integration

Our aim is to define an integral for measurable functions. We will
first define it for non-negative real valued measurable functions and
then extend the definition to more general functions.

Let (Ω,M , µ) be a measure space. If s(x) =
∑n

j=1 cj1Aj(x), is a
simple function taking non-negative values, we define∫

E

s µ (or

∫
E

s dµ) :=
n∑
j=1

cjµ(E
⋂
Aj)

for any E ∈M .
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Definition 1.12.1. If f : Ω→ [0,∞] is a measurable function, we
define (for E ∈M ) ∫

E

fdµ = sup
0≤s≤f

∫
E

sdµ, (1.12.1)

where the supremum runs over all simple functions s such that 0 ≤
s(x) ≤ f(x) for all x ∈ Ω. This is the Lebesgue integral of f over E
with respect to the measure µ.

Note that if f is a simple function, the supremum on the right above
is attained for s = f .

The Lebesgue integral is easily seen to have the following properties.

Proposition 1.12.2. Assume that f, g : Ω→ [0,∞] are measurable
functions.

(1) If f ≤ g, then
∫
E
fdµ ≤

∫
E
gdµ.

(2) If A ⊂ B, then
∫
A
fdµ ≤

∫
B
fdµ.

(3) For any c ≥ 0,
∫
E
cfdµ ≤ c

∫
E
fdµ.

(4) If f(x) = 0 for all x ∈ E,
∫
E
fdµ = 0 (even if µ(E) =∞!).

(5) If µ(E) = 0,
∫
E
fdµ = 0.

(6)
∫
E
fdµ =

∫
Ω

1Efdµ.

Exercise 1.12.1. Prove Proposition 1.12.2.

When (Ω,M , µ) is a probability space, f is a bounded measurable
function and sn is a sequence of simple functions satsifying the conclu-
sions of Proposition 1.11.4, we know that sn → f uniformly on Ω. It
follows that ∫

Ω

sndµ = an

is a Cauchy sequence (of real numbers) and thus has a limit. In this
case

∫
Ω
fdµ = a (indeed, we could have used this as the definition of

the Lebesgue integral in this case but one needs to verify that the value
of the integral does not depend on the choice the sequence of simple
functions used to approximate f).

Theorem 1.12.3. [Lebesgue’s Monotone Convergence Theorem] Let
fn : Ω→ [0,∞] be a sequence of measurable functions such that

(1) 0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · · for every x ∈ Ω, and
(2) limn→∞ fn(x) = f(x) for all x ∈ Ω.

Then f is measurable, and

lim
n→∞

∫
Ω

fndµ =

∫
Ω

fdµ.
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Recall that if f : Ω→ C is measurable, so is the function |f |. This
ensures that the following definition makes sense.

Definition 1.12.4. A measurable function f : Ω→ C is said to be
in L1(Ω, µ) (or L1(µ) if ∫

Ω

|f |dµ <∞.

Such functions are called (Lebesgue) integrable functions. Sometimes
they are also called absolutely integrable functions.

Assume that f ∈ L1(Ω, µ). If f(Ω) ⊆ R, we write f = f+ − f−,
and define ∫

E

fdµ :=

∫
E

f+dµ−
∫
E

f−dµ.

If f = u+ iv : Ω→ C, we define∫
E

fdµ :=

∫
E

udµ+ i

∫
E

vdµ,

where the right-hand side has been defined in the previous equation.
Thus, we are able to define the (Lebesgue) integralsof complex valued
functions f ∈ L1(Ω, µ).

Theorem 1.12.5. If f, g ∈ L1(Ω, µ) and a, b ∈ C,∫
E

(af + bg)dµ = a

∫
E

fdµ+ b

∫
E

gdµ.

Thus, the map f →
∫
E
fdµ defines a linear functional on L1(Ω, µ),

that is, it is a linear map to C. Thus every measure on Ω gives rise
to a linear functional. The converse is also true in a suitable setting.
Measures on reasonable spaces like Rn (or more generally on locally
compact Hausdorff spaces) arise from (positive) linear functionals.

The single most important theorem in the theory of Lebesgue inte-
gration is the following

Theorem 1.12.6 (Lebesgue’s Dominated Convergence Theorem).
Suppose fn : Ω → C, n ∈ N, is a sequence of measurable functions
such that f(x) = limn→∞ fn(x) exists for all x ∈ Ω, and there exists
a g ∈ L1(µ) such that |fn(x)| ≤ g(x) for all n ∈ N and x ∈ Ω. Then
f ∈ L1(Ω, µ) and

lim
n→∞

∫
Ω

fndµ =

∫
Ω

fdµ.

Remark 1.12.7. If f is a continuous real valued function on [a, b],

it may not be immediately obvious why
∫ b
a
f(x)dx =

∫
[a,b]

fdµ, where

µ is the Lebesgue measure that we constructed earlier. It should not
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be too hard for you to convince yourself that this is the case. More
generally, if f is a function (on Rn, say) which is Riemann integrable,
its Lebesgue integral also exists and the two integrals coincide.

1.13. Functions of continuous random variables

Let (Ω,M , P ) be a probability measure space and let X : Ω → R
be a random variable. Let g : R→ R be a continuous functions, so Y =
g◦X is a random variable. We would like to study the PDFs and CDFs
associated to Y as well as other quantities such as the expectation. We
have already seen some examples. For instance, if we take g(x) =
x2, then E[Y ] = E[X2], which we have computed for a number of
(discrete) random variables. Armed with our new (and old!) theories
of integration, we can study these quantities more systematically.

Definition 1.13.1. We will say that a random variable X : Ω→ R
with CDF FX is of continuous type if FX is absolutely continuous, that
is, if there exists a non-negative function f(x) such that

F (x) =

∫ x

−∞
f(t)dt. (1.13.1)

Of course, f is nothing but the PDF fX of X. In many of the most
important cases, fX(t) will actually be a continuous function, so FX(t)
will also be continuous (not just right-continuous) function and, in fact,
differentiable. Note that there can only be one continuous function f
such that (1.13.1) holds, since in that case f = F ′. Thus the PDF fX
is uniquely determined as a continuous function.

When the function g is differentiable with g′(x) identically positive
or identically negative, the PDF of Y can be easily determined from
the PDF of X.

Theorem 1.13.2. Let X be a random variable with a continuous
PDF fX . Let g : R→ R be a differentiable function such that g′(x) > 0
for all x ∈ R, or g′(x) < 0 for all x ∈ R. Let a = min{g(−∞), g(∞)}
and b = max{g(−∞), g(∞)} (note that a = −∞ and b = ∞ are
allowed). Then Y is a random variable of continuous type and the
PDF of Y is given by

f(y) =

{
fX(g−1(y)) |[g−1]′(y)| for y ∈ (a, b), and

0 otherwise.
(1.13.2)

Proof. This is just the method of substitution for integration.
Before starting the proof we make the following observation. For any
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z < w,

FX(z) = P (X−1((−∞, z])) ≤ P (X−1((−∞, w)))

≤ P (X−1((−∞, w])) = FX(w).

But since fX is continuous, so is FX , so FX(z)→ FX(w) as z → w. It
follows that P (X−1((−∞, w))) = FX(w). In particular P (X−1(w)) =
0, that is, points are sets of measure 0. Thus, we do not need to worry
about whether the interval is open or closed on the right from the point
of view of probability and integration.

Note that by hypothesis, g is either strictly increasing or strictly
decreasing, and is hence bijective as a function from R to (a, b). It
follows that g−1 is also strictly increasing or decreasing respectively.
Also, the function f(y) is clearly non-negative.

Assume first that g′(x) > 0 for all x ∈ R, so g is a monotonic
increasing function, g(−∞) = a. By definition, the CDF FY (y) is
given by

FY (y) = P (Y −1((−∞, y])) = P (X−1((−∞, g−1(y)]) = FX(g−1(y)).

Since X is of continuous type (that is, FX is absolutely continuous)
and has a continuous PDF fX , we can write

FX(g−1(y)) =

∫ g−1(y)

−∞
fX(t)dt.

If t = g−1(u), we have dt = [g−1(u)]′du, and we obtain

FY (y) =

∫ y

a

fX(g−1(u))[g−1(u)]′du =

∫ y

−∞
f(u)du,

since f(u) = 0 if u ≤ a and [g−1(u)]′ = |[g−1(u)]′|. Since f(u) is
non-negative, this shows that FY (y) is absolutely continuous and that
fY (u) = f(u) is its PDF.

A similar argument works when g′(x) < 0 for all x ∈ R. Let
fY (u) be given by the formula (1.13.2) and remember that |[g−1(u)]′| =
−[g−1(u)]′. Then (with u = g(t)),

∫ y

−∞
f(u)du = −

∫ g−1(y)

b

fX(t)dt =

∫ ∞
g−1(y)

fX(t)dt = 1−
∫ g−1(y)

−∞
fX(t)dt,



1.13. FUNCTIONS OF CONTINUOUS RANDOM VARIABLES 55

where the second equality follows because fX(t) = 0 in [b,∞). Further,

FY (y) = P (Y −1((−∞, y])) = P (X−1([g−1(y),∞)))

= 1− P (X−1((−∞, g−1(y))) = 1− FX(g−1(y))

= 1−
∫ g−1(y)

−∞
fX(t)dt =

∫ y

−∞
f(u)du.

This shows that fY (u) = f(u) and that FY is absolutely continuous in
this case as well. �

Remark 1.13.3. If the fX vanishes outside of [c, d], we see that we
can take

a = min{g(c), g(d)} and b = max{g(c), g(d)},
and it is enough to assume the relevant hypotheses for g′ in the interval
(c, d).

Example 1.13.1. Let X ∼ U(0, 1) and Y = eX (for instance, we
can take X = 1(0,1) : R → R). We see that g(x) = ex satisfies the
hypotheses of the theorem since g′(x) = ex > 0 for all x ∈ R. Note
that g−1(x) = log x. We have c = 0, d = 1 in the notation of the
remark, so

fY (y) =

{∣∣∣ 1y ∣∣∣ if 1 < y < e, and

0 otherwise.

Example 1.13.2. Let X ∼ N (0, 1) and Y = X2. Recall that

fX(x) = 1√
2π
e
−x2
2 . In this case g(x) = x2 and g′(x) = 2x, so g′(x) > 0

when x > 0 and g′(x) < 0 when x < 0. Although, g is not a bijective
function on R, it is still relatively well behaved: g−1(x) = {−

√
x,
√
x},

so each fibre has only two pre-images.

P (Y −1((−∞, y])) = P ({x |X(x) ∈ [−√y,√y]})
= P ({x |X(x) ∈ (−∞,√y]} \ {x |X(x) ∈ (−∞,−√y]}
= F (

√
y)− F (−√y).

We have g−1(y) =
√
y, [g−1(y)]′ = 1

2
√
y
. Differentiating the right-hand

side above,

fY (y) =

 1
2
√
y

[
e
−y
2 +e

−y
2√

2π

]
= 1√

2πy
e
−y
2 if y > 0, and

0 if y ≤ 0.

Note that one can use the same technique to handle the case g(x) =
xn for any even power of n and also the case g(x) = |x|α for α > 0.



56 1. INTRODUCTION

The latter function is not necessarily differentiable at 0. The technique
employed in can be further extended to the case when g′(x) is contin-
uous and non-vanishing outside of a finite set of points. In this case
each y ∈ R has only a images and we can imitate the argument above.

Exercise 1.13.1. Compute fY in terms of fX in the following cases.

(1) Let X ∼ U(−1, 1) and let Y = |X|.
(2) Let X be a random variable with PDF f . Let Y = X2m,

m ≥ 0.
(3) Let X ∼ Exp(λ) and let Y = sinX (in this case the function

sin has countably many pre-images).

1.14. Moments of Random Variables

Let X be a random variable and let g(x) is a function of the form
xn, n ∈ N, or of the form |x|α for α > 0. We will be interested in
various quantities associated to g◦X, especially in the moments E[Xn]
and E[|X|α] α > 0. We have already computed E[X] and E[X2] in
a number of cases when X is discrete. In all of those cases, we had
X(Ω) ⊂ [0,∞). When X takes on both positive and negative values,
one needs to be slightly more careful, and when the random variable
is not necessarily discrete, we have to employ Riemann or Lebesgue
integration.

Definition 1.14.1. Let (Ω,M , P ) be a probability measure space
and let X : Ω → R be a random variable with X ∈ L1(Ω, P ). The
Expectation E[X] or mean µ of X is defined as

µ = E[X] =

∫
Ω

XdP.

To say that X ∈ L1(Ω, P ) is to say that E[|X|] < ∞. If E[|X|]
is not finite, we say that E[X] does not exist. Given a random vari-
able X : Ω → R, we can define the pushforward measure µ on R
by µ(Ia,b) = P (X−1(Ia,b)). Thus, we have equipped (R,B) with the
probability measure µ. If X is of continuous type, we know that
FX(t) =

∫ t
−∞ fX(u)dm(u), where fX(u) is a non-negative function and

dm is the Lebesgue measure on R. In this case, for any B ∈ B,

P (X−1(B)) = µ(B) =

∫
R

1Bdµ =

∫
B

fX(u)dm(u).

In particular, P (X−1(B)) = 0 if m(B) = 0, since
∫
B
fX(u)dm(u) = 0,

By Proposition 1.12.2. The most important special case of this occurs
when B = {x}, a single point in R.
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Remark 1.14.2. Note that in the proof of Theorem 1.13.2, we had
proved this fact assuming additionally that the density function fX was
continuous. As we see, we do not actually need this assumption, and
it can be dropped from the hypotheses of Theorem 1.13.2.

For X of continuous type, we have

E[X] =

∫ ∞
−∞

xfX(x)dx,

provided E[|X|] =
∫∞
−∞ |x|fX(x)dx exists.

Note that it is possible for
∫∞
−∞ xf(x)dx to exist in the sense that

lima→∞
∫ a
−a xf(x)dx =:

∫∞
−∞ xf(x)dx exists but xf(x) may not be in

L1(m). The PDF of the Cauchy distribution gives an example of such
a function. The issue here is similar to when we had series. We needed
absolute convergence to make sure that the sum of a series did not
depend on the order of summation. The condition that

∫
R |x|fdm <∞

takes care of similar problems when integrating.

Theorem 1.14.3. Let X : Ω → R be a random variable of contin-
uous type in L1(Ω, P ) and let g : R → R be a differentiable function.
Assume that X and g satisfy the hypotheses of Theorem 1.13.2. Then
E[Y ] =

∫
R g(x)fX(x)dx.

Proof.∫ ∞
−∞

g(x)fX(x)dx =

∫ b

a

yf(g−1(y))[g−1(y)]′dy =

∫ b

a

yfY (y)dy.

�

When g(x) = xn for even integers n ∈ N, we can modify the proof
above as we did when computing fY and get a similar result.

Definition 1.14.4. Let X be a random variable. If E[Xn] exists,
it is called the n-th moment of (the distribution function of) X about
the origin. If E[|X|α] exists for some α > 0, it is called the α-th
absolute moment of X about the origin. The notation mn = E[Xn]
and βα = E[|X|α] is often used.

Theorem 1.14.5. Let X : Ω→ R be a random variable. If E[|X|t]
exists, then so does E[|X|s] for 0 < s < t.

Proof. If |X(x)| > 1, |X(x)|s < |X(x)|t. Hence,

E[|X|s] =

∫
|X(x)|≤1

|X(x)|sdP +

∫
|X(x)|>1

|X(x)|sdP

≤ P ({x | |X(x)| ≤ 1}) + E[|X|t] <∞.
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�

Remark 1.14.6. The theorem above is really a theorem in mea-
sure theory. Let (M,µ) be any finite measure space. We will say that
a measurable function f is in Lp(M,µ), p > 0, if |f |p ∈ L1(M,µ).
The theorem above says that if a function is in Lt(M,µ), t > 0, it is
necessarily in Ls(M,µ) for s < t.

Example 1.14.1. Pareto’s distribution with parameters α, β > 0
is defined by the PDF

f(x) =

{
βαβ

xβ+1 if x ≥ α, and

0 otherwise.

We see that

E[Xn] =

∫ ∞
α

xnf(x)dx = βαβ
∫ ∞
α

xn−β−1dx.

It follows that E[Xn] exists only if n < β.
Assume that β > 2, so E[X] and E[X2] exist. Then

E[X] = βαβ
∫ ∞
α

x−βdx = βαβ
x1−β

1− β

∣∣∣∞
α

=
βα

β − 1
.

Exercise 1.14.1. Calculate the E[Xn], n ≥ 0, whenever they exist,
in each of the following cases.

(1)

fX(x) =

{
k−1
xk

if x ≥ 1, and

0 otherwise.
(k > 1)

(2)

fX(x) =

{
6x(1− x) if x ∈ (0, 1), and

0 otherwise.

(3)

fX(x) =

{
xe−x if x ≥ 0, and

0 otherwise.

(4) X is a discrete random variable with X ∼ Geo(p).

If E[|X|p] exists (that is, X ∈ Lp(Ω, P )), we can refine the argument
above as follows. Let An = {x | |X(x)| ≤ n} and let Bn = A′n =
{x | |X(x)| > n} (note that n can be any positive real number). We
have

P (Bn)np ≤
∫

Ω

|X|pdP −
∫
An

|X|pdP
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Note that
∫
An
|X|pdP =

∫
Ω

1An|X|pdP . By the Monotone Convergence

Theorem applied to the sequence 1An|X|p, we see that

lim
n→∞

∫
An

|X|pdP =

∫
Ω

|X|pdP.

Hence, limn→∞ P (Bn)np = 0. We have thus proved

Proposition 1.14.7. If E[|X|p] exists,

lim
n→∞

npP ({x | |X(x)| > n}) = 0.

The probabilities P (Bn) = P ({x | |X(x)| > n}) are called tail prob-
abilities. We have just given a rate of convergence (to 0) for the tail
probabilities of an Lp random variable.

Exercise 1.14.2. Let X be a random variable of continuous type
which is non-negative.

(1) Show that

E[X] =

∫ ∞
0

(1− FX(u))du,

in the sense that if one of the quantities exists, so does the
other and the equality holds. Hint: We can write

E[X] = lim
n→∞

∫ n

0

xf(x)dx.

Justify this. Then apply integration by parts to the integrand
on the left-hand side.

Solution: Recall from the tutorial that we need to show that
limn→∞ n[1− F (n)]→ 0. We note that

n[1− F (n)] = n

∫ ∞
n

f(x)dx ≤
∫ ∞
n

xf(x)dx

= E[X]−
∫ n

0

xf(x)dx.

If E[X] exists, the monotone convergence theorem shows that
E[X]−

∫ n
0
xf(x)dx→ 0 (remember x ≥ 0, so n[1−F (n)]→ 0,

and we get the desired equality.
Conversely, if

∫∞
0

(1− FX(u))du <∞,∫ n

0

xf(x)dx = nF (n)−
∫ n

0

F (x)dx =

∫ n

0

[F (n)− F (x)]dx

≤
∫ n

0

[1− F (x)]dx ≤
∫ ∞

0

(1− FX(u))du <∞
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for all n ∈ N (the first inequality above follows from the fact
that F (x) ≤ 1 for all x ∈ R). By the monotone convergence
theorem, E[X] <∞ and

E[X] = lim
n→∞

∫ n

0

xf(x)dx.

(2) Observe that 1− F (x) = P (X−1((x,∞)). Using ideas similar
to those of the first part, show that

E[|X|α] =

∫ ∞
0

P ((|X|α)−1((x,∞))dx

= α

∫ ∞
0

xα−1P (|X|−1((x,∞))dx.

(3) Use the previous part of the exercise together with the integral
test to conclude that

∞∑
n=1

P (|X|−1((n
1
α ,∞))) <∞

if and only if E[Xα] exists. Note that this is stronger than
Proposition 1.14.7

Theorem 1.14.8. Let g : R → [0,∞) be a (Borel) measurable
function and let X be a random variable. If E[g(X)] exists, then

P ({x | g(X) ≥ ε}) ≤ E[g(X)]

ε
.

for any ε > 0.

Proof. Let Eε = {x | g(X) ≥ ε}. We have

εP (Eε) ≤
∫
Eε

g(X)dP ≤
∫

Ω

g(X)dP = E[g(X)].

This proves the result. �

Corollary 1.14.9 (Markov’s inequality). Let g(x) = |x|α and let
ε = Kα, α > 0. Then,

P ({x | |X| ≥ K}) ≤ E[|X|α]

Kα
.

Corollary 1.14.10 (Chebyshyev’s inequality). Let g(x) = (x−µ)2

and ε = K2σ2. Then,

P ({x | |X − µ| ≥ Kσ}) ≤ 1

K2
.
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Before proceeding further we make the following elementary ob-
servation. For measurable functions g1, . . . , gm, and a random vari-
able X, E[

∑m
i=1 gi9X)] =

∑m
i=1E[gi(X)] provided E[gi(X)] exists for

1 ≤ i ≤ m.

Definition 1.14.11. Let n ∈ N and c ∈ R. Let X be a random
variable such that E[(X−c)n] exists. Then E[(X−c)n] is called the n-th
moment of X about c. When c = µ = E[X], we call µn = E[(X − µ)n]
the n-th central moment of X.

We see that

µn = E[(X−µ)n] =
n∑
k=0

(
n

k

)
(−1)n−kE[Xk]µn−k =

n∑
k=0

(
n

k

)
(−1)n−kmkµ

n−k.

Thus, the central moments can be recovered if we know the moments
about the origin.

The case n = 2 is the most important and merits its own separate
name.

Definition 1.14.12. If E[X2] exists, we call µ2 = E[(X − µ)2] the
variance of X and denote it by Var(X). We define σ =

√
µ2 to be the

standard deviation (SD) of X.

Exercise 1.14.3. Assume that E[X2] exists.

(1) Show that σ2 = µ2 = E[X2]− (E[X])2.
(2) Suppose µ2 = 0. Show that X(x) = µ with probability 1. Such

a random variable is called a degenerate random variable.
(3) If c 6= µ, show that E[(X − µ)2] ≤ E[(X − c)2].
(4) Show that Var(aX + b) = a2Var(X).

Exercise 1.14.4. Let β > 2. Find the variance of a random vari-
able with the Pareto distribution.

Exercise 1.14.5. Calculate Var(X) (if it exists) for a random vari-
able X for each of the distributions given in Exercise 1.14.1.

1.15. The Hölder and Lyapunov inequalities

Definition 1.15.1. Let (Ω,M ,m) be a measure space and let f :
Ω→ C be a measurable function. For p ∈ (0,∞), we define

‖f‖p =

[∫
Ω

|f |pdm
] 1
p

(1.15.1)

if it exists.
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If p =∞ we define ‖f‖∞ as follows. Let f be a measurable function
and let a ∈ [0,∞). We will say that a is an essential upper bound of
f if (|f |)−1(a,∞) has measure 0. We let U ess

f be the set of essential
upper bounds of f and define

‖f‖∞ = inf U ess
f .

Theorem 1.15.2 (Hölder’s inequality). Let (Ω,M ,m) and let p, q ∈
[1,∞). If p = 1 (resp. q = 1) we take q = ∞ (resp. p = ∞). For all
measurable functions f, g : Ω→ C,∫

Ω

|fg|dm ≤
[∫

Ω

|f |pdm
] 1
p
[∫

Ω

|g|qdm
] 1
q

(1.15.2)

If f ∈ Lp(Ω,m) and g ∈ Lq(Ω,m) with 1
p

+ 1
q

= 1, then

‖fg‖1 ≤ ‖f‖p‖g‖q (1.15.3)

Proof. We focus on the case when ‖f‖p, ‖g‖q ∈ (0,∞) and when
p ∈ (1,∞). The other cases are easy. We start with the elementary
Young’s inequality:

ab ≤ ap

p
+
bq

q
(1.15.4)

for a, b ∈ (0,∞). The quantity ap/p is the area between the x-axis and
the graph y = xp−1, between x = 0 and x = a. The quantity bq/q is
the area between the same graph and the y-axis, between y = 0 and
y = b, since y−1 = x1/p−1 = xq−1! One sees easily that the rectangle of
area ab with corners (0, 0), (a, 0) and (0, b) is contained in the union of
these two areas giving Young’s inequality.

We apply Young’s inequality to a = |f(s)|
‖f‖p and b = |g(s)|

‖g‖q . This will

give
|f(s)|
‖f‖p

|g(s)|
‖g‖q

≤ 1

p

|f(s)|p

‖f‖pp
+

1

q

|g(s)|q

‖g‖qq
.

Integrate both sides to get∫
Ω
|f(s)||g(s)|dm
‖f‖p‖g‖q

≤ 1

p
+

1

q
= 1.

This proves the result. �

Remark 1.15.3. Note that the proof works if we use the Riemann
integral instead of the Lebesgue integral.

The number q = p
p−1

is called the conjugate exponent of p. In the

special case p = 2 = q we recover the Cauchy-Schwarz inequality:

‖fg‖1 ≤ ‖f‖2‖g‖2.
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Exercise 1.15.1. If f ∈ Lp(Ω,m) and g ∈ Lq(Ω,m) for p, q ∈
(1,∞) with 1

p
+ 1

q
= 1, then show that equality occurs in (1.15.3) if and

only if there exist a, b ∈ R such that a|f |p+b|g|q = 0 almost everywhere,
that is, outside a set of measure 0 in Ω.

Corollary 1.15.4 (The Minkowski inequality). If f, g ∈ Lp(Ω,m),
p ∈ [1,∞]

‖f + g‖p ≤ ‖f‖p + ‖g‖p (1.15.5)

Proof. We can assume that ‖f + g‖p 6= 0 since otherwise there is
nothing to prove. We have

‖f + g‖pp =

∫
Ω

|f + g|pdm =

∫
Ω

|f + g||f + g|p−1dm

≤
∫

Ω

|f ||f + g|p−1dm+

∫
Ω

|g||f + g|p−1dm

≤ ‖f‖p(‖f + g‖p)p−1 + ‖g‖p(‖f + g‖p)p−1

≤ (‖f‖p + ‖g‖p)(‖f + g‖p)p−1).

If ‖f + g‖p < ∞, we can cancel the factor (‖f + g‖p)p−1 from both
sides to obtain the desired result. To see this, we note that the function
h(x) = xp is convex in [0,∞) if p > 1 (note h(2)(x) = p(p−1)xp−2 > 0).
It follows that

|f + g|p ≤ 1

2
|2f |p +

1

2
|2g|p ≤ 2p−1(|f |p + |g|p).

Hence,
‖f + g‖pp ≤ 2p−1‖f‖pp + 2p−1‖g‖pp ≤ ∞

by hypothesis. �

Remark 1.15.5. Minkowski’s inequality shows that the set of mea-
surable functions f for which ‖f‖p < ∞ denoted Lp(Ω,m) or Lp(m),
p ∈ (0,∞], forms a vector space since it shows that the sum of two
functions in Lp(m) lies in Lp(m) (that the set is closed under scalar
multiplication is trivial).

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
From the point of view of integration, two functions which differ only
on a set of measure zero are the same. Thus, we introduce an equiv-
alence relation on the vector space of measurable functions for which
‖f‖p < ∞ by declaring that f ∼ g if f − g = 0 outside of a set of
measure 0, that is f = g almost everywhere. The equivalence classes
of functions once again form a vector space that we denote Lp(Ω,m)
(indeed, this the quotient of the vector space of measurable functions
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such that ‖f‖p <∞ by the subspace of functions with ‖f‖p = 0). Fur-
ther ‖ ‖p defines a norm on Lp(Ω,m) in the usual sense, so Lp(Ω,m)
becomes a normed linear space, and hence, a metric space. In fact,
Lp(Ω,m) is a complete metric space. Complex complete normed linear
spaces are called Banach spaces and the spaces Lp(Ω,m) are the most
important infinite-dimensional examples of such spaces. When p = 2,
the norm arises from an inner product. Complete inner product spaces
are called Hilbert spaces.

.

Corollary 1.15.6 (The Lyapunov inequality). Let (Ω,M , P ) be a
probability measure space and let f : Ω→ C be a measurable function.
If 1 ≤ s < t,

‖f‖s ≤ ‖f‖t. (1.15.6)

Proof. Assume that ‖f‖s ≤ ∞. Take f = |f |s, g = 1, p = t/s
and q = t/(t− s) in Hölder’s inequality. Clearly |f |t/s ∈ Lt Then∫

Ω

|f |s| · 1dm ≤ ‖f‖st · 1 =⇒ ‖f‖s ≤ ‖f‖t.

�

In the language of probability, the Lyapunov inequality asserts that

E[|X|s]1/s ≤ E[|X|t]1/t.

Exercise 1.15.2. Let (Ω,M ,m) be a measure space. Let f : Ω→
C be a measurable function (you can take f to be real valued if you
want). Define ϕ(p) = ‖f‖pp. Let E = {p |ϕ(p) < ∞} and assume that
‖f‖∞ > 0.

(1) If r < p < s, and r, s ∈ E, prove that p ∈ E.
(2) Prove that logϕ is convex in the interior of E and that ϕ is

continuous on E.
(3) Is E necessarily open? Closed? Can E consist of a single

point.
(4) Prove that ‖f‖p ≤ max{‖f‖r, ‖f‖s}. Show that this implies

Lr(m) ∩ Ls(m) ⊂ Lp(m)

Exercise 1.15.3. For some measures m, r < s implies Lr(m) ⊂
Ls(m). For others the inclusion is reversed. Sometimes Lr(m) 6⊃ Ls(m)
if r 6= s. Give examples of these situations.
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1.16. Multiple Random Variables

Let (Ω,M , P ) be a probability measure space. Let X : Ω→ Rn be
a random variable (that is, X−1(U) ∈M for every open set U ∈ Rn).
Any function f : Ω → Rn can be viewed as an ordered n-tuple of
functions (f1, . . . , fn). It is easy to see that X = (X1, . . . , Xn) is a
random variable if and only if Xi : Ω → R is a random variable for
1 ≤ i ≤ n.

For simplicity (especially of the notation) we will often restrict our-
selves to the case when n = 2. However, most of our statements will
generalise to arbitrary n.

Definition 1.16.1. Let X : Ω → Rn be a random variable. The
(joint) distribution function (DF) of X is defined to be the function

FX(x) = F (x1, . . . , xn)

= P (X−1((−∞, x1]× (−∞, x2]× · · · × (−∞, xn]).

Like the distribution functions for a single random variable the
function F satisfies the following properties:

(D1) F (x) ≥ 0 for all x = (x1, . . . , xn) ∈ Rn.
(D2) F is non-decreasing and continuous from the right with respect

to each coordinate.
(D3)

lim(x1,x2,...xi−1,xi,xi+1,...xn)→(x1,x2,...,xi−1,−∞,xi+1,...,xn) F (x) = 0,

for all 1 ≤ i ≤ n, and

lim(x1,x2,...,xn)→(∞,∞,...,∞) F (x) = 1.

However, these properties are not sufficient to ensure that a function
is the distribution function of a random variable.

To ensure that this is the case, F must also satisfy the “n-increasing”
property, which states that for any hyperrectangle, the probability mass
is non-negative:

(D4) Let a = (a1, . . . , an) and b = (b1, . . . , bn) be points in Rn such
that ai < bi for all i = 1, . . . , n. Let h(i) = (0, . . . , 0, h, 0, . . . , 0)
and define

∆i(xi, h)F (x) = F (x+ h(i))− F (x).

The n-increasing condition is:

∆a1,b1∆a2,b2 · · ·∆an,bnF (x) =
∑
ε1=0,1

· · ·
∑
εn=0,1

(−1)n−
∑n
i=1 εiF (x) ≥ 0,
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where the variables xi are replaced by bi if εi = 1 and by ai if
εi = 0.

When n = 2, the n-increasing property takes the form

F (x2, y2)− F (x2, y1) + F (x1, y1)− F (x1, y2) ≥ 0

whenever x1 < x2 and y1 < y2.

Example 1.16.1. Consider the function

F (x, y) =

{
1 if x, y ≥ 0 and x+ y ≥ 1, and

0 otherwise.

If we take (x1, y1) = (1/3, 1/3) (x2, y2) = (1, 1), we see that F does
satisfies (D1)-(D3) but does not satisfy (D4) since

F (x2, y2)− F (x2, y1) + F (x1, y1)− F (x1, y2) = 1− 1 + 0− 1 = −1.

Hence, it is not the distribution function of a random variable.

Exercise 1.16.1. Let

F (x, y) =

{
1 if x+ 2y ≥ 1, and

0 otherwise.

Determine if F is a distribution of a 2-dimensional random variable.

Exercise 1.16.2. For DFs F1, . . . , Fn, show that

1−
n∑
i=1

[1− Fi(xi)] ≤ F (x1, . . . , xn) ≤ min
1≤i≤n

Fi(xi).

When the random variable X is discrete, that is the Xi, 1 ≤ i ≤ n,
are discrete, we can define the joint probability mass function of X by
setting pi1i2···in = P (X−1

1 (xi1 , . . . , xin)), where xi1 , . . . , xin are points in
the images of X1, . . . , Xn respectively. In this case any non-negative
real numbers pi1i2···in such that∑

i1,i2··· ,in

pi1i2···in = 1

will be the probability mass function of an n-dimensional discrete ran-
dom variable.

Definition 1.16.2. An n-dimensional RV X = (X1, . . . , Xn) is
said to be of continuous type if there exists a non-negative function
f : Rn → R such that

FX(x1, . . . , xn) =

∫ x1

−∞
· · ·
[∫ xn−1

−∞

[∫ xn

−∞
f(t1, . . . , tn)dtn

]
dtn−1

]
· · · dt1.
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The function f is called the joint probability density function of the
random variables X1, . . . , Xn.

Similar to the discrete case, any function f : Rn → [0,∞) such that∫ ∞
−∞
· · ·
∫ ∞
−∞

f(t1, . . . , tn)dtn · · · dt1 = 1

will be the joint PDF of some n-dimensional random variable of contin-
uous type. This requires us to verify (D4). If f is a continuous function,
we can apply the Fundamental Theorem of Calculus to conclude that

∂nF

∂x1 · · · ∂xn
= f(x1, . . . , xn).

Definition 1.16.3. Given a 2-dimensional random variable X =
(X1, X2) of continuous type with PDF f(x1, x2), we can define the
marginal PDFs of X1 and X2 by

f1(x1) =

∫ ∞
−∞

f(x1, x2)dx2 and f2(x2) =

∫ ∞
−∞

f(x1, x2)dx1

respectively.

One checks easily that f1 and f2 are PDFs so the names are justified.
Obviously, these definitions generalise to n-dimensions.

Example 1.16.2. Let X = (X1, X2) be a random variable with
joint PDF

f(x1, x2) =

{
2 if 0 < x1 < x2 < 1, and

0 otherwise.

Then

f1(x1) =

∫ ∞
−∞

f(x1, x2)dx2 =

{∫ 1

x1
2dx2 = 2− 2x1 if 0 < x1 < 1, and

0 otherwise,

and

f2(x2) =

∫ ∞
−∞

f(x1, x2)dx1 =

{∫ x2
0

2dx1 = 2x2 if 0 < x2 < 1, and

0 otherwise

are the two marginal density function.

Exercise 1.16.3. Let S be the (open) square with vertices (1, 0), (0, 1), (−1, 0)
and (0,−1) and let X = (X1, X2) be a random variable with joint PDF

f(x1, x2) =

{
1/2 if (x1, x2) ∈ S, and

0 otherwse.

Find the marginal PDFs of X1 ane X2
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Definition 1.16.4. Let X = (X1, X2) be a random variable with
distribution function F . The marginal distribution function of Xi,
i = 1, 2 is defined by

F1(x1) = lim
x2→∞

F (x1, x2) and F2(x2) = lim
x1→∞

F (x1, x2)

It is clear that for n-dimensional random variables, we can define
k-dimensional marginal distribution functions

Fi1,...,ik(xi1 , . . . , xik) = limxj1 ,...,xjn−k→∞ F (x1, . . . , xn),

where {j1, . . . jn−k} = [n] \ {i1, . . . , ik}, for an aribitrary subset of size
k.

If X = (X1, X2) is of continuous type, we see (since f1, f2 ≥ 0, the
order in which we integrate does not matter) that

F1(x1) =

∫ x1

−∞
f1(t)dt and F2(x2) =

∫ x2

−∞
f2(t)dt.

The previous definition of conditional probability P (A|B) makes
sense whenever P (B) 6= 0. When dealing with a random variable Y
of continuous type, we know that the set B = Y −1({y}), has measure
0, so we cannot use the previous definition to define probabilities of
events conditional on the event B. To get around this problem, we
proceed as follows.

Definition 1.16.5. The conditional distribution function of an RV
X1 given X2(x) = x2 is defined to be

FX1|X2(x|x2) := lim
ε→0+

P (X−1
1 ((−∞, x]) ∩X−1

2 ((x2 − ε, x2 + ε]))

P (Y −1((x2 − ε, x2 + ε]))

if it exists.

Suppose now that X = (X1, X2) is of continuous type with PDF f .
If f is continuous at the point (x1, x2), f2 is a continuous function and
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f2(x2) > 0, we have

FX1|X2(x|x2) = lim
ε→0+

P (X−1
1 ((−∞, x]) ∩X−1

2 ((x2 − ε, x2 + ε]))

P (Y −1((x2 − ε, x2 + ε]))

= lim
ε→0+

∫ x
−∞

∫ x2+ε

x2−ε f(u1, u2)du2du1∫ x2+ε

x2−ε f2(u2)du2

= lim
ε→0+

∫ x
−∞

∫ x2+ε

x2−ε f(u1, u2)du2du1/2ε∫ x2+ε

x2−ε f2(u2)du2/2ε

=

∫ x
−∞ f(u1, x2)du1

f2(x2)
=

∫ x

−∞

f(u1, x2)du1

f2(x2)
du1.

This shows that the PDF fX1|X2(x1, x2) of FX1|X2(x1, x2) is f(x1,x2)
f2(x2)

.

Remark 1.16.6. Note that when taking the limit in the numerator,
we interchanged the order of integration and taking the limit. One way
of justifying this is the Dominated Convergence Theorem.

Exercise 1.16.4. With notation as in the theorem above, show
that

F1(x1) =

∫ ∞
−∞

f2(x2)FX1|X2(x1|x2)dx2.

Example 1.16.3. For the joint PDF in Example 1.16.2 we have

fX2|X2(x1|x1) =
2

2− 2x1

=
1

1− x1

.

Thus fX2|X1(x2|x1) yields the uniform distribution on (x, 1).

Exercise 1.16.5. Calculate fX1|X2(x1|x2) for the example above.
Also calculate FX2|X1(1/2|1/2) and FX1|X2(1/3|2/3).

Exercise 1.16.6. Calculate the two conditional PDFs of the ran-
dom variables X1 and X2 in Exercise 1.16.3.

Exercise 1.16.7. Find the marginal PDFs given the joint PDF in
the following cases.

(1) The bivariate (i.e., 2-dimensional) Cauchy random variable
(X1, X2) with PDF

f(x1, x2) =
c

2π
(c2 + x2

1 + x2
2)−3/2

with c > 0. In this case also find FX2|X1(x2|x).
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(2) The bivariate gamma random variable (X1, X2) with PDF

f(x1, x2) =

{
βα+γ

Γ(α)Γ(γ)
xα−1

1 (x2 − x1)γ−1e−βx2 if 0 < x1 < x2, and

0 otherwise.

for α, β, γ > 0. Find FX2|X1(x2|x).

Exercise 1.16.8. Let X be an RV on a probability measure space
(Ω,M , P ) and let T ∈ B with P (X−1(T )) > 0. The conditional
distribution

P (X−1(−∞, x])
⋂
X−1(T ))

P (X−1(T ))

is called the truncated distribution of X. Calculate the truncated dis-
tributions in the following examples.

(1) Let X ∼ N (0, 1) and let T = (−∞, 0].
(2) Let X ∼ Poiss(λ) (this is a discrete random variable with

Poisson distribution with parameter λ) and let T = N.

1.17. Fubini’s Theorem

We have used the language of Riemann integration in the previous
section. Also, we made all our definitions for multiple random variables
on the same probability measure space, and there was no particular
need for this restriction. To view things from a measure theoretic
perspective, we proceed as follows.

Let (Ωi,Mi,mi), i = 1, 2, be measure spaces. We will restrict
ourselves to the case n = 2 for simplicity of notation. We define a
measure on Ω = Ω1 × Ω2 as follows. We let F (resp. M ) on Ω be the
algebra (resp. σ-algebra) generated by all sets of the form A = A1×A2,
with A1 ∈ M1 A2 ∈ M2 (such sets are called measurable rectangles).
We define

m(A) := m1(A1)m2(A2)

for all such measurable rectangles and extend this definition to finite
disjoint unions of rectangles by additivity. It is not hard to see that if
a set B in Ω can be expressed as a finite disjoint union of measurable
rectangles in two different ways, the expressions for m(B) will be equal,
so m is well defined on the algebra F .

Lemma 1.17.1. The pre-measure m on F is continuous at ∅.

Proof. Let E ∈ F . We define the section

Eω2 = {ω1 | (ω1, ω2) ∈ E}.
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As a function of ω2, m1(Eω2) is a measurable function of ω2 (in fact, it
is a simpe function!). Further,

m(E) =

∫
Ω2

m1(Eω2)dm2 (1.17.1)

Let En → ∅ be a non-increasing sequence in F with m(E1) < ∞ (see
Definition 1.10.3 and the remark immediately following it).

Then En,ω2 is a non-increasing sequence in M1 with En,ω2 → ∅.
Since m1 is a measure, it is continuous at ∅, so limn→∞m1(En,ω2)→ 0
for each ω2 ∈ Ω2, in other words, m1(En,ω2) is a sequence of functions
converging pointwise to 0. Furtherm1(En,ω2) ≤ m1(E1,ω2) for all n ∈ N,
and we know that m1(E1,ω2) ∈ L1(Ω2,m2) by (1.17.1). By the DCT,

lim
n→∞

m(En) =

∫
Ω2

lim
n→∞

m1(En,ω2)dm2 = 0.

�

The Carathéodory Extension Theorem now assures us that the pre-
measure m on F extends to a measure on M . We will continue to call
this measure m. If the space Ω is σ-finite, recall that this extension
is unique. In particular, if we start with probability measure spaces
(Ωi,Mi, Pi), i = 1, 2, then we obtain a unique product measure P in
this way.

Theorem 1.17.2 (Fubini’s Theorem). Let (Ωi,Mi,mi), i = 1, 2 be
measure spaces and let (Ω,M ,m) be the product measure space. Let
f(ω) = f(ω1, ω2) be a (complex valued) measurable function of ω ∈ Ω.
Define functions gω1 : Ω2 → C and hω2 : Ω1 → C by

gω1(ω2) = hω2(ω1) = f(ω1, ω2).

Then gω1 (resp. hω2) is a measurable function of ω2 (resp. ω1). If
f ∈ L1(Ω,m), then gω1 (resp. hω2) are integrable for almost all ω1

(resp. ω2). Further,

G(ω1) =

∫
Ω2

gω1dm2 and H(ω2) =

∫
Ω1

hω2dm1

are measurable functions (of ω1 and ω2 respectively), finite almost ev-
erywhere and in L1(m1) and L1(m2) respectively. And finally,∫

Ω

fdm =

∫
Ω1

Gdm1=

∫
Ω2

Hdm2. (1.17.2)

Conversely, if f : Ω→ [0,∞) is a measurable function and if either G
or H is in L1(Ω1,m1) or L1(Ω2,m2) (1.17.2) holds.
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Fubini’s theorem allows one to construct a measure on Rn as the
product of the Lebesgue measures on n copies of R. This yields a trans-
lational invariant Borel measure on Rn which is called the Lebesgue
measure on Rn.

Remark 1.17.3. Notice that if the random variables Xi are func-
tions on distinct sample spaces Ωi, i = 1, 2, we do not need to change
any of the other definitions that we have made. For instance, the dis-
tribution function F of (X1, X2) can be defined as

F (x1, x2) = P (X−1((−∞, x1]× (−∞, x2])).

However, we can no longer assert that this probability is the same as
P (X−1

1 (−∞, x1])∩X−1
2 ((−∞, x2])) since X−1

1 (−∞, x1]) and X−1
2 (−∞, x2])

no longer subsets of the same set Ω. In many situations however, we
may still have

P (X−1((−∞, x1]×(−∞, x2])) = P (X−1
1 ((−∞, x1]))P (X−1

2 ((−∞, x2])),

that is, the two random variables maybe “pairwise independent”. We
examine this last phenomenon which makes sense even when Ω1 = Ω2

in the next section.

Exercise 1.17.1. Let f(x, y) = x2−y2
(x2+y2)2

on S = (0, 1]× (0, 1]. Cal-

culate ∫ 1

0

∫ 1

0

f(x, y)dxdy and

∫ 1

0

∫ 1

0

f(x, y)dydx.

Does your answer contradict Fubini’s theorem?

1.18. Independence

Definition 1.18.1. We will say that the random variablesX1, X2, . . . , Xn

are mutually or completely independent if

F (x1, . . . , xn) =
n∏
i=1

Fi(xi)

for all (x1, . . . , xn) ∈ Rn, where F is the DF of X = (X1, . . . , Xn) and
the Fi are the marginal DFs of Xi, 1 ≤ i ≤ n.

If n = 2 in the definition above, we say that X1 and X2 are pairwise
independent or just independent. Notice that if X1, X2, . . . , Xn are
mutually independent, the elements of any subset are also mutually
independent.

We stressed earlier that the marginal distributions (or the marginal
PDFs) do not determine the distribution. When the random variables
are independent, the marginal distributions do determine the distribu-
tion, as is obvious from the definition.
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Remark 1.18.2. In the language of measure theory, X1 and X2 are
independent if the pushforward measure induced on R2 by X = (X1, X2)
is the product measure m1×m2, where mi are the pushforward measures
induced by Xi, i = 1, 2, on R.

Proposition 1.18.3. If X1 X2 are of continuous type, they are
independent if and only if

f(x1, x2) = f1(x1)f2(x2)

where f is the joint density of X = (X1, X2) which is continuous, and
f1 and f2 are the marginal densities.

Of course the proposition generalises to n-variables. Its proof is
an immediate consequence of the definitions, as is the proof of the
following proposition.

Proposition 1.18.4. Let X1 and X2 be independent random vari-
ables. Then FX2|X1(x2|x1) = FX2(x2) for all x2, and FX1|X2(x1|x2) =
FX1(x1) for all x1.

We return to Buffon’s needle problem assuming that the length
of the needle is l and that the distance between the vertical lines is
2l. Suppose that the RV R, which represents the distance from the
center of the needle to the nearest line, is uniformly distributed on
[0, l]. Suppose further that Θ, the angle that the needle forms with the
vertical, is uniformly distributed on [0, π). If R and Θ are assumed to
be independent, the joint PDF is given by

fR,Θ(r, θ) = fR(r)fΘ(θ) =

{
1
l
· 1
π

if 0 ≤ r ≤ l and 0 ≤ θ < π, and

0 otherwise.

The needle will intersect the line if and only if l
2
· sin Θ ≥ R.

Hence,

P =

∫ π

0

∫ l
2

sin θ

0

fR,Θ(r, θ)drdθ =
1

π
.

Theorem 1.18.5. Let f1, f2 : R → R be (Borel) measurable func-
tions and let X1 and X2 be independent random variables. Then f1(X1)
and f2(X2) are independent random variables.

Proof. Let F be the distribution function of the RV (f1(X1), f2(X2))
and let F1 and F2 be the corresponding marginal distributions. We have

F (x1, x2) = P (X−1
1 (f−1

1 ((−∞, x1])) ∩X−1
2 (f−1

2 ((−∞, x2])))

= P (X−1
1 (f−1

1 ((−∞, x1])))P (X−1
2 (f−1

2 ((−∞, x2])))

= F1(x1)F2(x2).
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The first equality above follows from the fact that X1 and X2 are
independent.

�

Exercise 1.18.1. Let (Ω,M , P ) be a probability measure space.
Show that A and B in M are independent events if and only if the
indicator functions 1A and 1B are independent random variables.

Exercise 1.18.2. Show that the converse to the theorem above
fails using the following example. Let X1 and X2 be jointly distributed
with pdf

f(x1, x2) =

{
1+x1x2

4
, |x1| < 1, |x2| < 1, and

0 otherwise.

Show that X1 and X2 are not independent, but X2
1 and X2

2 are inde-
pendent.

Definition 1.18.6. A sequence of random variablesXn is said to be
independent if for every m ≥ 2, X1, . . . , Xm are mutually independent.

Definition 1.18.7. Two random variables X1 and X2 are said to
be identically distributed if they have the same distribution function,
that is, FX1 = FX2 .

Example 1.18.1. Let Ω = [6] and p(ω) = 1/6 for all ω ∈ [6]
let X(ω) = ω. Then X ∼ U (1/6), the uniform distribution. Let
Y (ω) = 7 − X(ω). Clearly, Y ∼ U (1/6) also. Hence, X and Y are
identically distributed. More generally, let σ be any permutation of [6].
Then Y = X ◦ σ and X are identcally distributed.

Example 1.18.2. If X ∼ N (0, 1), then −X ∼ N (0, 1).

Definition 1.18.8. We say {Xn} is a sequence of independent,
identically distributed (iid) random variables with common law L(X)
if Xn is an independent sequence of random variables and FXn = FX .

Definition 1.18.9. The random variables X = (X1, . . . , Xn) and
Y = (Y1, . . . , Ym) are said to be independent if we have

F (x1, . . . , xn, y1, . . . , ym) = F1x1, . . . , xn)F2(y1, . . . , ym),

where F1, F2, and F are the joint distribution functions of X, Y and
(X1, . . . , Xn, Y1, . . . , Ym) respectively.

Note that the independence ofX and Y does not imply the (mutual)
independence of the components X1, . . . Xn of X or the compontents
Y1, . . . , Ym of Y . As in the one-variable case we have
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Theorem 1.18.10. If g : Rn → R and h : Rm → R are measurable
functions and X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are independent
random variables, then so are g(X) and h(Y ).

Exercise 1.18.3. Let X and Y be independent RVs such that XY
is degenerate at c 6= 0, that is P ((XY )−1(c)) = 1. Show that X and Y
are also degenerate.

Exercise 1.18.4. Integrated circuits, disk drives and batteries are
often thought to be “memoryless” for a large portion of their useful
life, that is, the conditional probability of failure in unit time at any
given time given that it has functioned up to that point, is the same
regardless of how much time has elapsed.

The failure rate or hazard function in memoryless systems can be
modelled as follows. Let R(t) be the reliability of a system, that is, the
probability that the system survives up to time t. The probability of
failure between t and t+h is R(t)−R(t+h). The probability of failure
in unit time is h−1[R(t)−R(t+h)]. To get the probability in unit time
at time t we take the limit as h → 0. which is −dR/dt. To get λ(t),
the failure rate, we have to simply divide by the probability that the
system has functioned upto that point, that is, we need to divide by
R(t). Thus,

λ(t) = − 1

R(t)

dR

dt
.

Now, if F is the distribution function for the failure of the system,
R(t) = 1− F (t), so R′(t) = −f(t) where f is the corresponding PDF.

Thus, λ(t) = f(t)
R(t)

.

If we assume that the system is memoryless, that is, λ(t) = λ is a
constant, we see that R(t) = e−λt+C for some constant C. At t = 0,
we have R(0) = 1 since the system is new and has not failed. Hence,
C = 0. Thus, R(t) = e−λt, and f(t) = λe−λt when t > 0. This yields
the exponential distribution with parameter λ.

In this exercise, we use a slightly modified version of the model
above. Suppose that A is a brand of batteries for which the PDF for
failure of the system is given by f(t) = 3λt2e−λt

3
, if t > 0, and 0

otherwise. This models a situation where the chances of failure are
very low when the battery is new. Suppose B is a brand of batteries
for which the PDF for failure of the system is given by 3µt2e−µt

3
, if

t > 0, and 0 otherwise. What is the probability that a brand B battery
outlasts a brand A battery? In particular, what happens if µ = λ?
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1.19. Functions of several random variables

Let X : Ω → Rn be a random variable and let g : Rn → Rm be
a measurable function. Clearly Y = g(X) = g ◦ X : Ω → Rm an m-
dimensional random variable. As in the one variable situation, we can
find the joint distribution FY of Y in terms of the joint distribution
FX , and the joint PDF fY in terms of the joint PDF fX under suit-
able hypotheses. We recall that if g : Rn → Rn is differentiable with
component functions (g1, . . . , gn), its Jacobian J(g) is defined to be

det

(
∂gi
∂xj

)
=

∣∣∣∣∣∣∣∣∣
∂g1
∂x1

· · · ∂g1
∂xn

∂g2
∂x1

· · · ∂g2
∂xn

...
...

...
∂gn
∂x1

· · · ∂gn
∂xn

∣∣∣∣∣∣∣∣∣ .
Theorem 1.19.1. Let X = (X1, . . . Xn) : Ω → Rn be a random

variable of continuous type and let g = (g1, . . . , gn) : Rn → Rn be a
measurable function. Let Y = g(X), that is, Y = (Y1, . . . , Yn), where

Yi(x1, . . . , xn) = gi(x1, . . . , xn),

1 ≤ i ≤ n. Assume that g ∈ C 1(Rn), that g : X(Ω) → (g ◦ X(Rn))
is bijective, and that [J(g−1)](y) 6= 0 for all y ∈ Y (Ω), where J(g−1)
denotes the Jacobian determinant of the function g−1. Then Y is a
random variable of continuous type with PDF given by

fY (y) = fX(g−1(y))|[J(g−1)](y)|

Proof. Again, this is just the usual change of variable formula for
integration. It will be useful to set

B = Y −1((−∞, y1]× · · · × (−∞, yn]).

We have

FY (y) = P (Y −1(B)) = P (X−1(g−1(B)))

=

∫
g−1(B)

fX(x)dx =

∫
B

fX(g−1(y))|J [(g−1)](y)|dy

=

∫ y1

−∞
· · ·
∫ yn

−∞
fX(g−1

1 (u1), . . . , g−1
n (un))

∣∣∣∣det

(
∂g−1

i

∂uj

)∣∣∣∣ du1 · · · dun.

�

Remark 1.19.2. As in the one variable case, we can often apply
the theorem even if g is not bijective when the fibres of g are finite or
even countable.
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Example 1.19.1. Let X1, X2 ∼ U(0, 1) be independent RVs. Let
Y1 = X1 +X2 and Y2 = X1−X2. We would like to find the joint PDF
of Y and the two marginal densities.

The fact that X1 and X2 are uniformly distributed on (0, 1) means
that for i = 1, 2,

fXi(x) = f(x) =

{
1 if 0 < x < 1, and

0 otherwise.

Because X1 and X2 are independent, we know that the joint PDF
fX(x1, x2) has the form f(x1)f(x2) In this example g(x1, x2) = (x1 +
x2, x1 − x2). Hence,

g(x) =

(
1 1
1 −1

)(
x1

x2

)
It follows that if h = g−1, h(y) = A−1(y), so

h =
1

2

(
1 1
1 −1

)
.

Hence, h(y) =
(
y1+y2

2
, y1−y2

2

)
. Clearly, J(h(y)) = −1/2. Hence,

fY (y1, y2) =

{
1
2
f
(
y1+y2

2

)
f
(
y1−y2

2

)
if 0 < y1+y2

2
< 1, 0 < y1−y2

2
< 1, and

0 otherwise.

This gives

fY (y1, y2) =

{
1/2 if 0 < y1+y2

2
< 1, 0 < y1−y2

2
< 1, and

0 otherwise.

Note that

fY1(y1) =

{∫ y1
−y1

1
2
dy2 = y1 if 0 < y1 ≤ 1, and∫ 2−y1

y1−2
1
2
dy2 = 2− y1 if 1 < y1 < 2

Similarly, we can compute

fY2(y2) =

{
y2 + 1 if −1 < y2 ≤ 0, and

1− y2 if 0 < y2 < 1.

Exercise 1.19.1. Let X1, X,X3 ∼ Exp(1) be independent RVs. Let

Y1 = X1 +X2 +X3, Y2 =
X1 +X2

X1 +X2 +X3

, Y3 =
X1

X1 +X2

.

Find the joint PDF of Y = (Y1, Y2, Y3).
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Exercise 1.19.2. Let X1, X2, X3 ∼ N (0, 1) be iid random vari-
ables. Let

Y1 =
1√
2
X1 −

1√
2
X2

Y2 =
1√
6
X1 +

1√
6
X2 −

√
2√
3
X3

Y3 =
1√
3
X1 +

1√
3
X2 +

1√
3
X3.

Find the joint PDF of Y . Are Y1, Y2, Y3 iid random variables?

Exercise 1.19.3. Let X1 be the time that a customer takes from
the time she joins a queue at a service desk in a bank to completion of
service. Let X2 be the time she waits in the line before she reaches the
service desk. Then X1 ≥ X2, and X1 − X2 is the “service time” the
customer spends at the service desk. Suppose the joint PDF is given
by

f(x1, x2) =

{
e−x1 , 0 ≤ x2 ≤ x1 <∞, and

0 otherwise.

Calculate the joint PDF of Y1 = X1 +X2 and Y2 = X1 −X2.

If (Ω,M , P ) is a probability measure space and X : Ω → R is a
random variable, let mX be the pushforward measure on R. We have,∫

R
1B(x)dmX =

∫
Ω

1X−1(B)(ω)dP =

∫
Ω

1B(X(ω))dP.

for every Borel set B. By linearity of the integral, we have∫
R
s(x)dmX =

∫
Ω

s(X(ω))dP, (1.19.1)

for every simple function on R taking non-negative values. By approx-
imating any measurable function f taking non-negative values by a
monotonically increasing sequence of simple functions from below and
taking limits, the MCT shows that (1.19.1) holds when we replace sim-
ple functions by such f . It extends to measurable real valued functions
h by writing h = h+−h− and using (1.19.1) for each summand. Thus,
for every measurable function f : R→ R, we have∫

R
f(x)dmX =

∫
Ω

f(X(ω))dP. (1.19.2)

In particular, if we take f(x) = x and X ∈ L1(Ω, P ),∫
R
xdmX =

∫
Ω

X(ω)dP = E[X]. (1.19.3)
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Similarly, the higher moments have the expresssion∫
R
xndmX =

∫
Ω

Xn(ω)dP = E[Xn], (1.19.4)

if they exist.
Now, let g : R → R be a measurable function. Let Y = g(X) and

let dmY be the corresponding pushforward measure. Then by replacing
(Ω,M , P ) by (R,B,mX), (R,B,mX) by (R,B,mY ) and f by g, we
have ∫

R
g(y)dmY =

∫
R
g(X(x))dmX .

This is the most general form of the change of variables formula for
real valued functions.

Remark 1.19.3. We had previously used the formulas (1.19.3) and
(1.19.4) under the assumption that the random variable X was of con-
tinuous type. As you can see, the assumption was not necessary.

Suppose X and Y are independent random variables. We have

E[X]E[Y ] =

∫
R
xdmX

∫
R
ydmY =

∫
R2

xydmX,Y = E[XY ].

Where the second equality follows by Fubini’s theorem and the fact that
pushforward measure mX,Y of the RV (X, Y ) is the product measure
because X and Y are independent.

Now,

Var(X + Y ) = E[(X − E[X] + Y − E[Y ])2]

= E[(X − E[X])2] + E[(Y − E[Y ])2] + 2E[(X − E[X])(Y − E[Y ])].

But

E[(X−E[X])(Y−E[Y ])] = E[XY ]−E[X]E[Y ]−E[X]E[Y ]+E[X]E[Y ] = 0.

Hence,

Var(X + Y ) = Var(X) + Var(Y ).

Definition 1.19.4. We can define the covariance between random
variables X and Y as

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

if it exists.

If E[X2] and E[Y 2] exist, then the Cauchy-Schwartz inequality
shows that cov(X, Y ) exists. The argument above shows that cov(X, Y )
if the RVs X and Y are independent.
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Exercise 1.19.4. Recall that E[(Y − a)2] is minimised when a =
E[Y ], so E[Y ] can be interpreted as the best approximation of Y by a
constant function. Find a and b so that E[(Y −(aX+b))2] is minimised.
Find this minimum value.

Definition 1.19.5. We define the corelation coefficient ρ of two
RVs X and Y to be

ρ = ρ(X, Y ) :=
cov(X, Y )

σXσY
,

where σX and σY are the standard deviations of X and Y respectively.
We say that X and Y are uncorelated if ρ = 0 (or if cov(X, Y ) = 0)).

Exercise 1.19.5. Assume that X, Y ∈ L2(Ω, P ). Let ρ be defined
as above.

(1) Show that |ρ| ≤ 1.
(2) Show that |ρ| = 1 if and only if there exist constants a 6= 0

and b such that P{ω |Y (ω = aX(ω) + b}) = 1.
(3) Let U = aX + b and V = cY + d. Show that ρ(X, Y ) =
±ρ(U, V ).

1.20. The weak and strong laws of large numbers

Definition 1.20.1. Let (Ω,M , P ) be a probabilty measure space.
A sequence fn of measurable functions is said to converge to a measur-
able function f in measure or probability if

lim
n→∞

P ({ω | |fn(ω)− f(ω)| ≥ ε}) = 0

for every ε > 0. We will sometimes write fn
P−→ f in this case.

Recall that we have previously mentioned convergence almost ev-
erywhere:

Definition 1.20.2. Let (Ω,M ,m) be a measure space. A sequence
fn of measurable functions is said to converge to a measurable function
f almost everywhere if there exists a set E of measure zero such that

lim
n→∞

fn(ω) = f(ω)

for every ω ∈ E ′. We will sometimes write fn
a.e.−→ f in this case.

Remark 1.20.3. In probability it is common to say fn → f almost
surely instead of almost everywhere. Accordingly, we sometimes write
fn

a.s.−→ f in this case.
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If (Ω,M ,m) is a probability measure space we can reformulate
the above definition to say that a sequence of random variables Xn

converges almost everywhere to a random variable X if

P
(
{ω | lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

Example 1.20.1. Let Anl be the segment [ l
n
, l+1
n

] if l = 0 and the

segment ( l
n
, l+1
n

] if 1 ≤ l ≤ n− 1. Then 1An → 0 in probability, but
not almost everywhere.

Lemma 1.20.4. Let Xn be a sequence of random variables such that

lim
n→∞

E[|Xn|] = 0.

Then Xn
P−→ 0.

Proof. For δ > 0, let An = {ω ∈ Ω | |Xn(ω)| ≥ δ}. If Xn

P

6→ 0,
there a ε > 0 and a subsequence Ank such that P (Ank) > ε for all
k ∈ N. Then, E[|Xnk |] > δε, contradicting the hypothesis. This proves
the lemma. �

We begin with a slightly weaker formulation of the Weak Law of
Large Numbers.

Proposition 1.20.5. Let {Xn} be a sequence of iid RVs with E[Xn] =
µ and Var(Xn) = σ2 for all n ∈ N. Let Sn = X1 + · · ·Xn. Then,∣∣∣∣Snn − µ

∣∣∣∣ P−→ 0.

Proof. Notice that E[Sn/n] = µ. Further Var(Sn) = nσ2, Var(Sn/n) =
σ2/n.

Choose K = δ/σ in Chebyshev’s inequality applied to X = Sn
n

.
This gives

P

({
x
∣∣∣ ∣∣∣∣Snn − µ

∣∣∣∣ ≥ δ

})
≤

Var
(
Sn
n

)
δ2

=
σ2

nδ2
.

�

The condition of being identically distributed is not strictly neces-
sary. If we examine the proof, we see that what we need are only the
following conditions.

(1) Sn
n

P→ µ := limn→∞
1
n

∑n
k=1 µk.

(2) limn→∞
1
n2

∑n
k=1 σ

2
k = 0.

We can strengthen the proposition above by removing the hypoth-
esis that the second moment exists.
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Theorem 1.20.6 (The Weak Law of Large Numbers (WLLN)). Let
{Xn} be a sequence of iid RVs with E[Xn] = µ for all n ∈ N. Then,∣∣∣∣Snn − µ

∣∣∣∣ P−→ 0.

Proof. For any random variable X and C > 0, and let XC be the
truncated random variable

XC(ω) =

{
X(ω) if |X(ω)| ≤ C, and

0 otherwise.

Note that XC = IdC ◦X, where

IdC(x) =

{
x if |x| ≥ C, and

0 otherwise.

Clearly, the function IdC is measurable (in fact, it is continuous except
at x = ±C), so XC is also a random variable. Let YC := X −XC , so
X = XC + YC .

Recall that if g is a measurable function and Xn is a sequence of
independent random variables, then g(Xn) is also a sequence of inde-
pendent random variables. Taking g = IdC(x), we see that Xn,C is a
sequence of independent random variables. Similarly, it is easy to see
that Yn,C is a sequence of independent random variables.

Let Fn(x) be the distribution function of Xn, and let Fn,C(x) =
P (X−1

n,C((−∞, x])) be the distribution function of Xn,C . If x < −C, we
see that Fn,C(x) = 0. If −C ≤ x ≤ C, we see that

P (X−1
n,C((−∞, x])) = P (X−1

n,C((−∞,−C)) tX−1
n,C((−C, x]))

= 0 + P (X−1
n,C((−C, x])) = P (X−1

n ((−C, x]))

= Fn(x)− Fn(−C).

It is clear that X−1
n,C((−∞, x]) = Ω if x ≥ C. Hence, Fn,C(x) = 1 if

x ≥ C. To summarise, we have

Fn,C(x) =


0 if x < −C,

P (X−1
n,C((−∞, x])) = Fn(x)− Fn(−C) if −C ≤ x < C, and

1 if x ≥ C.

Since the Xn are identically distributed, Fn = F for all n ∈ N for some
distribution F . It follows that the disributions Fn,C are all identical,
and we call this common distribution FC . It follows that Xn,C is a
sequence of iid RVs. Moreover, this sequence satisfies the hypotheses
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of Proposition 1.20.5. We have∫
Ω

|Xn,C |dP ≤
∫

Ω

|Xn|dP <∞, and∫
Ω

|Xn,C |2dP ≤ C2

∫
Ω

dP ≤ C2,

so E[Xn,C ] and Var(Xn,C) exist. Further, since the Fn,C = FC are all
identical, the corresponding Borel measures mn,C on R are all identical
to the measure mC determined by FC . Thus

E[Xn,C ] =

∫
R
xdmC = µC , and

E[(Xn,C − µC)2] =

∫
R
(x− µC)2dmC = σ2

C

for suitable constants µC and σC .
Recall that we have defined Yn,C = Xn −Xn,C . Since both Xn and

Xn,C are identically distributed sequences, so is Yn,C . Moreover,∫
Ω

Yn,CdP =

∫
R
xdmC −

∫
R
xdmn,C = µ− µC = νC ,

where νC = µ − µC , so µ = µC + νC . Note that since the Yn are
identically distributed with a common distribution G, say, |Yn| will be
identically distributed with the common distribution H(x) = G(x) −
G(−x). Hence, the pushforward measures and expectations E[|Yn|] will
all be equal.

We let

An,C =
X1,C + · · ·+Xn,C

n
and Bn,C =

Y1,C + · · ·+ Yn,C
n

.

Note that

E[|Bn,C |] ≤
∑n

k=1E[|Yk,C |]
n

≤ E[|Y1,C |] ≤ E[|Y1|].

Now

λn =

∫
Ω

∣∣∣∣Snn − µ
∣∣∣∣ dP ≤ ∫

Ω

|An,C − µC |dP +

∫
Ω

|Bn,C − νC |dP

≤ E[|An,C − µC |] + 2E[|Y1,C |]
By Proposition 1.20.5, we have

P ({ω |An,C − µC | ≥ δ})→ 0,

so for any δ > 0 there is sequence εn → 0, such that

P ({ω | |An,C(ω)− µC |) ≥ δ} < εn.



84 1. INTRODUCTION

Now |µC | ≤ C and |An,C(ω) ≤ C. Hence,

E[|An,C − µC |] ≤ 2Cεn + δ.

If we let n → ∞, we see that E[|An,C − µC |] ≤ δ for every δ > 0.
Hence, lim supn→∞ λn ≤ E[|Y1,C |].

Choose a sequence of positive numbers Cn such that Cn → ∞.
Now X1,Cn → X1 pointwise as Cn → ∞, and |X1,Cn| ≤ |X1| with
E[|X1|] <∞. By the DCT, we see that E[X1,Cn ]→ E[X1] as Cn →∞.
Hence, E[|Y1,Cn|]→ 0 as Cn →∞. Thus, we have shown that

E

[∣∣∣∣Snn − µ
∣∣∣∣]→ 0

as n→∞. By Lemma 1.20.4, the theorem now follows.
�

Lemma 1.20.7 (Borel-Cantelli). Let An ⊂ Ω be a sequence such
that

∞∑
n=1

P (An) <∞.

Then 1An
a.e.−→ 0.

Proof. Let fn : Ω→ [0,∞] be a sequence of measurable functions
and let S(ω) =

∑∞
n=1 fn(ω). Let B = {ω |S(ω) < ∞}. Suppose that

fn ∈ L1(Ω, P ) and
∑

n=1E[fn] <∞. By the MCT,

E[S] =

∫
Ω

SdP = lim
n→∞

n∑
k=1

∫
Ω

fkdP =
∞∑
n=1

E[fn] <∞.

It follows that P (B) = 1, that is, S(ω) <∞ almost everywhere.
We take fn = 1An in the preceding argument. Then E[1An ] =

P (An), and
∑∞

n=1E[1An ] < ∞ by hypothesis, so
∑

n=1 1An(ω) < ∞
almost everywhere. This means that ω ∈ An for at most finitely many
n, so 1An → 0 almost everywhere. �

Another way to phrase the Borel-Cantelli Lemma is to say that
under the given hypotheses, the probability that infinitely many of the
events An occur is 0.

Lemma 1.20.8 (A converse to the Borel-Cantelli Lemma). Suppose
the events An are mutually independent and

∑∞
n=1 P (An) = ∞. Let

Bn =
∞⋃
k=n

Ak, and let A =
∞⋂
n=1

Bn. Then P (A) = 1.
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Proof. Suppose
∑∞

n=1 P (An) = ∞. Note that A =
∞⋂
n=1

Bn is a

non-increasing intersection and A is the event that infinitely many of
the An occur. The continuity of probability guarantees that

P (A) = lim
n→∞

P (Bn) = 1− lim
n→∞

P

(
∞⋂
k=n

A′k

)
= 1− lim

n→∞

∞∏
k=n

(1− P (Ak))

≥ 1− lim
n→∞

e−
∑∞
k=n P (Ak) = 1.

The third equality above follows because the events are independent,
and the inequality is a consequence of the fact that 1 − x ≤ e−x for
any x > 0. This shows that the probability of infinitely many events
An occurring is 1, that is, for all ω outside of a set of measure 0, there
are infinitely many n such that ω ∈ An, that is, 1An(ω) = 1. This
shows �

Theorem 1.20.9 (The Strong Law of Large numbers). Let {Xn}
be a sequence of iid RVs with E[Xn] = µ, E[X2

n] = σ2, and E[X4
n] =

τ <∞ for all n ∈ N. Then

P

({
ω
∣∣∣ lim
n→∞

Sn(ω)

n
= µ

})
= 1.

Proof. We can assume without loss of generality that E[Xn] = 0
by replacing Xn by X−E[Xn]. We will prove the equivalent statement

P

({
ω
∣∣∣ lim
n→∞

Sn(ω)

n
6= 0

})
= 0.

In turn, the statement above is equivalent to the assertion that for
every ε > 0,

P

({
ω
∣∣∣ ∣∣∣∣Sn(ω)

n

∣∣∣∣ ≥ ε for infinitely many n

})
= 0,

or that

P
({
ω
∣∣∣ |Sn(ω)| ≥ nε for infinitely many n

})
= 0.

Let An = {ω
∣∣∣ |Sn(ω)| ≥ nε}. The idea is to show that

∑∞
n=1 P (An) <

∞, whence the theorem will follow from the Borel-Cantelli Lemma.
We first make the following observations. Given a monomial of the

form Xi1Xi2Xi3Xi4 , with i2, i3, i4 6= i1, we see that

E[Xi1Xi2Xi3Xi4 ] = E[Xi1 ]E[Xi2Xi3Xi4 ] = 0,
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where the first equality follows because the random variables are inde-
pendent, and the second because E[Xi1 ] = 0. Thus, we see that

E[S4
n] = E[(X1 + · · ·+Xn)4] =

n∑
i=1

E[X4
i ] +

n∑
j 6=k

E[X2
j ]E[X2

k ],

where we have used independence again in the second equality. Since
all the Xns are identically distributed and have variance σ2, and since
the second sum on the right term has 3n(n− 1) terms, we have

E[S4
n] = nτ + 3n(n− 1)σ2 ≤ Cn2

for some constant C > 0. Using Markov’s inequality for α = 4, we get

P (An) ≤ E[S4
n]

n4ε4
≤ C

n2ε4
.

This shows that
∑

n=1 P (An) < ∞, so by the Borel-Cantelli Lemma,

we know that 1An
a.s.−→ 0, or alternatively, that the probability that the

events An occur for infinitely many n is 0. �

Exercise 1.20.1. Let Xn : [0,∞) be a strictly decreasing sequence

of RVs and suppose that Xn
P−→ 0. Show that Xn

a.s.−→ 0

Exercise 1.20.2. Let Xn be a sequence of random variables with
common finite variance σ2. Suppose ρ(Xi, Xj) < 0 for all i 6= j, show
that the WLLN holds for the sequence Xn.

Exercise 1.20.3. Let Xn be a sequence of (discrete) independent
random variables with PMF

f(x) =


1

2(n+1) log(n+1)
if Xn(ω) = −(n+ 1),

1− 1
(n+1) log(n+1)

if Xn(ω) = 0, and
1

2(n+1) log(n+1)
if Xn(ω) = n+ 1.

Show that the WLLN holds for Xn but the Strong Law of Large Num-
bers (SLLN) does not hold (hint: Use the converse of the Borel-Cantelli
Lemma).

1.21. The central limit theorem

Definition 1.21.1. A sequence of probability measures µn on R
is said to converge weakly to a measure µ if limn→∞ µn(I) = µ(I) for
every closed interval I = [a, b] ⊂ R such that µ{a} = µ{b} = 0. In this

case we write µn
w−→ µ.

Weak convergence can also be defined in terms of the distribution
functions which give rise to the measures.
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Definition 1.21.2. Let Fn : R → [0, 1] be a sequence of distribu-
tion functions and µn the corresponding measures. We will say that
µn

w−→ µ, or that Fn
w−→ F , if limn→∞ Fn(x) = F (x) for every x where

F is continuous.

Exercise 1.21.1. Show that the two definitions above are equiva-
lent.

Weak convergence gives rise to the following definition for the con-
vergence of random variables.

Definition 1.21.3. Let {Xn}∞n=1 be a sequence of random variables
and let Fn be the corresponding distribution function. We say that the
sequence Xn converges in law to a random variable X with distribution
function F if Fn

w−→ F .

Example 1.21.1. Consider the probability measure space ([0, 1],B,m)
where m is the Lebesgue measure. Let

Xn(x) =

{
1− x if n is odd, and

x if x is even.

Clearly Xn is a sequence of identically distributed variables. Since the
corresponding distributions Fns are identical they are all equal to some
F , so Fn

w−→ F trivially.

Exercise 1.21.2. With Xn as in the example above, show that

that there is no random variable X such that Xn
P−→ X

Example 1.21.2. Let Xn ∼ Ber(1/2) be a sequence of iid random
variables. Since the corresponding distributions Fns are identical they
are all equal to some F , so Fn

w−→ F trivially.

Exercise 1.21.3. (a little harder) With Xn as in the example

above, check that there is no random variable X such that Xn
P−→ X.

Note that there is nothing special about the Bernoulli distribution. As
long as the distribution is not degenerate, the sequence Xn will not
converge in probability.

Proposition 1.21.4. With notation as in the definitions above if

Xn
P−→ X, then Fn

w−→ F .

Proof. Since Xn
P−→ X, we know that given any ε > 0, outside

of a set of measure δn with limn→∞ δn = 0, |Xn(ω)−X(ω)| < ε. This
means that

P (X−1((−∞, x−ε]))−δn < P (X−1
n ((−∞, x])) < P (X−1((−∞, x+ε]))+δn,
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that is,

F (x− ε)− δn < Fn(x) < F (x+ ε) + δn.

If we let n→∞, we see that

F (x− ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x+ ε).

This is true for every ε > 0, and F is continuous at x. Hence,

F (x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x).

It follows that lim infn→∞ Fn(x) = lim supn→∞ Fn(x) = F (x).
�

Theorem 1.21.5 (The Central limit theorem (CLT)). Let {Xn}∞n=1

be a sequence of iid random variables with E[Xn] = µ and Var(Xn) =
σ2 > 0. Let Sn =

∑n
k=1Xk. Then

Sn − nµ√
n

w−→ N (µ, σ2).

Let us state the result more explicitly. We have

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
=

∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ2 dt := Φ(x).

Remark 1.21.6. There is no loss of generality in taking E[Xn] =
µ = 0 and E[X2] = σ2 = 1. Indeed instead of the random variables
Xn, we simply take the random variables (Xn − µ)/σ.

Remark 1.21.7. As for the Weak and Strong Laws, the requirement
that the random variables Xn be identically distributed is not necessary.
Some control over the sums of the first n variances is what one really
needs. The Lindeberg condition is an important condition which is
sufficient to establish the Central Limit Theorem.

We introduce some ideas that are indispensable in probability, and
give a (very vague) sketch o the proof of the central limit theorem.
Let X and Y are independent random variables with distribution func-
tions F and G, and measures mX and mY respectively. For simplicity,
assume that X and Y are of continuous type with PDFs fX and fY
respectively, so dmX = fXdx and dmY = fY dy, where dx and dy
represent the Lebesgue measure on R. We would like to determine
distribution function F of the random variable Z = X + Y . We have

F (z) = P (Z ≤ z)) =

∫ ∫
x+y≤z

f(x, y)dxdy
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where f is the joint PDF of X and Y . Because X and Y are indepen-
dent, f(x, y) = fX(x)fY (y). Hence (by Fubini’s theorem),

F (z) =

∫ ∞
∞

∫ ∞
−∞

fX(x)fY (y)dxdy.

This can be rewritten as

F (z) =

∫ ∞
−∞

∫ z−y

−∞
fX(x)dxfY (y)dy =

∫ ∞
−∞

FX(z − y)fY (y)dy.

Differentiating with respect to z, shows that

fZ(z) =

∫ ∞
−∞

fX(z − y)fY (y)dy =: (fX ∗ fY )(z),

where the last expression is called the convolution of fX and fY . Thus
the PDF of the sum of two random variables is given by convolving the
respective PDFs. A simple change of variables shows that (fX ∗ fY ) =
(fY ∗ fX).

If we do not assume that the distributions FX and FY are absolutely
continuous, the formula for F becomes

F (z) =

∫ ∞
−∞

FX(z − y)dmY ,

which is, by definition, the convolution FX ∗FY of the two distributions
FX and FY .

If X is an RV of continuous type with PDF f , we define its char-
acteristic function by

φX(t) =

∫
Ω

e−itXdP =

∫ ∞
−∞

f(x)e−itxdx.

This is, of course, nothing but the Fourier transform of f . Notice that
e−itX is the moment generating function of X for s = −it. It is easy
to see that φX+Y (t) = φX(t)φY (t), when X and Y are independent.
Thus, the Fourier transform converts convolution to multiplication.
Moreover, the Fourier inversion formula tells us that, under reasonable
hypotheses, we can recover the PDF if we know its Fourier transform.

Because of our remarks above, we see that if φ is the characteristic
function of any Xn in a sequence of iid RVs, then the characteristic
function ψn of Sn/

√
n is given by

ψn(t) =

[
φ

(
t√
n

)]n
.
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It can be shown that limn→∞ ψn(t) = exp
[
−σ2t2

2

]
. This last expression

is the characteristic function of the normal distribution with µ = 0,
and the central limit theorem now follows.

The CLT says that for large n we should expect

P

(
Sn − nµ
σ
√
n
≤ x

)
≈ Φ(x), (1.21.1)

or equivalently, that

P (Sn ≤ x) ≈ Φ

(
x− E[Sn]√

Var(Sn)

)
, (1.21.2)

for x ∈ R. The approximation (1.21.2) is called the normal approxi-
mation formula.

Because of the symmetry of the normal distribution about the y-
axis, we see that for c > 0,

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ c

)
= P (Sn ≤ nµ− nc) + P (Sn ≥ nµ+ nc)

≈ Φ

(
−nc
σ
√
n

)
+ 1− Φ

(
nc

σ
√
n

)
= 2

[
1− Φ

(
c
√
n

σ

)]
.

This yields

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ c

)
≈ 2(1− Φ(δ)), (1.21.3)

where δ = c
√
n/σ. This has applications to sampling (see Exercise

1.21.4 below).

Example 1.21.3. Suppose the life of a certain kind of light bulb
is exponentially distributed with a mean life of 10 days. As soon as
one bulb burns out it is replaced with one of the same kind. Find the
probability that more than 50 bulbs will be required during a one year
period.

To solve this problem we let Xn denote the length of the n-th light
bulb that is installed as a replacement and assume that the Xn are an
independent sequence of RVs with an exponential distribution. Since
the mean is 10 (days) we see that the exponential parameter is λ =
1/10. Clearly, Sn is the time when the n-th bulb burns out, and we
want to find P (S50 < 365). The mean of S50 is 50× 10 = 500, and the
variance is 50 × 100 = 5000. The normal approximation formula says
that

P (S50 < 365) ≈ Φ

(
365− 500√

5000

)
= Φ(−1.91) = 0.028.
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Hence, the probability that we will need to replace more than 50 bulbs
in a year is very low.

Exercise 1.21.4. A sample size of n is to be taken to determine
the percentage of the population planning to vote for the incumbent
in an election. Let Xk = 1 if the k-th person sampled plans to vote for
the incumbent and 0 otherwise. Assume that X1, . . . , Xn is a sequence
of independent RVs with the Ber(p) distribution and that p is close
enought to 1/2 so σ ≈ 1/2 (note that in the range [0.3, 0.7], σ ≥ .458
so this covers quite a big range of p values).

(1) Suppose that n = 900. Find the probability that∣∣∣∣Snn − p
∣∣∣∣ ≥ 0.025.

(2) Suppose that n = 900. Find c such that

P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ c

)
= .01.

(3) Find n such that

P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ c

)
= .01.

You are given Φ(1.5) = 0.933,Φ−1(.995) = 2.58.

Exercise 1.21.5. Use the CLT to obtain an approximation for the
binomial coefficients

(
n
r

)
. (Hint: Take RVs with the binomial distribu-

tion.)

Exercise 1.21.6. Use the CLT applied to a Possion RV to show
that

lim
n→∞

e−nt
n−1∑
k=1

(nt)k

k!
=


1 if 0 < t < 1,

1/2 if t = 1, and

0 if t > 1.
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APPENDIX A

Background material from Real Analysis

A.1. The Construction of the Real Numbers

We will construct the field of real numbers starting with the rational
numbers Q. We start with the familiar definition of a Cauchy sequence
in Q.

We will say that a sequence of rational numbers {an}∞n=1 is a Cauchy
sequence if for every ε ∈ Q with ε > 0, there exists an N ∈ N such
that |an − am| < ε, whenever m,n > N . It is easy to see that the
set C of Cauchy sequences in Q forms a ring under the termwise ad-
dition and multiplication of sequences (a ring is just a set with two
binary operations, usually denoted + and × such that the set is an
abelian group with respect to addition and such that multiplication is
associative and distributes over addition). In fact, C is a commutative
ring, that is, one in which multiplication also commutes. The constant
sequence 0, 0, 0, . . . is the additive identity of C and constant sequence
1, 1, 1, . . . is the multiplicative identity of C. Every rational number r
may be viewed as an element of C by identifying it with the constant
sequence r, r, r, . . ..

We may define a null sequence in Q as a sequence {an}∞n=1 such that
for every ε ∈ Q with ε > 0, there exists an N ∈ N such that |an| < ε for
all n > N , that is, it is a sequence that converges to 0. The set of null
sequences will be denoted I. Since convergent sequences are always
Cauchy sequences, we see that I ⊂ C. We may define an equivalence
relation on C by declaring an ∼ bn if an − bn ∈ I.

Definition A.1.1. The set of real numbers R is the set of equiva-
lence classes C/ ∼ .

We can add and multiply real numbers. If xn is a Cauchy sequence
representing the real number x and yn is a Cauchy sequence represent-
ing the real number y, we can define x+ y to be the equivalence class
of the Cauchy sequence xn + yn. Similarly, xy will be given by the
sequence xnyn. Of course, one must check that these are well-defined.
That is, if x′n and y′n are two other Cauchy sequences representing x

95
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and y respectively, we have to show that x′n + y′n and xn + yn differ by
a null sequence (this is obvious!). Similarly for multiplication.

Remark A.1.2. This remark is for those students who may have
seen a little more algebra – all of you will see these concepts quite shortly
in your Basic Algebra course. The set I of null sequences is an ideal
of C. Since the equivalence class of every Cauchy sequence that is not
a null sequence is invertible, we see that I is, in fact, a maximal ideal.
In this language the field of real numbers R is nothing but the quotient
C/I.

Remark A.1.3. As you perhaps know, one can attempt to define
the real numbers axiomatically:
ht tp s: // en .w ik ip ed ia .o rg /w ik i/ Co ns tr uc ti on o f t he

r ea l n um be rs #A xi om at ic d ef in it io ns

It is easy to see that the operations < and ≤ on Q extend to R.
Indeed, if x, y ∈ R, let {xn} and {yn} be their respective coset repre-
sentatives. Then x ≤ y if there exists N ∈ N such that xn < yn for all
n > N . We say that x < y if x ≤ y but x 6= y is true. We see that this
order extends the usual order on Q, so our construction yields a totally
ordered set R (you should check that ≤ which is a priori defined on
C, descends to the quotient C/ ∼). It is quite easy to verify that our
construction of R satisfies most of the properties that we want of the
real numbers. The only axiom that is somewhat harder to check is the
least upper bound axiom:

Theorem A.1.4. Let S be a non-empty set of real numbers bounded
above. Then S has a least upper bound.

Proof. Since S is bounded above, there is a rational number U
such that S is bounded above by U . Let L ∈ Q such that L < s for
some s ∈ S. We define two Cauchy sequences in Q as follows. Let
u0 = U and l0 = L. Now assume that uk and lk have been defined for
1 ≤ k ≤ n− 1. Let mn = (un−1 + ln−1)/2 and define

un =

{
mn if mn is an upper bound for S

un−1 otherwise,

and

ln =

{
ln−1 if mn is an upper bound for S

mn otherwise.

It is easy to check that u = {un} and l = {ln} are Cauchy sequences,
that un is an upper bound for S for all n ∈ N, and that ln is never an

https://en.wikipedia.org/wiki/Construction_of_the_real_numbers#Axiomatic_definitions
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers#Axiomatic_definitions
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upper bound for S. We also see that un − ln is a null sequence, so the
real number u is the least upper bound of the set S. �

Corollary A.1.5. The set R is complete, that is, every Cauchy
sequence in R converges.

Indeed, it is not hard to see that the least upper bound axiom
implies that R is complete. It also implies the archimedean property
of R: given x ∈ R, there exists n ∈ N such that n > x.

Exercise A.1.1. Try to verify all the statements made above (es-
pecially those which are “easy to see” or“easy to check”).

In practice, the best way to think of R is simply as the set of
(infinite) decimal numbers. Any individual real number can be thought
of as the Cauchy sequence given by its decimal expansion. The only
minor point is that the numbers anan−1an−2 · · · a1a0.a−1a−2 · · · a−m9∗,
where 9∗ indicates that 9 is recurring, and the number

anan−1an−2 · · · a1a0.a−1a−2 · · · (a−m + 1)0∗

represent the same real number. For example, 6.239∗ and 6.240∗ rep-
resent the same number (which we usually write simply as 6.24).

We have constructed R as the completion of Q. This process is
a very general one, and is used to obtain complete sets from non-
complete sets. You will see it again several times in your later analysis
and topology courses, and perhaps, even in an algebra course later.

A.2. Non-archimedean fields

This section is strictly for fun (of course, all mathematics is for
fun!). It will not appear in quizzes, exams etc. The point of this
section is to construct fields like R (fields are commutative rings in
which every non-zero element has an inverse) but which do not have
the archimedean property.

Fix a prime number p. Given any rational number a
b
, we can write

a

b
= pn · a

′

b′
, (p, a′) = (p, b′) = 1

with n ∈ Z. This allows us the define the p-adic norm or absolute value
on Q as follows: ∣∣∣a

b

∣∣∣
p

= p−n,

if a/b 6= 0, and |0|p = 0.

Example A.2.1. Let p = 3 and x = 27/65. Then |x|p = 1/27.

The p-adic absolute value satisfies the following three properties.
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(AV1) |x|p = 0 if and only if x = 0,
(AV2) |xy|p = |x|p|y|p for all x, y ∈ Q and
(AV3) |x+ y|p ≤ max{|x|p, |y|p}.

The inequality in (AV3) is even stronger than the triangle inequality.
It is called the ultrametric inequality. Let Qp be the completion of Q
with respect to the p-adic absolute value | |p (this construction is done
exactly as the construction of R from Q was done). Then | |p extends
naturally to Qp and continues to satisfy (AV1), (AV2) and (AV3) as
above. The set Qp is complete.

Note that if x ∈ Z, |x|p ≤ 1. Thus Qp does not have the archimedean
property! It is called a non-archimedean field. One can check that the
set of p-adic integers

Zp = {x ∈ Qp | |x|p ≤ 1}
is exactly the closure of Z in Qp. It is also easy to see that Zp is a
subring of Qp and, in fact, that it is a compact open subset of Qp.

The non-archimedean nature of Qp gives rise to some unfamiliar
phenomena. Here are two.

Exercise A.2.1. Show that if an → 0 in Qp, then
∑∞

n=1 an con-
verges. Imagine how easy real analysis would be if this property held
for the real numbers!

Exercise A.2.2. Let B(y) = {x ∈ Qp | |x − y|p ≤ 1}. Show that
if z ∈ B(0), B(z) = B(0). The unit ball around the origin, is also the
unit ball around any other point inside it!

A.3. Set cardinality

Definition A.3.1. Two sets A and B are said to have the same
cardinality if there exists a bijective map f : A → B. In this case we
write |A| = |B|. If they do not have the same cardinality, we write
|A| 6= |B|.

Definition A.3.2. We will say that the cardinality of A is less
than or equal to that of B if there exists a subset B′ of B such that
|A| = |B′|. In this case we write |A| ≤ |B|. We say that the cardinality
of A is strictly less than that of B if |A| ≤ |B| and |A| 6= |B|. In this
case we write |A| < |B|.

Note that |A| ≤ |B| is equivalent to the statement that there is an
injective map from A to B.

Exercise A.3.1. Let P(X) denote the power set of X. Show that
|X| < |P(X)|. The cardinality of |P(X)| is sometimes denoted 2|X|.
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Solution: For E ∈P(X), define the indicator or characteristic func-
tion χE : X → {0, 1} by

χE(x) =

{
1 if x ∈ E
0 otherwise.

Notice that the subsets E of X are in bijection with functions χ :
X → {0, 1}, since we can assign the subset Eχ = {x |χ(x) = 1} to the
function χ.

Suppose we have a bijection F : X →P(X). This gives a bijection
between X and the functions χ : X → {0, 1}. Consider the function

g(x) =

{
1 if χF (x)(x) = 0

0 otherwise.

Clearly g 6= χF (x) for any x by construction, which is a contradiction.
In terms of subsets, g is the indicator function χE of the subset

E = {x ∈ Ω |x /∈ F (x)},

and E is clearly not in the image of F .

In practice, it may be a bit difficult to produce a bijective map
between two sets when trying to show that they are of the same cardi-
nality. What is somewhat easier, is to produce a pair of injective maps
one from each set to the other. While it is obvious for finite sets that
this shows that the two sets are in bijection, it is not quite obvious
for infinite sets. I learnt the following proof from G. F. Simmons’ An
Introduction to Topology and Modern Analysis. Variants can be found
in Wikipedia.

Theorem A.3.3. [Schroeder-Bernstein] If |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|.

Proof. Suppose that f : A → B is injective and g : B → A is
injective. For any element a ∈ A, we consider the sequence

a, g−1(a), f−1(g−1(a)), g−1(f−1(g−1(a)), . . .

There are three possibilities for this sequence.

(1) The sequence terminates at an element of A - we call the ele-
ment A-ancestral.

(2) The sequence terminates at an element of B - we call the
element B-ancestral.

(3) The sequence does not terminate - we call the element dually
ancestral.
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We denote the set of A-ancestral (resp. B-ancestral) elements by SA
(resp. SB) and the set of dually ancestral elements by SC . Clearly A
is the disjoint union of SA, SB and SC . We define ϕ : A→ B by

ϕ(a) =

{
f(a) if a ∈ SA ∪ SC ,
g−1(a) if a ∈ SB.

It is easy to see that ϕ is injective (this was more or less done in class).
If b ∈ B, consider g(b). If it lies in SA or SC , we see that there exists
a ∈ A such that ϕ(a) = f(a) = b. Otherwise, ϕ(g(b)) = g−1(g(b)) = b,
which shows that ϕ is surjective. �

If |A| = |N| we say that the set is countable. Otherwise, an infinite
set is called uncountable. The cardinality of N is denoted by ℵ0. The
cardinal 2ℵ0 is denoted ℵ1, and more generally, we denote 2ℵi by ℵi+1,
for all i ≥ 0. In 1877, Georg Cantor formulated the following celebrated
conjecture which became the first of the famous twenty three Hilbert
problems of 1900.

The Continuum Hypothesis. There is no set S with the prop-
erty that

ℵ0 < |S| < ℵ1.

More generally, there is no set with the property that

ℵi < |S| < ℵi+1.

In 1940 Kurt Godel showed that one cannot disprove the Contin-
uum Hypothesis (CH) within the framework of the Zermelo-Frenkel
axioms for set theory (ZF), even assuming the Axiom of Choice (ZFC),
provided ZFC is consistent. In 1963, Paul Cohen showed that the CH
cannot be proved within ZFC (again, assuming its consistency). Thus
CH is independent of the ZFC axioms. Paul Cohen was awarded the
Fields Medal in 1966 for his work on the Continuum Hypothesis.

Exercise A.3.2. Give a bijective map from N to Z.

Solution: We define f : N→ Z by

f(n) =

{
1−n

2
if n is odd, and

n
2

if n is even.

It is easy to check that f is bijective.

Exercise A.3.3. Show that N×N is countable. Now, the previous
exercise shows that Z× Z is countable.
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Solution: The map n → (n, 0) is an injection from N to N× N. The
map f(m,n) = 2m3n is a injection from N×N to N. By the Schroeder-
Bernstein theorem, N× N is countable.

Exercise A.3.4. Show that there is an injective map from Q to
Z× Z. Using the Schroeder-Bernstein Theorem, we can now conclude
that Q is countable.

Solution: Any element in Q can be written as a/b with (a, b) = 1.
Define f : Q→ Z×Z by f(a/b) = (a, b). This map is clearly injective.

Exercise A.3.5. Show that R is not countable

Solution: We already know that |N| < P(N). We also know that
the subset of N can be identified with their indicator functions f :
N → {0, 1}. But these are nothing but sequences f(n) with values in
{0, 1}. Now, given such a sequence we define rf =

∑∞
j=0 10−j!f(j). This

is clearly a convergent series of rational numbers, and hence, defines a
real number. It is easy to see that this map is injective: rf = rg implies
f = g. Hence, there exists an injective map from P(N) to R which
means that |R| ≥ |P(N)| > |N|. This shows that R is not countable.

Exercise A.3.6. Show that the interval (0, 1) and R have the same
cardinality.

Solution: Mulitplication by π gives a bijection from (0, 1) to (0, π).
Translation by −π

2
gives a bijection to

(
−π

2
, π

2

)
. Now x 7→ tanx gives

a bijection onto R.

Exercise A.3.7. Do the sets R and R2 have the same or different
cardinalities? How about Rn, n > 2?

Solution: By the previous exercise, it is enough to show that (0, 1)
and (0, 1) × (0, 1) are in bijection. By the Schroeder-Bernstein Theo-
rem it is enough to show that there is an injective map from (0, 1) ×
(0, 1) to (0, 1). If x = (.a1a2 . . . an . . . , .b1b2 . . . bn . . .), we map it to
(.a1b2a2b2 . . .). One checks easily that this is an injection.

Exercise A.3.8. Show that |R| = |P(N)|.

Solution: We have already seen that |R| ≥ |P(N)|. It is enough
to show that |(0, 1)| ≤ |P(N). If x ∈ (0, 1), its binary expansion
is simply a sequence of 0 and 1’s. It can thus be identified with an
indicator function on N and thus with a subset of N. If we assume that
the binary expansions of real numbers do not end with 1∗, we see that
the assignment of this subset to x is well-defined and injective.
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Exercise A.3.9. Show that a countable union of countable sets is
countable.

Solution: This exercise can be solved by mimicking the proof that Q
is countable. Indeed, it suffices to give an injection of the countable
union into N× N. We will not repeat the argument here.

Exercise A.3.10. Let V be an infinite dimensional vector space
over a field F . A linear functional ` on V is a linear map ` : V → F ,
that is, `(a1v1 + a2v2) = a1`(v1) + a2`(v2) for all a1, a2 ∈ F , v1, v2 ∈ V .

The dual space V ∗ of V is the space of all linear functionals from
V to F . As a set

V ∗ = {` : V → F |, ` is linear}.

We can define (a · `)(v) = a · `(v) and (`1 + `2)(v) = `1(v) + `2(v). This
equips V ∗ with the structure of a vector space. Show that |V ∗| > |V |.

A.4. Taylor’s theorem

Throughout this section we take F = R. Given a function f : I → R
which is n times differentiable at some point “a” in an interval I, we
can associate to it a family of polynomials P0(x), P1(x), . . . Pn(x) called
the Taylor polynomials of degrees 0, 1, . . . n at x0 as follows.

P0(x) = f(a),

P1(x) = f(a) + f (1)(a)(x− a),

P2(x) = f(a) + f (1)(a)(x− a) +
f (2)(x0)

2!
(x− a)2,

...

Pn(x) = f(a) + f (1)(x0)(x− a) +
f (2)(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n.

The Taylor polynomials are rigged exactly so that the 0-th to the n-th
derivatives of Pn(x) and the function f(x) at x = a coincide, that is,
P (k)(x0) = f (k)(x0) for all 0 ≤ k ≤ n, where f (0) = f(x) by convention.

How did we get these polynomials? Basically, by a process of reverse
engineering. Suppose we had a series expansion

f(x) =
∞∑
n=0

cn(x− a)n,

and suppose we could differentiate the series on the right hand side term
by term, just as we would a polynomial. Then substituting x = a gives
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f(0) = c0, and differentiating n-times and then substituting x = a,
gives

cn =
f (n)(a)

n!
(x− a)n.

Thus Pn(x) =
∑n

k=0 ck(x− a)k.

Theorem A.4.1. Let I be an open interval and suppose that [a, x] ⊂
I. Suppose that f ∈ C n(I) (n ≥ 0) and suppose that f (n+1)(u) is
defined for all u ∈ [a, x]. Then there exists c ∈ (a, x) such that

f(x) = Pn(x) +
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

where Pn(x) denotes the Taylor polynomial of degree n at a.

Proof. Consider the function

F (y) = f(x)−f(y)−f (1)(y)(x−y)−f
(2)(y)

2!
(x−y)2 · · ·−f

(n)(x)

n!
(x−y)n.

Clearly F (x) = 0, and

F (1)(y) = −f
(n+1)(y)(x− y)n

n!
. (A.4.1)

We would like to apply Rolle’s Theorem here, but F (a) 6= 0. So con-
sider

g(y) = F (y)−
(
x− y
x− a

)n+1

F (a).

Then g(a) = 0 = g(x). Applying Rolle’s Theorem, we see that there
exists c ∈ (a, x) such that g′(c) = 0. This yields

F (1)(c) = −(n+ 1)

[
(b− c)n

(b− a)n+1

]
F (a). (A.4.2)

We can eliminate F (1)(c) using (A.4.1) and (A.4.2) to get

−(n+ 1)

[
(x− c)n

(x− a)n+1

]
F (a) = −f

(n+1)(c)(x− c)n

n!
,

from which we obtain

F (a) =
(x− a)n+1

(n+ 1)!
f (n+1)(c).

�
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An important special case of the theorem above occurs when f (n+1)

is continuous on I, or at least on [a, x]. If we write

f(x) = Pn+1(x) +
f (n+1)(c)− f (n+1)(x)

(n+ 1)!
(x− a)n+1,

we see that since f (n+1) is continuous on [a, x], |f (n+1)(c)−f (n+1)(x)| →
0 as x→ a. Thus, we have

f(x) = Pn+1(x) + o(|x− a|n+1),

where o(g(h)) signifies a function with the property that

lim
n→∞

o(g(h))/|g(h)| → 0.

Another way in which Taylor’s theorem is often written is

f(x) = Pn(x) +Rn(x),

where Rn(x) = (x−a)n+1

(n+1)!
f (n+1)(c) is usually called the remainder term.

The point about Taylor’s theorem is that we can often estimate this
remainder term precisely. Indeed, we can give many different expres-
sions for Rn(x) = f(x) − Pn(x), each useful in its own context. If we
can show that Rn(x) is small, we have successfully approximated f(x)
by a polynomial of degree n.

Remark A.4.2. Of course the remainder term Rn(x) depends on
the point “a” and the function f , but it is somewhat cumbersome to
write Rn(x, a, f) each time. The point “a” and the function f will be
usually clear from the context.

Assume now that f ∈ C∞(I). Then Pn(x) is defined for every
n ≥ 0. If Rn(x) → 0 as n → ∞ for all x ∈ (a − r, a + r) ⊂ I, we see
that we obtain a power series expansion for f(x):

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n,

valid for all x ∈ (a− r, a+ r).
Given a point a ∈ I, does every smooth function real valued func-

tion I have a power series expansion in some neighbourhood (a− r, a+
r)? The series for the function 1/(1 − x)) is an example of a Taylor
series that does not converge on the whole real line. But suppose the
Taylor series does converge at a point, does it necessarily converge to
the value of the function at that point?
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Example A.4.1. Let

g(x) =

{
e−1/x if x > 0

0 if x ≤ 0
.

Exercise A.4.1. Check that g ∈ C∞(R) and that g(n)(0) = 0 for
all n ≥ 0.

Consider the Taylor expansion of g at 0. Given x > 0, we see that
Pn(x) = 0 for all n ≥ 0. Hence, g(x) = Rn(x) for all n ≥ 0! So the
Taylor polynomials are completely useless as approximations to the
function, and g(x) = Rn(x) for all n ≥ 0!

Definition A.4.3. Let f : I → R be a smooth function. If for
every a ∈ I, Rn(x, a, f)→ 0 as n→∞ for all x in some neighbourhood
(a − r, a + r) ⊂ I, we say that f is an analytic function on I. In that
case f can be represented as the power series

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

in (a− r, a+ r). This power series is known as the Taylor series of the
function f at (or about) the point a.

Example A.4.1 gives a function that is smooth (on all of R) but not
analytic on any interval containing 0.

Exercise A.4.2. Given any intervals [c, d] ⊂ (a, b), construct a
smooth function ϕ : R→ [0, 1] such that

ϕ(x) =


0 if x ∈ R \ (a, b)

> 0 if x ∈ (a, b)

1 if x ∈ [c, d]

Exercise A.4.3. Those of you who have studied multivariable cal-
culus should generalise the preceding example to obtain a smooth func-
tion on Rn which vanishes identically outside a ball of radius 2 around
the origin and is identically 1 on the unit ball.

The functions that you are required to construct in the previous
two exercises are examples of smooth functions with compact support.
They form an important class of functions that are very useful in the
theories of harmonic analysis and partial differential equations.

Exercise A.4.4. (Hard!) Show that given any sequence of real
numbers cn, n ≥ 0, there exists a smooth function ϕ on R whose
Taylor coefficients are precisely the cn (this is a special case of what is
usually called Borel’s Lemma).
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