Introduction to Programming (CS 101)

Spring 2024

Lecture 14;

More about {arrays, structs, strings}

Based on material developed by

Prof. Abhiram

Ranade and

Instructor:

Prof. Manoj Prabhakaran

Preethi Jyoth

Recap: Lexicographically compare two strings

int compare(char A[], char B[]) {
int 1 = 0;
while(true) {

if(Ali] == "\@' && Bli] == '\0"') return 0;

if(A[i1] == '\@') return -1;

if(Bli] == '\@') return 1;

lf(A[l] < B [l]) return _1; Takes two strings A, B

if(A[i] > B[i]) return 1: and returns O if they are

. equal, 1 it Ais

1++; - -

’ lexicographically greater

¥ than B and -1 otherwise.

}

int main() {
char A[30], B[30];
cin.getline(A,30); cin.getline(B,30);
cout << A << " " << B << " " << compare(A,B) << endl;

Recap

int compare(char A[]l, char B[]) {
int 1 = 0;
while(true) {

What is the output of the following program?? if(A[i] == "\@' & B[i] == '\0') return 0:
main program { if(A[i] == '"\@') return -1;
—_— if(B[i] == '"\@') return 1;
char c1[20] = "hello": if(A[i] < B[i]) return —1:
char c2[] = {'h*,"'e',"1',"'1l","'0"}; ittalil > Blil) return 1;
1++;

if(!'compare(cl,c2))
cout << "cl=c2";

/ @ cl=c?2

else if(compare(cl,c2) == 1)

cout << "cl>c2';
else
cout << "cl<c2":

h

ol

cl>c2
@ cl<c?

operator cannot be used again or
cl1[20] = "hello"; will resul

c1l is automatically terminated with a '\0"', while c2 isn't. Note that the assignment

ce a string is initialized. c1 = "world"; after char

' INn a compller error.

Merge sort
CS 101, 2025

Divide-and-Conquer

« Some algorithms use a Divide-and-Conquer strategy
(a.k.a. Divide-Conquer-and-Combine)

resultType f(inputlType x) {
» A problem instance is divided into

1f (baseCase(x))
return handleBaseCase(x) ;

two or more smaller problems

e The smaller instances are solved

recursively inputType x1, x2;

. Divi , X1,x2);
« The results are then combined to get VAGE 06 XE, X2)

the result for the original instance resultType y1, y2:

« An example: Merge Sort yl = f(x1); y2 = f(x2);

return Combine(yl,y2);

Merge Sort

» Split into two (almost) equal halves, and recursively sort each halt

« Merge the two sorted arrays into a single sorted array

Recursively Recursively
sort Sort

43 46 53 18 26

e Merge

Merge Sort

6 5 3 1 8 7 2 4

Video derived from: https://en.wikipedia.org/wiki/Merge_sort#/media/File:Merge-sort-example-300px.gif

Merge Sort

// merge X[left..mid] and X[mid+1l..right] into Y[left..right], where mid = (left+right)/2
void merge(const int X[], int Y[], 1nt left, int right) {

int mid = (left+right)/2, L = left, R = mid+1; // L,R: next indices of left/right halves
for(int i=left; 1 <= right; ++1) {

if(L <= mid && (R > right || X[L] <= X[R])) Y[i] = X[L++]; // copy from left
X[R++] ; // copy from right

else Y[1]

e Merge

M e rg e SO rt Output will be in the array out[| in

vold sort (const 1nt in[], 1r

int left, int righ

int scratch[]) {

1T (left==right) {
out[left] = 1n[left];
return;

}
int mid = (left+right)/2;

sort(in,scratch,left,mid,out) ;
sort(in,scratch,mid+1,right,out) ;

merge(scratch,out,left,right);

indices left,...,right. A temporary array

,scratch[| passed as input (since its size s
t out [] e not known at COmp||e-t|me).

--

resultType f(inputlType x) {

1f (baseCase(x))
return handleBaseCase(x) ;

inputlType x1, x2;
Divide(x,x1,x2);

resultType yl1, y2;
vl = f(x1); y2 = t(x2);

return Combine(yl,y2);

More about multidimensional arrays
CS 101, 2025

2D arrays

* Recall matrices can be implemented using 2D arrays. Example:

float vals[2][3]; vals[0][0] vals[0][1] vals[0][2]

vals[1]|0] vals[1][1] vals[1]|2]

* \We can define two-dimensional character arrays:

char countries[3][20] = {"India", "China", "Sri Lanka"};

« countries|[i] will return the address of the zeroth character of the ith string in countries

2D arrays

int main() {

char countries[3][20] = {"India", "China", "Sri Lanka"}:

char capitals[3][20] = {"New Delhi", "Beijing", "Colombo"};

char country[20];

cout << "Enter country: ",

cin.getline(country, 20);

int 1;

for(int i = 0; i < 3; i++) {

if(compare(country,countries[i]) == @) { //compare defined earlier

cout << "Capital —> " << capitals[i] << endl; break;

}
L

if(i == 3) cout << "Do not know the capital\n";

Passing two-dimensional arrays to functions

* One can pass a 2D array to a function. However, the second dimension must be given as a
compile-time constant. Example:

void print(char countries[][20], int num) {
for(int i = @:; i<num:; i++) cout << countries[i] << endl:

}

e Such a print function can only be used with char arrays where the second dimension is 20

* (Can be overcome with more flexible array types like vector (coming in later slides)

More about structs
CS 101, 2025

More about structs

e |[fa struct definition appears before many functions, it will be visible to all the functions

* [0 avoid making copies, structs can be passed by reference

struct CS101Group {
char namel[4]; //G1l, G13, etc.
string TAs[10];
unsigned short int size;

}i
void printGroup(const CS101Group& grp)
cout << "name = " << grp.name << endl;

Passing structs by value

» (Consider the following struct representing 2D points with X, y coordinates:

struct Point {
double x:
double vy;
}i
* The following function returns a Point that is the midpoint of the line joining two points:

Point midpoint(Point a, Point b) {
Point mp; int main() {
mp.X = (a.x+b.x)/2; Point pl = {0,0};
mp.y = (a.y+b.y)/2; Point p2 = {100,200};

" " . !)
return mp; Point p3 = mldp01nt(p1, pZ) ’ ‘/15_0
} cout << midpoint(midpoint(pl,p2),p2).y;

Passing structs by reference

e (Can pass struct parameters by reference (to avoid copies)

Point midpoint(const Point& a, const Point& b) {
N\

POlnt mp; const means these reference parameters
will not be altered during execution
mp.x = (a.x+b.x)/2; I

mp.y = (a.y+b.y)/2;
return mp,;

o Say the parameters of midpoint were ordinary references and not const references. Now
you try to run cout << midpoint(midpoint(pl,p2),p2).y; frommain(), as before.
What happens”?

» Compiler error!

- Cannot pass a temporary object like midpoint(p1l, p2) to a non-const reference
parameter

structs and member functions

A member function is called on an object of the struct type using

-unctions can be a part of the structure itself.
struct Point {
double x, vy;
double length() {
return sqrt(xkx + yxy);

h

double shift(double dx, double dy) {

X+=dx; y+=dy;
h
g

Point pl; cout << pl.length();

—xample:

notation.

—xample:

structs and member functions

* |nside the body of the function, we can read or modify members of the struct object. Example:
X, Yy are directly accessible within the functions length and shift below

struct Point {

double x, vy;

double length() {
return sqrt(xxx + yxy);

}

double shift(double dx, double dy) {
X+=dx; y+=dy;

}

void alter(double a) {
Note that X of a struct object will be altered here. And the

X = a; cout << length() << endl; call to length () will refer to the object used with alter.
Thatis, pl.alter(10) will calculate the length of p1.

More about strings
CS 101, 2025

More about string

e Jouse string, we need to add #1nclude <string> to the program

Note that you do not need to worry about
the size of the strings, unlike C-style strings

string a = "hello", b = "world", c; %
C = a;

» Can read whitespace-delimited strings into a string using get Line:

Will read from console into a,
until a newline Is encountered

getline(cin, a); //to read a line into string a<i

* Addition operator can be used with strings to concatenate them

c=a+""+Db; //will set ¢ to "hello world"

« ali] denotes the ith character of the string a

More about string

 Many useful member functions are available for string

string a = "hello";

a.find("he"); //returns the starting index of the
//first occurrence of "he" within string a

a.find("1", 3); //find starting from index 3

int 1

int j
* |f a given string is not found, find returns a constant string: : npos

e Comparison expressions <, >, = can be used for strings a, b assuming a lexicographic order

» Lexicographic order: Similar to how words are organized in a dictionary

+ Comparison is done character by character, and based on underlying ASCI| values
- Example: "hello" < "world", "hello" > "Hello" (ASCII value of h > ASCI| value of H)

Dynamic arrays (vector)
CS 101, 2025

Dynamic allocation

* C++ contains three primary array styles:

1. C-style arrays (inherited from C, you have already learned about these)

2. std::array array type

}{ Part of C++'s Standard Template Library (STL)
3. std::vector array type

 std: :vector is arguably the most flexible of the three types and has many useful
supporting features

 \We will focus on std: :vector since it offers many benefits

vector (l)

* JO use vectors, add the header line "#1nclude <vector>"to the beginning of the program

* A vector can be initialized like an array. Example:

vector<iq}> A ={1, 2, 3};

Template argument: Defines the type of the elements in the vector

vector<float> B; //creating an empty vector of floats

* Elements can be accessed like an array. Example;:

for(int i=0:; i < A.size(): i++)
cout << A[i] << " ";[ﬁ

andy! You can use A.size() to determine the size of the vector

» Another method to access vector elements: at ().
- A.at(2) wil access the third element of A like A[2].
- Unlike[], the at () method also performs bound checking of whether the index lies
within the vector; so it allows for safely accessing vector elements

http://A.at

vector (ll)

e std::vector is avery flexible alternative to C-style arrays

* A vector can dynamically grow or shrink

vector<char> C;
C.push_back('a'); //adds an element to the end of the vector

C.resize(3,'b'); //the vector becomes {'a', 'b', 'b'}

Value by which the extra elements of the vector are initialized

C.resize(2,'b'); //the vector becomes {'a', 'b'}

(\ Extra elements exceeding the new size are deleted

e \ectors can be copied, passed/returned by value or reference

void printVector(vector<int>& v) { // ... print the vector elements

// call inside main()
vector<int> A = {1,3,5}; printVector(A);

vector: Many other useful operations

» Remove the last element of the vector using pop_back ()
vector<int> A = {11, 22, 33};
A.pop_back(); //the vector becomes {11, 22}

« Use empty() to check if the vector is empty

vector<int> A = {11, 22, 33};
cout << (A.empty() ? "empty\n" : "not empty\n");

« front() and back() allows for access to the first and last element of a vector

* A range-based for loop can be used to access the elements of a vector as follows:

for(int x : A)
cout << X << endl;

* Quick way to initialize a vector of size n with all elements having the same value:

vector<int> A(n, 0); // will initialize A with n elements, all = 0

Represent a matrix using vector

vector<vector<int>> A = {{11, 22, 33},
{44, 55, 66},
{77, 88, 99}};

void print(vector<vector<int>>& matrix) {
for(int i = 0; i<matrix.size(); i++) {
for(int x : matrix[il])
cout << x << endl;

}
L

int main() {
print(A); //if A is defined as above

¥

11

22

33

44

50

00

I

33

99

[Optional]: Finding maximum subarray
Given an array of ints, find a contiguous subarray with the largest sum and return its sum.

int maxSubArraySum(const vector<int>& nums) {
int maxSum = nums[0Q];
int maxUntil i = nums[0];
for (int i = 1; i < nums.size(); i++) {
int x = nums[i];
maxUntil i = max(x, maxUntil i + x);
maxSum = max(maxSum, maxUntil 1i);

}

return maxsum:;

int main() {
vector<int> nums = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
cout << "Maximum subarray sum: " << maxSubArraySum(nums) << endl;
return 0,

Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem

https://en.wikipedia.org/wiki/Maximum_subarray_problem

