
Instructor: Preethi Jyothi

Lecture 14:

- More about {arrays, structs, strings}

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

 Recap: Lexicographically compare two strings
int compare(char A[], char B[]) {
 int i = 0;
 while(true) {
 if(A[i] == '\0' && B[i] == '\0') return 0;
 if(A[i] == '\0') return -1;
 if(B[i] == '\0') return 1;
 if(A[i] < B[i]) return -1;
 if(A[i] > B[i]) return 1;
 i++;
 }
}
int main() {
 char A[30], B[30];
 cin.getline(A,30); cin.getline(B,30);
 cout << A << " " << B << " " << compare(A,B) << endl;
}

Takes two strings A, B
and returns 0 if they are

equal, 1 if A is
lexicographically greater
than B and -1 otherwise.

What is the output of the following program?

 Recap

main_program {
 char c1[20] = "hello";
 char c2[] = {'h','e','l','l','o'};

 if(!compare(c1,c2))
 cout << "c1=c2";
 else if(compare(c1,c2) == 1)
 cout << "c1>c2";
 else
 cout << "c1<c2";
}

B

A

C

c1=c2

c1>c2

c1<c2

c1 is automatically terminated with a '\0', while c2 isn't. Note that the assignment
operator cannot be used again once a string is initialized. c1 = "world"; after char
c1[20] = "hello"; will result in a compiler error.

int compare(char A[], char B[]) {
 int i = 0;
 while(true) {
 if(A[i] == '\0' && B[i] == '\0') return 0;
 if(A[i] == '\0') return -1;
 if(B[i] == '\0') return 1;
 if(A[i] < B[i]) return -1;
 if(A[i] > B[i]) return 1;
 i++;
 }
}

Merge sort
CS 101, 2025

Divide-and-Conquer
• Some algorithms use a Divide-and-Conquer strategy

(a.k.a. Divide-Conquer-and-Combine)

• A problem instance is divided into
two or more smaller problems

• The smaller instances are solved
recursively

• The results are then combined to get
the result for the original instance

• An example: Merge Sort

resultType f(inputType x) {

 if (baseCase(x))
 return handleBaseCase(x);

 inputType x1, x2;
 Divide(x,x1,x2);

 resultType y1, y2;
 y1 = f(x1); y2 = f(x2);

 return Combine(y1,y2);
}

Merge Sort
• Split into two (almost) equal halves, and recursively sort each half

• Merge the two sorted arrays into a single sorted array

53 46 94 43 17 12 60 98 86 50 36 26 57 80 77 18

12 17 43 46 53 60 94 9818 26 36 50 57

53 46 94 43 17 12 60 98 86 50 36 26 57 80 77 18

Recursively
sort

Recursively
sort

Merge

12 17 18 26 36 43 46 50 53 57 60 77 80 86 94 98

Merge Sort
• Split into two (almost) equal halves, and recursively sort each half

• Merge the two sorted arrays into a single sorted array

53 46 94 43 17 12 60 98 86 50 36 26 57 80 77 18

12 17 43 46 53 60 94 9818 26 36 50 57

53 46 94 43 17 12 60 98 86 50 36 26 57 80 77 18

Recursively
sort

Recursively
sort

Merge

12 17 18 26 36 43 46 50 53 57 60 77 80 86 94 98

Video derived from: https://en.wikipedia.org/wiki/Merge_sort#/media/File:Merge-sort-example-300px.gif

Merge Sort
// merge X[left..mid] and X[mid+1..right] into Y[left..right], where mid = (left+right)/2
void merge(const int X[], int Y[], int left, int right) {

 int mid = (left+right)/2, L = left, R = mid+1; // L,R: next indices of left/right halves

 for(int i=left; i <= right; ++i) {

 if(L <= mid && (R > right || X[L] <= X[R])) Y[i] = X[L++]; // copy from left

 else Y[i] = X[R++]; // copy from right

 }

}

12 17 43 46 53 60 94 9818 26 36 50 57

Merge

12 17 18 26 36 43 46 50 53 57 60 77 80 86 94 98

Merge Sort

resultType f(inputType x) {

 if (baseCase(x))
 return handleBaseCase(x);

 inputType x1, x2;
 Divide(x,x1,x2);

 resultType y1, y2;
 y1 = f(x1); y2 = f(x2);

 return Combine(y1,y2);
}

void sort (const int in[], int out[],
 int left, int right,
 int scratch[]) {

 if (left==right) {
 out[left] = in[left];
 return;
 }
 int mid = (left+right)/2;
 sort(in,scratch,left,mid,out);
 sort(in,scratch,mid+1,right,out);

 merge(scratch,out,left,right);
}

Output will be in the array out[] in
indices left,...,right. A temporary array

scratch[] passed as input (since its size is
not known at compile-time).

More about multidimensional arrays
CS 101, 2025

 2D arrays
• Recall matrices can be implemented using 2D arrays. Example:

float vals[2][3]; vals[0][0] vals[0][1] vals[0][2]

vals[1][0] vals[1][1] vals[1][2]

• We can define two-dimensional character arrays:

char countries[3][20] = {"India", "China", "Sri Lanka"};

• countries[i] will return the address of the zeroth character of the ith string in countries

 2D arrays

int main() {
 char countries[3][20] = {"India", "China", "Sri Lanka"};
 char capitals[3][20] = {"New Delhi", "Beijing", "Colombo"};
 char country[20];
 cout << "Enter country: ";
 cin.getline(country, 20);
 int i;
 for(int i = 0; i < 3; i++) {
 if(compare(country,countries[i]) == 0) { //compare defined earlier
 cout << "Capital -> " << capitals[i] << endl; break;
 }
 }
 if(i == 3) cout << "Do not know the capital\n";
}

 Passing two-dimensional arrays to functions
• One can pass a 2D array to a function. However, the second dimension must be given as a

compile-time constant. Example:

void print(char countries[][20], int num) {
 for(int i = 0; i<num; i++) cout << countries[i] << endl;
}

• Such a print function can only be used with char arrays where the second dimension is 20

• Can be overcome with more flexible array types like vector (coming in later slides)

More about structs
CS 101, 2025

 More about structs

• To avoid making copies, structs can be passed by reference

struct CS101Group {
 char name[4]; //G1, G13, etc.
 string TAs[10];
 unsigned short int size;

};
void printGroup(const CS101Group& grp) {
 cout << "name = " << grp.name << endl;

}

⋮

⋮

• If a struct definition appears before many functions, it will be visible to all the functions

 Passing structs by value
• Consider the following struct representing 2D points with x, y coordinates:

struct Point {
 double x;
 double y;
};

Point midpoint(Point a, Point b) {
 Point mp;
 mp.x = (a.x+b.x)/2;
 mp.y = (a.y+b.y)/2;
 return mp;
}

• The following function returns a Point that is the midpoint of the line joining two points:

int main() {
 Point p1 = {0,0};
 Point p2 = {100,200};
 Point p3 = midpoint(p1, p2);
 cout << midpoint(midpoint(p1,p2),p2).y;
}

150 output

 Passing structs by reference

Point midpoint(const Point& a, const Point& b) {
 Point mp;
 mp.x = (a.x+b.x)/2;
 mp.y = (a.y+b.y)/2;
 return mp;
}

• Can pass struct parameters by reference (to avoid copies)

const means these reference parameters
will not be altered during execution

• Say the parameters of midpoint were ordinary references and not const references. Now
you try to run cout << midpoint(midpoint(p1,p2),p2).y; from main(), as before.
What happens?
• Compiler error!
• Cannot pass a temporary object like midpoint(p1,p2) to a non-const reference

parameter

 structs and member functions

struct Point {
 double x, y;
 double length() {
 return sqrt(x*x + y*y);
 }
 double shift(double dx, double dy) {
 x+=dx; y+=dy;
 }
};

• Functions can be a part of the structure itself. Example:

• A member function is called on an object of the struct type using "." notation. Example:

Point p1; cout << p1.length();

 structs and member functions

struct Point {
 double x, y;
 double length() {
 return sqrt(x*x + y*y);
 }
 double shift(double dx, double dy) {
 x+=dx; y+=dy;
 }
 void alter(double a) {
 x = a; cout << length() << endl;
 }
};

• Inside the body of the function, we can read or modify members of the struct object. Example:
x, y are directly accessible within the functions length and shift below

Note that x of a struct object will be altered here. And the
call to length() will refer to the object used with alter.
That is, p1.alter(10) will calculate the length of p1.

More about strings
CS 101, 2025

 More about string
• To use string, we need to add #include <string> to the program

string a = "hello", b = "world", c;
c = a;

Note that you do not need to worry about
the size of the strings, unlike C-style strings

• Can read whitespace-delimited strings into a string using getline:

getline(cin, a); //to read a line into string a Will read from console into a,
until a newline is encountered

• Addition operator can be used with strings to concatenate them

c = a + " " + b; //will set c to "hello world"

• a[i] denotes the ith character of the string a

 More about string
• Many useful member functions are available for string

string a = "hello";
int i = a.find("he"); //returns the starting index of the
 //first occurrence of "he" within string a
int j = a.find("l", 3); //find starting from index 3

• If a given string is not found, find returns a constant string::npos

• Comparison expressions <, >, = can be used for strings a, b assuming a lexicographic order

• Lexicographic order: Similar to how words are organized in a dictionary
• Comparison is done character by character, and based on underlying ASCII values
• Example: "hello" < "world", "hello" > "Hello" (ASCII value of h > ASCII value of H)

Dynamic arrays (vector)
CS 101, 2025

 Dynamic allocation

• C++ contains three primary array styles:

1. C-style arrays (inherited from C, you have already learned about these)

2. std::array array type

3. std::vector array type

• std::vector is arguably the most flexible of the three types and has many useful
supporting features

• We will focus on std::vector since it offers many benefits

Part of C++'s Standard Template Library (STL)}

 vector (I)
• To use vectors, add the header line "#include <vector>" to the beginning of the program

• A vector can be initialized like an array. Example:

• Elements can be accessed like an array. Example:

vector<int> A = {1, 2, 3};
Template argument: Defines the type of the elements in the vector

 for(int i=0; i < A.size(); i++)
 cout << A[i] << " ";

vector<float> B; //creating an empty vector of floats

Handy! You can use A.size() to determine the size of the vector

• Another method to access vector elements: at().
• A.at(2) will access the third element of A like A[2].
• Unlike[], the at() method also performs bound checking of whether the index lies

within the vector; so it allows for safely accessing vector elements

http://A.at

 vector (II)
• std::vector is a very flexible alternative to C-style arrays

• A vector can dynamically grow or shrink

• Vectors can be copied, passed/returned by value or reference

vector<char> C;
C.push_back('a'); //adds an element to the end of the vector
C.resize(3,'b'); //the vector becomes {'a', 'b', 'b'}

C.resize(2,'b'); //the vector becomes {'a', 'b'}
Value by which the extra elements of the vector are initialized

Extra elements exceeding the new size are deleted

void printVector(vector<int>& v) { // ... print the vector elements
// call inside main()
vector<int> A = {1,3,5}; printVector(A);

 vector: Many other useful operations
• Remove the last element of the vector using pop_back()

A.pop_back(); //the vector becomes {11, 22}
vector<int> A = {11, 22, 33};

• Use empty() to check if the vector is empty
vector<int> A = {11, 22, 33};
cout << (A.empty() ? "empty\n" : "not empty\n");

• front() and back() allows for access to the first and last element of a vector

• A range-based for loop can be used to access the elements of a vector as follows:
for(int x : A)
 cout << x << endl;

• Quick way to initialize a vector of size n with all elements having the same value:

vector<int> A(n, 0); // will initialize A with n elements, all = 0

 Represent a matrix using vector

vector<vector<int>> A = {{11, 22, 33},
 {44, 55, 66},
 {77, 88, 99}};

11 22 33

44 55 66

77 88 99

void print(vector<vector<int>>& matrix) {
 for(int i = 0; i<matrix.size(); i++) {
 for(int x : matrix[i])
 cout << x << endl;
 }
}

int main() {
 print(A); //if A is defined as above
}

 [Optional]: Finding maximum subarray

int maxSubArraySum(const vector<int>& nums) {
 int maxSum = nums[0];
 int maxUntil_i = nums[0];
 for (int i = 1; i < nums.size(); i++) {
 int x = nums[i];
 maxUntil_i = max(x, maxUntil_i + x);
 maxSum = max(maxSum, maxUntil_i);
 }
 return maxSum;
}

int main() {
 vector<int> nums = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
 cout << "Maximum subarray sum: " << maxSubArraySum(nums) << endl;
 return 0;
}

Given an array of ints, find a contiguous subarray with the largest sum and return its sum.

Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem

https://en.wikipedia.org/wiki/Maximum_subarray_problem

