Introduction to Programming (CS 101)

Spring 2024

Lecture 15;

Based on material developed by

Prof. Abhiram

Recap of lecture 14 concepts + Introduction to pointers

Ranade and

Instructor:

Prof. Manoj Prabhakaran

Preethi Jyoth

Recap (l)
What is the output of the following program?®?

#include <iostream>
#include <vector>
using namespace std;

int main() {
vector<int> nums = {1, 2}:
for(int i = 0;: i < 4; i++)

(1% 3 !=0) ? nums.push_back(i) : nums.pop_back();
for(int x: nums)
cout << x << " "

h

ol

Think of push_back and pop_back acting on vector as if it were a stack (i.e. last-in-
first-out).

Recap (l1A)

What is the output of the following program?

int main() A
struct entity { Eij 12

int X, V;
& 1

int X(int z) {
X += z; return Xx;

; >
}; <)) 9
entity e = {2, 3};
e.x = e.X(e.y) + e.X(e.x); @ Compiler error

cout << e.Xx:

ol

The expression a + b is evaluated left-to-right. Hence, the update to e. X via
e.X(e.y) wil reflect in the call e. X(e.x). Thus,e.x = 5 + 10 = 15.

Recap (IIB) What is the output of the following program?

struct inner {
int X, Vy; A 4 3
Fs
struct outer {
int X, Vy;
inner 1;
b
void setinner(outer& o) {
(0.1).X += 0.V;

(0.1).y += 0.X; | |
1 Can access struct objects with

int main() { nested '.' syntax. E.g., (0.1).X

outer out = {4,3,{2,1}}; i |

setinner(out);
cout << out.1.Xx << " " << out.1.y << endl;

h

struct example to check if a string is a palindrome

Demo; code struct-palindrome.cpp shared on Moodle

Recap (lll) Fillin the blank below, with a single statement, to get the following output: 1 2 3
. . . 345
void printvector(vector<vector<int>>& v) A
for(vector<int> row: v) { 789
for(int x: row)

cout << X << .
cout << endl:

}
h

main_program <{
vector<vector<int>> A, B, C;
A= {{1,2,3},1{4,5,6},{7,8,9}};
B = {{011;2}1{3;415}1{61718}};

C = :l Can also write {A.at(0),B.at(1) ,A.at(2)}

printvector(C
; e .
Recall A.at (i) allows you to safely access vector elements
(and throws an exception If you exceed the bounds).

l

http://A.at

Recap (IV) What does this program output?

string encodeString(const string& str) {
string out = "";
int count = 1;

for (int i = 1; i <= str.size(): ++1i) {
if (i < str.size() && str[i] == str[i-1]1) {
count++;

} else {
out += str[i-1] + to_string(count);

t =1;
\ coun g

} to_string is a function that takes an 1nt or f loat
return out; as an argument and returns a string version of It.

}

main_program <
string s; outDut
getline(cin, s); //aapppleeee
cout << encodeString(s) << endl;< a2p3lle4 |

}

Introduction to Pointers
CS 101, 2025

Addresses

 Storage locations of variables have addresses

— Exact address depends on the compiler and the operating system

int main() {
int a;
double b;
int c;
cout << &a << ",
<< &C << endl;

“
“
L “
L °

® ®
L L

))

A A
A ALY
. %
L e)

.*
.
.
.
.
.°
°

DY
e e
Y
 2gPv
Y
“

ll
*

"Address of" operator
(not to be confused with reference type specifier)

s *
III

ll
*

Will print three distinct numbers (in hex).
The exact output is system dependent.

RS
.

: It can also vary across multiple runs (as a security measure!) :

——1 |

Ox326c

Ox327/c 0x3270

Pointers

« Pointer type variables can be used to store an address

e Declared as type* name (or type * name or type *name)

» Pointed location accessed as *name g 1) e e
int main(){ "Indirection" or "dereferencing”
int a: operator: int* p = &a;
double b L ellonthepoiner | arpy: /1 equats
int c;
double* p; // urZziirtialised!
p = &b // assigned an address
*n = 3.14; // now b==3.14
; 2

Ox327/c 0x3270 Ox326¢c 0x3260

Pointers

« Pointer type variables can be used to store an address

e Declared as type* name (or type * name or type *name)

e Pointed location accessed as *name

ll

: In a declaration statement with multiple
inta=2,*p; SURTTUTTRRRTUTTRRRR- - : variables, * is linked to the variable name, not
0o =&a: the type name (similar to & in reterences)
(*p) ++ : // nOW a:: ll
Parentheses important here: A) S
e e B . —
which means something else :

0x3260

(coming up in the next class) 0x327¢ 0x3270 0x326¢

.

Example with pointers

main_program A
int 1 =1, j;
bool b = true;
intx p; p = &1;
xp = 3; //*p as the
] = %p; //*xp as the
cout << (*p) *x j <<
*p = Db;
cout << (%p) * 1 <<

}

LHS of an assignment means store a value into 1
RHS means use the value of 1 1n place of *p
endl; //prints 9 as output

endl; //prints 1 as output

Pointers

» Pointers can be passed as arguments to functions

void f(double* q) { *q = 3.14; }

int main(){
int a; double b, *p = &b; 1nt c;
f(&b); // or, f(p)
cout << b << endl;
} 27
a b C P ’

Ox327/c 0x3270 Ox326¢c 0x3260

0x3228

Example: Swap Using Pointers

void swap(int* p, int* q){

int tmp;
tmp = *p,;
P = *Q;
g = tmp;

int main() {
int a, b;

swap (&a, &b);

Ox127c

Ox1278

Example

* Functions can return pointers too

int* max(int* p, 1nt* q){
return *p > *q 72 p : (q;

;

int main() {
int a, b;

*max (&a, &b) O; //set max to 0O

Example with pointers in functions

intx f(intx x, intx y) {
if(*kx > xy) return x;
else return vy;

}

main_program A
int p =5, q = 4;
xf(&p, &q) = 2;
cout << p << " " << gq << endl; // prints "2 47 as output

cout << xf(&p, &q); // prints "4" as output
}

Pointers vs. References

« References and pointers both allow accessing one variable via
another

 Pointers are less strict about how they can be used, and can be
manipulated more freely

— Hence much more error prone!

» Use references when possible

« Or use objects from the standard library
(internally implemented using pointers)

— References are the safer (and

d

more modern, compared to C)

Ox327/c 0x3270 Ox326¢c 0x3260

alternative to pointers in C++

Pointers vs. References

References Pointers
Syntax: int& r ' ' Syntax: int* p = &a; *p = 0;

Needs to be initialised: int& r; // Error! Can be uninitialised: int* p; // Allowed

Cannot be "re-attached": Can be "re-attached":
int& r=a; r=b;//value of b copied to a , ..., p=&b; // p now points to b

Cannot be unattached Can be setto nullptr to indicate that it is unattached

Can be passed as an argument and returned: Can be passed as an argument and returned:
int& f(int& r){.. return r;} int* Zcime py .. “oturn pid
f(a)=b; Cee S ERA)=D;

4

27
a b C P

Ox327/c 0x3270 Ox326¢c 0x3260

Example: Swap Using Pointers

« Avoid swapping a variable with itself

void swap(bigStruct* p, bigStruct* q){
1t (p==q) return;
bigStruct tmp = *p;
*p — *q, *q . tmp,

]

tmp

— |f references used, i.e.:
swap(bigStruct& a, bigStruct& b)
then also we can check if (&a==&b)

— Address of a reference is the address of what it is
referring to

a b
0x127c 0x1278

— Checking if (a==b) inspects the entire objects

