
Instructor: Preethi Jyothi

Lecture 15:

- Recap of lecture 14 concepts + Introduction to pointers

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

What is the output of the following program?
 Recap (I)

#include <iostream>
#include <vector>
using namespace std;

int main() {
 vector<int> nums = {1, 2};
 for(int i = 0; i < 4; i++)
 (i % 3 != 0) ? nums.push_back(i) : nums.pop_back();
 for(int x: nums)
 cout << x << " ";
}

B

A 1 2

1 1

2 1

Think of push_back and pop_back acting on vector as if it were a stack (i.e. last-in-
first-out).

C

2 2D

What is the output of the following program?

 Recap (IIA)

int main() {
 struct entity {
 int x, y;
 int X(int z) {
 x += z; return x;
 }
 };
 entity e = {2, 3};
 e.x = e.X(e.y) + e.X(e.x);
 cout << e.x;
}

The expression a + b is evaluated left-to-right. Hence, the update to e.x via
e.X(e.y) will reflect in the call e.X(e.x). Thus, e.x = 5 + 10 = 15.

B

A

C

12

15

Compiler errorD

9

What is the output of the following program? Recap (IIB)

struct inner {
 int x, y;
};
struct outer {
 int x, y;
 inner i;
};
void setinner(outer& o) {
 (o.i).x += o.y;
 (o.i).y += o.x;
}
int main() {
 outer out = {4,3,{2,1}};
 setinner(out);
 cout << out.i.x << " " << out.i.y << endl;
}

Can access struct objects with
nested '.' syntax. E.g., (o.i).x

B

A

C

4 3

5 5

2,1

 struct example to check if a string is a palindrome

Demo; code struct-palindrome.cpp shared on Moodle

Fill in the blank below, with a single statement, to get the following output: 1 2 3
 3 4 5
 7 8 9

 Recap (III)

main_program {
 vector<vector<int>> A, B, C;
 A = {{1,2,3},{4,5,6},{7,8,9}};
 B = {{0,1,2},{3,4,5},{6,7,8}};

 C = {A[0],B[1],A[2]};
 printvector(C);
}

Recall A.at(i) allows you to safely access vector elements
(and throws an exception if you exceed the bounds).

Can also write {A.at(0),B.at(1),A.at(2)}

void printvector(vector<vector<int>>& v) {
 for(vector<int> row: v) {
 for(int x: row)
 cout << x << " ";
 cout << endl;
 }
}

http://A.at

What does this program output? Recap (IV)
string encodeString(const string& str) {
 string out = "";
 int count = 1;

 for (int i = 1; i <= str.size(); ++i) {
 if (i < str.size() && str[i] == str[i-1]) {
 count++;
 } else {
 out += str[i-1] + to_string(count);
 count = 1;
 }
 }
 return out;
}
main_program {
 string s;
 getline(cin, s); //aapppleeee
 cout << encodeString(s) << endl;
}

to_string is a function that takes an int or float
as an argument and returns a string version of it.

a2p3l1e4
output

Introduction to Pointers
CS 101, 2025

Addresses

• Storage locations of variables have addresses

– Exact address depends on the compiler and the operating system

a b c

int main(){
 int a;
 double b;
 int c;
 cout << &a << ", " << &b << ", "
 << &c << endl;
}

Will print three distinct numbers (in hex).
The exact output is system dependent.

It can also vary across multiple runs (as a security measure!)

"Address of" operator
(not to be confused with reference type specifier)

0x327c 0x3270 0x326c

a

0x327c 0x3270 0x326c

b c

Pointers

• Pointer type variables can be used to store an address
• Declared as type* name (or type * name or type *name)
• Pointed location accessed as *name

p

0x3260

int main(){
 int a;
 double b;
 int c;
 double* p; // uninitialised!
 p = &b; // assigned an address
 *p = 3.14; // now b==3.14
}

3270

int a;
*(&a);

"Indirection" or "dereferencing"
operator:

Follow the pointer
"Opposite" of the address-of operator

// same as a

int* p = &a;
&(*p); // equals p

a

0x327c 0x3270 0x326c

b c

Pointers

• Pointer type variables can be used to store an address
• Declared as type* name (or type * name or type *name)
• Pointed location accessed as *name

p

0x3260

3270

int a = 2, * p;
p = &a;
(*p)++; // now a==3

In a declaration statement with multiple
variables, * is linked to the variable name, not

the type name (similar to & in references)

Parentheses important here:
*p++ will be taken as *(p++)
which means something else
(coming up in the next class)

 Example with pointers

main_program {
 int i = 1, j;
 bool b = true;
 int* p; p = &i;
 *p = 3; //*p as the LHS of an assignment means store a value into i
 j = *p; //*p as the RHS means use the value of i in place of *p
 cout << (*p) * j << endl;
 *p = b;
 cout << (*p) * i << endl;
}

//prints 9 as output

//prints 1 as output

• Pointers can be passed as arguments to functions

a

0x327c 0x3270 0x326c

b c

Pointers

p

0x3260

void f(double* q) { *q = 3.14; }

int main(){
 int a; double b, *p = &b; int c;
 f(&b); // or, f(p)
 cout << b << endl;
} 3270

q

0x3228

3270

Example: Swap Using Pointers

a

0x127c 0x1278

b

void swap(int* p, int* q){
 int tmp;
 tmp = *p;
 *p = *q;
 *q = tmp;
}

p q tmp

int main(){
 int a, b;
 ...
 swap(&a, &b);
 ...
}

127c 1278

Example

• Functions can return pointers too

int* max(int* p, int* q){
 return *p > *q ? p : q;
}

int main(){
 int a, b;
 ...
 *max(&a, &b) = 0; //set max to 0
 ...
}

 Example with pointers in functions

int* f(int* x, int* y) {
 if(*x > *y) return x;
 else return y;
}

main_program {
 int p = 5, q = 4;
 *f(&p, &q) = 2;
 cout << p << " " << q << endl;
 cout << *f(&p, &q);
}

// prints "2 4" as output
// prints "4" as output

• References and pointers both allow accessing one variable via
another

• Pointers are less strict about how they can be used, and can be
manipulated more freely
– Hence much more error prone!
• Use references when possible

• Or use objects from the standard library
(internally implemented using pointers)

– References are the safer (and
more modern, compared to C)
alternative to pointers in C++

a

0x327c 0x3270 0x326c

b c

Pointers vs. References

p

0x3260

3270 r

References Pointers

Syntax: int& r = a; r = 0; Syntax: int* p = &a; *p = 0;

Needs to be initialised: int& r; // Error! Can be uninitialised: int* p; // Allowed

Cannot be "re-attached":
int& r=a; r=b;//value of b copied to a

Can be "re-attached":
p=&a; ...; p=&b; // p now points to b

Cannot be unattached Can be set to nullptr to indicate that it is unattached

Can be passed as an argument and returned:
int& f(int& r){.. return r;}

... f(a)=b;

Can be passed as an argument and returned:
int* f(int* p){.. return p;}

... *f(&a)=b;

a

0x327c 0x3270 0x326c

b c

Pointers vs. References

p

0x3260

327c r

• Avoid swapping a variable with itself

a

0x127c 0x1278

b

void swap(bigStruct* p, bigStruct* q){
 if (p==q) return;
 bigStruct tmp = *p;
 *p = *q; *q = tmp;
} p

127c

q

1278
tmp

– If references used, i.e.:
 swap(bigStruct& a, bigStruct& b)
then also we can check if(&a==&b)
– Address of a reference is the address of what it is

referring to
– Checking if(a==b) inspects the entire objects

Example: Swap Using Pointers

