
Instructor: Preethi Jyothi

Lecture 16:

- Pointers continued (arrays as pointers, pointers in struct, dynamic allocation)

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

What is the output of the last cout statement?
 Recap (I): Pointer Operations

#include <iostream>
using namespace std;

int main() {
 int i = 1, j = 2;
 int* p = &j, * q = &i;
 *p = *q;
 cout << i << " " << j << endl;
}

B

A 1 1

1 2

2 1

Note the syntax for defining two pointers (p, q) in the same statement.

C

2 2D

What is the output of the last cout statement?
 Recap (I): Pointer Operations

#include <iostream>
using namespace std;

int main() {
 int i = 1, j = 2;
 int* p = &j, * q = &i;
 *p = *q;
 cout << i << " " << j << endl;
 p = q; i += 2; j += 1;
 cout << i << " " << j << endl;
}

B

A 1 1

3 2

3 3

p = q; means both pointers point to the same variable i. Both i and j altered
thereafter will reflect the modified values.

C

4 4D

What is the output of the last cout statement?
 Recap (I): Pointer Operations

#include <iostream>
using namespace std;

int main() {
 int i = 1, j = 2;
 int* p = &j, * q = &i;
 *p = *q;
 cout << i << " " << j << endl;
 p = q; i += 2; j += 1;
 cout << i << " " << j << endl;
 j = *(*(&p));
 cout << i << " " << j << endl;
}

B

A 1 1

3 2

3 3

*(&p) is the address in the pointer p; dereferencing it would yield the value in i

C

4 4D

What is the output of the following program?

int main() {
 int* p;
 int* q = nullptr;
 int i = 2;
 if((!q && (p = &i)), (*p) += 2)
 cout << i << endl;
}

q initialized as nullptr, will evaluate to false, when evaluated as an expression

B

A

D

2

UB
(undefined behaviour)

Compiler errorC

4

 Recap (II): Pointer Initialization

Pointers in struct
CS 101, 2025

Consider the following structures:

struct Point {
 double x; double y;
};
struct Circle {
 Point center;
 double radius;
};

 Pointers to structures and the -> operator

Circle c1={{1,2},3}, *circ;
circ = &c1;
(*circ).radius = 5;

C++ provides the operator -> to use as
shorthand. If x is a struct object and y
is a member variable then:

x -> y is the same as (*x).y

Circle c1={{1,2},3}, *circ;
circ = &c1;
circ->radius = 5;

Pointers can be members of a struct

struct Point {
 double x; double y;
};
struct Circle2 {
 double radius;
 Point* cptr;
};

 Pointers inside structures (I)

Point p1 = {10.0, 20.0};
Circle2 cc1, cc2;
cc1.radius = cc2.radius = 5;
cc1.cptr = cc2.cptr = &p1;

How do we access the x coordinate of
the centre of both circles cc1 and cc2?

cout << cc1.cptr->x; //prints 10

If we change cc2.cptr->y, this would
change the y coordinate of p1 and
hence the centre of both circles

struct Student {
 int rollno;
 Student* TA;
};

 Pointers inside structures (II)

int main() {
 Student s1, s2, s3;
 s1.rollno = 1; s2.rollno = 2;
 s3.rollno = 3;
 s1.TA = &s2;
 s2.TA = &s3; s3.TA = &s1;
 cout << ((s1.TA)->TA)->rollno;
}

Using a pointer to a struct inside its own definition:

//prints 3

Pointers in Structs
• Consider a struct to hold the information about a node in a binary tree

• Will need a different struct for nodes in each level of the tree!
• Problem: A node cannot contain itself
• Alternative, use pointers; a node can contain a pointer of type node

struct leafNode { int value; };
struct parentNode { int value; leafNode leftChild; leafNode rightChild};
struct grandParentNode { int value; parentNode leftChild; parentNode rightChild};

struct node {
 int value;
 node* leftChild; // nullptr if no child
 node* rightChild; // nullptr if no child
};
...
node leaf = { 1, nullptr, nullptr };
node root = { 2, &leaf, nullptr };
...

val left right

root

X
val left right

leaf

X X

Recursively print a binary tree
• Recall member X in a struct pointed to by p can be accessed as p->X

struct node {
 int val;
 node* left; // nullptr if no child
 node* right; // nullptr if no child
};
void printTree(node* root) {
 if (!root) // equivalently, if(root == nulptr)
 return;
 cout << " (" << root->val;
 printTree(root->left);
 printTree(root->right);
 cout << ") ";
}

val left right

root

X
val left right

leaf

X X

Recursively print a binary tree
struct node {
 int val;
 node* left; // nullptr if no child
 node* right; // nullptr if no child
};
void printTree(node* root) {
 if (!root) // equivalently, if(root == nulptr)
 return;
 cout << " (" << root->val;
 printTree(root->left);
 printTree(root->right);
 cout << ") ";
}
int main() {
 node c3 = {10, nullptr, nullptr};
 node c4 = {50, nullptr, nullptr};
 node c1 = {25, nullptr, nullptr};
 node c2 = {200, &c3, &c4},
 printTree(&r);
}

10 left right

c3
50 left right

c4

25 left right

c1
200 left right

c2

‸‸

100 left right

r

‸ ‸

r = {100, &c1, &c2};

Arrays as Pointers
CS 101, 2025

Arrays as Pointers

• Recall that C-style arrays can be passed to functions as arguments
(and are always passed by reference)

– Then the array is implicitly converted to a pointer to the first
element of the array

• Given any pointer, can use array-like indexing

– Works correctly if the pointer is indeed
pointing to the first element of an array

void f(int A[]);

void f(int* A);

same as

int* p;
...
p[2] = 1;

p = A;

 Arrays as pointers

int main() {
 float scores[] = {12.5,25.0,28.75,18.3};
 float* s = scores;
 cout << s[2];
}

• The assignment s = scores is valid, since the array scores is implicitly a pointer (of
type float*) to the first element of the array

• s[2] means the same as scores[2]

• s[2] is the float value stored at the address s + k*i where k is the size of float (in
bytes) and i is the index value (i.e., k = 4 and i = 2)

//prints 28.75

Pointer Arithmetic
• Adding/subtracting integers, incrementing/decrementing, and

comparisons are allowed on pointers, by interpreting them as
pointing to elements in an array
– p+i is the same as & p[i]
• And, *(p+i) same as p[i]
– p<q if p == A+i and q == A+j where i<j

void printArray(int* p, int* q) { while(p<q) cout << *p++ << " "; }

int A[10];
...
printArray(A,A+10);

 Copying a string from a source array to a destination array

void scopy(char from[], char to[]) {
 int i;
 for(i = 0; from[i] != '\0'; i++) to[i] = from[i];
 to[i] = from[i]; //copy the '\0'
}

Recall:

Using pointers:

void scopy(char* from, char* to) {
 while(*from != '\0') {
 *to = *from; //dereferencing to, from
 to++; from++; //increment both pointers to the next array elements
 }
 *to = *from;
}

 Convert a char array to an integer

int convert2int(char* c) {
 int result = 0;
 while(*c != '\0') {
 result = (result * 10) + (*c - '0');
 c++;
 }
 return result;
}

Fill in the blanks below to convert a char array containing a non-negative number to an integer
of the same magnitude.

int main() {

char str[] = "3396";
cout << convert2int(str) + 4 << endl; //prints 3400
}

⋮

 Sum of array slice

int slicesum(int* begin, int* end) {
 int sum = 0;
 for(int* p = begin; p != end; p++) {
 sum += (*p);
 }
 return sum;
}

int main() {
 int arr[] = {1,-4,55,7,8,2,9};
 cout << slicesum(arr+2, arr+4) << endl; //prints 62
}

Fill in the blanks to complete the C++ function below that acts on a slice of an integer array (i.e.,
sequence of consecutive elements) and computes the sum of the slice (begin element included,
end element excluded)

