Introduction to Programming (CS 101)

Spring 2024

Lecture 16;

Based on material developed by

Prof. Abhiram

Ranade and

Pointers continued (arrays as pointers, pointers in struct, dynamic allocation)

Instructor:

Prof. Manoj Prabhakaran

Preethi Jyoth

Recap (I): Pointer Operations

What is the output of the last cout statement”

#include <iostream>
using namespace std,;

int main() {

int 1 =1, J = 2;

intx p = &j, *x g = &1;

*p = *Q;

cout << 1 << " " << j << endl;

}

)

|Note the syntax for defining two pointers (p,) in the same statement.

Recap (I): Pointer Operations
What is the output of the last cout statement”

#include <iostream>
using namespace std;

int main() {

int 1 =1, j
intx p = &7,
*p = *xQ,

p=q; 1 +=2;] += 1,

cout << 1 << !

h

e

|
|

<<] << endl;

P = (; means botr

pointers point to the same variable 1. Both 1 and j altered

thereafter will reflect

'he modified values.

Recap (I): Pointer Operations

What is the output of the last cout statement”

#include <iostream>
using namespace std;

int main() <

int 1 =1,] = 2;
intx p = &, x g = &1,
*p = *xQ,

p=q; 1 +=2;] += 1,

j = x(x(&p));
cout << 1 <<

}

)

<< j << endl;

|>|<(&p) is the address in the pointer p; dereferencing it would yield the value in 1

Recap (lI): Pointer Initialization

What is the output of the following program?®
A 2
int main() { UR
intx p; 7
intk g = nullptr; (undefined behaviour)
int 1 = 2; |
if((1q && (p = &i)), (*p) += 2) Compiler error

cout << 1 << endl;

} @4

q initialized as nullptr, will evaluate to false, when evaluated as an expression

-y

Pointersin struct
CS 101, 2025

Pointers to structures and the —> operator

Consider the following structures:

struct Point {

double x; double vy; C++ provides the operator —> to use as
I shorthand. If x Is a struct object and y
struct Circle { IS a member variable then:

Point center;

double radius: X —>y is the same as (kx).y]
s
Circle cl1={{1,2},3}, *xcirc; Circle cl1={{1,2},3}, *xcirc;
circ = &cl; circ = &cl;
(kcirc).radius = 5; circ—>radius = 5;

v/

Pointers inside structures (I)

Pointers can be members of a struct

struct Point { |
double x: double vy; -low do we access the x coordinate of

1 the centre of both circles cc1 and cc2?

struct Circle2 {
double radius:
Pointx cptr;

cout << ccl.cptr->x; //prints 10

}; f we change cc2.cptr—>y, this would
change the y coordinate of pl1 and
Point pl = {10.0, 20.0}; hence the centre of both circles

Circle2 ccl, cc2;
ccl.radius = cc2.radius = 5;
ccl.cptr = cc2.cptr = &pl;

Pointers inside structures (Il)

Using a pointer to a struct inside its own definition:

struct Student {
int rollno;
Studentx TA:

b

int main() {
Student s1, s2, s3;
sl.rollno = 1; s2.rollno = 2;
s3.rollno = 3;
s1.TA = &s2;
s2.TA = &s3; s3.TA = &s1;
cout << ((s1.TA)->TA)—->rollno; //prints 3

Pointers In Structs

» Consider a struct to hold the information about a node in a binary tree

struct leafNode { int value; };
struct parentNode { int value; leafNode leftChild, leafNode rightChild},;
struct grandParentNode { int value; parentNode leftChild; parentNode rightChild};

 Will need a different struct for nodes in each level of the tree!
 Problem: A node cannot contain itself

 Alternative, use pointers; a node can contain a poi of type node

struct node {
int value;
node* leftChild; // nullptr if no child

node* rightChild; // nullptr 1if no child
' ; : . e . e

root leaf

node leaf
node root

{ 1, nullptr, nullptr };
{ 2, &leaf, nullptr };

Recursively print a binary tree

» Recall member X in a struct pointed to by p can be accessed as p->X

struct node {
int val;
node* left; // nullptr 1f no child
node* right; // nullptr 1f no child
'
void printlree(node* root) {
if (!root) // equivalently, if(root == nulptr)
return;

printTree(root->left); val val

printlTree(root->right);
COUt << u) n .

root leaf

Recursively print a binary tree

struct node {
int val;
node* left; // nullptr 1f no child
node* right; // nullptr 1f no child

b
void printlTree(node* root) {
if (!'root) // equivalently, i1f(root == nulptr)
return;
cout << " (" << root->val;
printTree(root->left);
printlTree(root->right); .
right

y 4
cout << ") "; (-

] cl
int main() {

node ¢3 = {10, nullptr, nullptr};
node c4 = {50, nullptr, nullptr};
node cl = {25, nullptr, nullptr};
node c2 = {200, &c3, &cd}, r = {100, &cl, &c2};
printTree(&r); -(-

c3

ey
I

ey
C2

Arrays as Pointers
CS 101, 2025

Arrays as Pointers

* Recall that C-style arrays can be passed to functions as arguments

(and are always passed by reference) , ,
void fT(int A[]);

— Then the array is implicitly converted to a pointer to the first

same as

element of the array void f(int* A):
« Given any pointer, can use array-like indexing

— Works correctly if the pointer is indeed
pointing to the first element of an array (2] = 1:

Arrays as pointers

int main() {
float scores[] = {12.5,25.0,28.75,18.3};
floatx s = scores;
cout << s[2]; //prints 28.75

I3

e [he assignment s = scores is valid, since the array scores is implicitly a pointer (of
type floatx) to the first element of the array

e s5[2] means the same as scores [2]

e s[2] isthe float value stored at the address s + kx1 where Kk is the size of float (in
bytes) and 1 is the index value (l.e., kK = 4and 1 = 2)

Pointer Arithmetic

« Adding/subtracting integers, incrementing/decrementing, ana
comparisons are allowed on pointers, by interpreting them as
pointing to elements in an array

— p+iisthesameas & p[i]
e And, *(p+i) sameasp[i]

—p<q if p == A+iandqgq == A+j where i<]

void printArray(int* p, int* g) { while(p<qg) cout << *p++ << " ". 1}

int A[10];

printArray(A,A+10) ;

Copying a string from a source array to a destination array

Recall:

void scopy(char from[], char to[]) {

int 1
for(i = @; from[i] '= '\Q@'; i++) to[i] = from[i]:
toli] = froml[i]l; //copy the "\@°

}

Using pointers:

void scopy(charx from, charx to) {
while(xfrom != "\0') {
xto = xfrom; //dereferencing to, from
to++; from++; //increment both pointers to the next array elements

}

*to = *xfrom:

h

Convert a char array to an integer

=il in the blanks below to convert a char array containing a non-negative number to an integer
of the same magnitude.

int convert2int(charx c) {
int result = 0;

while(*xc '= '"\0Q') {
result = (result % 10) + (xc - '0');
CH+:

I3

return result;
+

int main() {

char str[] = "3396";
cout << convert2int(str) + 4 << endl; //prints 3400

}

Sum of array slice

-ill in the blanks to complete the C++ function below that acts on a slice of an integer array (i.e.,
seguence of consecutive elements) and computes the sum of the slice (begin element included,
end element excluded)

int slicesum(int* begin, intx end) {
int sum = 0,
for(intx p = begin; p !'= end; p++) 1
sum += (xp);
}

return sum;

}

int main() {
int arr[] = {1,-4,55,7,8,2,9};
cout << slicesum(arr+2, arr+4) << endl; //prints 62

}

