Introduction to Programming (CS 101)

Spring 2024

Lecture 18:

Based on material developed by

Preprocessing, Header files, Header guards

Prof. Abhiram

Ranade and

Instructor:

Prof. Manoj Prabhakaran

Preethi Jyoth

Recap (lI): Self-referential node
What is the output of this program?

#include <iostream>
using namespace std;

struct node {
int val;
nodex next:

b

int main() {

nodex nl = new node:
nl->val = 11: nl->next = nl;

cout << nl->val <<
delete nl1:

" " << pnl->next—>val << endl;

A node can refer to itself

|

" Undefined
B’ pehaviour

of 11 11

Recap (ll): new and delete Do you see any problems with this code?

struct node { nodex traverse(nodex head) {
int val; nodex prev = nullptr;
nodex next: while(head) {
b prev = head;
head = head->next;
+
return prev;
+

int main() {
nodex head new node:; head—->val

nodex tall = new node; tail->val
head = traverse(head):

delete head;

delete tail;

o}
5; tail->next = nullptr; head—->next = tail,;

delete tail; will try to delete a pointer that has already been deleted!

Recap (llIA): Array of pointers

What is the output of the cout statement if thisisrun as: . /a.out hi there?

#1include <iostream>
using namespace std;

int main(int argc, charx argv[]) {
string result = "";
for(int i = 1; 1 < argc; i++) {
result += argv[i];

}

cout << result << endl; < OUTPUT: hithere

}

-l

argv[1i] refers to the null-terminated C-style string passed to the command line as the it
largument

Recap (llIB): Array of pointers

What is the output of the cout statement if thisisrun as . /a.out hi there?

#1include <iostream>
using namespace std;

int main(int argc, charx argv[]) {
string result = "";
for(int i = 1; 1 < argc; i++) {
result += x(argv[i]+i);

}

cout << result << endl; < OUTPUT ie

}

s

argv[i]+1i will access the address of the ith character within the it command line argument

|

vector iterator
CS 101, 2025

vector iterator

 An iterator is designed to traverse through a vector or array and help provide
access to each element

#1nclude <iostream>
using namespace std;

int main() {
vector<int> A = {1, 3, 5};
vector<int>::1terator 1it;
for(it = A.begin(); it != A.end(); it++)
cout << kit << " ";{ OUTPUT: 135

Building blocks of a program
CS 101, 2025

A program split across multiple files

A program can be split across multiple files provided the following rules are satisfied:

Function declarations before definitions: If a function is being called by code in a

file, then the function must be declared before any calls to it. (Note that a function
definition is a declaration, but not vice-versa.)

Every function called must be defined exactly once in some file in the collection.

o Example: int gcd(int m, int n) A
. . int tm, tn;
#1pc1ude <lostream> int gcd(int, int); while(tm % tn != 0) {
using namespace std; o
int lcm(int m, int n); tm = n;
’ ' int lcm(int m, int n) { th =m % n;
: : X ’ — ; — ;
int main() { } return mxn/gcd(m,n) } m = tm; n = tn
cout << lcm(36,24);
) return n;
“main.cop_ “icm.cpp_ b

g++ main.cpp lcm.cpp gcd.cpp

Separately compile each file

 |nstead of compiling all files together to produce an executable, one can also
compile each file separately using g++ —C main.cpp

This produces an object module main.o
Object modules are not executables

 \We can form the executable . /a.out from the object modules using:
g++ main.o lcm.o gcd.o

The executable is produced via a linker that links the object modules together

 One can mix . cpp files and . o files as arguments to g++. Example:
g++ main.cpp Llcm.o gcd.o

Compiling a Program

foaderfilee) ot

Compile into Object files
- Source code

-xecutable
—

Compilation

« Header files typically have the declarations of the functions (and more) in the library
« QObject files are the binary compiled version of functions

* |t saves time to have the library functions pre-compiled

Compiling a Program

Compile into Object files

Compile into Object files ¥

-xecutable
" Compiler _—recebe RO

—

Header files

Object tiles

- Source code

Compilation

« Header files typically have the declarations of the functions (and more) in the library
« Qpject files are the binary compiled version of functions

* |t saves time to have the library functions pre-compiled

Preprocessing and Headers
CS 101, 2025

Pre-Processor Directives

+ #include "numbers.h" is a pre-processor directive

 Here, numbers.h is a header file

» The #include directive causes the contents of the header file to be placed
at the position where the directive appears

+ #include and other pre-processor directives are processed, line-by-line

» Processing one directive can result in the appearance of another directive.
They are processed until no more directives are present.

 But same directive is not applied twice (to avoid infinite invocations)

#include

numbers.h

int GCD(int, 1nt);
int LCM(int, 1int);

// contents of file 1ostream I
// tens of thousands of
// l1lines
(main.cpp) int GCD(int, int);
#1include <jostream> | int LCM(int, int):
#include "numbers.h" b g++ -E -P main.cpp
W int main() {
int main() { > —> _
]
}

Tostream

#1nclude
#include

#include
#1nclude

<jma1n.cppi>

<10S>
<istream>
<ostream>
<streambuf>

Headers Containing Headers

Need to be
careful to avoid

an infinite cycle
of inclusions!

#include

<jostream>

int main() {

T !re-processor =

//
//
//

//
//
//
//

contents of file 10stream
tens of thousands of
lines

has content from files
included by 1ostream
and files 1ncluded 1n
those files, and so on.

int main() {

Headers Containing Headers

 Need to be
careful to avoid
inc.h an infinite cycle
#include "inc.h" of inclusions!

<jma1n.cppt>
: »m_’ error: #include nested too deeply

#1nclude "1nc.h"

int main() { « There are pre-processor directives that can be

\ used for conditional inclusion: coming up

#define

« #define VARIABLE value
makes the pre-processor replace the text VARIABLE with the text value

(when appearing as a “token” — e.g., not inside a string literal)

#define DELTA le-6
#define main program int main()
#define DEBUG ENABLED

» “Macros” with parameters can be defined too.

#define CLOSE(x,y) (abs((x)-(y)) <= DELTA)

#define repeat(X) for(int RPT 1 = 0, RPT n = X; \
RPT 1 < RPT n; ++RPT 1)

#1fdef

o #ifdef (alt: #if defined) or #ifndef (alt: #if !'defined)to

conditionally include code based on whether a macro has been defined

#define DEBUG ENABLED // value 1s optional

#1fdef DEBUG ENABLED
#define LOG(x) cerr << x << endl

#else
#define LOG(x) // 1gnore
#end1 f

LOG("Some problem") ;

jostream Header GuardS

// 1ncluding <istream>

#include <istream> // including <ostream> as

4include <oStreams // required i1n <istream>

istream ..
// remaining contents of

// 1stream 1ncluded

#include <ostream>
// 1ncluding <ostream> as

ostream : : :
// required in <jostream>

// remaining contents of
// <iostream> 1included

// contains definitions of
// data types, which 1f

// repeated would result 1n
// Comp ler errors! Cannot redeclare same

Stop! variables, data types (structs)

default arguments, etc.!

jostream Header Guards

// 1ncluding <istream>

#include <istream> // including <ostream> as

4include <oStreams // required i1n <istream>

1stream

// define LIBCPP OSTREAM
// and 1nclude contents of

#include <ostream> // ostream

// remaining contents of

ostream . .
// 1stream i1ncluded

#1fndef LIBCPP OSTREAM

#define LIBCPP OSTREAM // LIBCPP OSTREAM 1is defined

// so #ifndef,, #endif skipped

// actual contents
// remaining contents of
// <1ostream> i1ncluded

#endif // LIBCPP OSTREAM

Optional: Header Guards

inc.txt

#ifndef INC DONE
#1fdef INC ALMOST DONE
#define INC DONE
#Helse

#define INC ALMOST DONE

#tendif Exercise: Explain this output
hello

#1nclude "1nc.txt"
bye
#enda1 f

Testing preprocessor.
Not a valid program.

<ma1’n.cpp> netlo

. INEA
Testing preprocessor. —={» Pre-processor -~ bye
Not a valid program.

bye

#1include "1nc. txt"

