
Instructor: Preethi Jyothi

Lecture 18:

- Preprocessing, Header files, Header guards

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

What is the output of this program?
 Recap (I): Self-referential node

#include <iostream>
using namespace std;

struct node {
 int val;
 node* next;
};

int main() {
 node* n1 = new node;
 n1->val = 11; n1->next = n1;
 cout << n1->val << " " << n1->next->val << endl;
 delete n1;
}

B

A
Compiler
error

Undefined
behaviour

C 11 11

A node can refer to itself

Do you see any problems with this code? Recap (II): new and delete

int main() {
 node* head = new node; head->val = 5;
 node* tail = new node; tail->val = 5; tail->next = nullptr; head->next = tail;
 head = traverse(head);
 delete head;
 delete tail;
}

delete tail; will try to delete a pointer that has already been deleted!

node* traverse(node* head) {
 node* prev = nullptr;
 while(head) {
 prev = head;
 head = head->next;
 }
 return prev;
}

struct node {
 int val;
 node* next;
};

What is the output of the cout statement if this is run as: ./a.out hi there?

 Recap (IIIA): Array of pointers

#include <iostream>
using namespace std;

int main(int argc, char* argv[]) {
 string result = "";
 for(int i = 1; i < argc; i++) {
 result += argv[i];
 }
 cout << result << endl;
}

OUTPUT: hithere

argv[i] refers to the null-terminated C-style string passed to the command line as the ith
argument

What is the output of the cout statement if this is run as ./a.out hi there?

 Recap (IIIB): Array of pointers

#include <iostream>
using namespace std;

int main(int argc, char* argv[]) {
 string result = "";
 for(int i = 1; i < argc; i++) {
 result += *(argv[i]+i);
 }
 cout << result << endl;
}

OUTPUT: ie

argv[i]+i will access the address of the ith character within the ith command line argument

vector iterator
CS 101, 2025

 vector iterator
• An iterator is designed to traverse through a vector or array and help provide

access to each element

#include <iostream>
using namespace std;

int main() {
 vector<int> A = {1, 3, 5};
 vector<int>::iterator it;
 for(it = A.begin(); it != A.end(); it++)
 cout << *it << " ";
}

OUTPUT: 1 3 5

Building blocks of a program
CS 101, 2025

 A program split across multiple files
• A program can be split across multiple files provided the following rules are satisfied:

• Function declarations before definitions: If a function is being called by code in a
file, then the function must be declared before any calls to it. (Note that a function
definition is a declaration, but not vice-versa.)

• Every function called must be defined exactly once in some file in the collection.

• Example:

#include <iostream>
using namespace std;
int lcm(int m, int n);

int main() {
 cout << lcm(36,24);
}

main.cpp

int gcd(int, int);

int lcm(int m, int n) {
 return m*n/gcd(m,n);
}

lcm.cpp

int gcd(int m, int n) {
 int tm, tn;
 while(tm % tn != 0) {
 tm = n;
 tn = m % n;
 m = tm; n = tn;
 }
 return n;
} gcd.cpp

g++ main.cpp lcm.cpp gcd.cpp

 Separately compile each file

• Instead of compiling all files together to produce an executable, one can also
compile each file separately using g++ -c main.cpp

• This produces an object module main.o
• Object modules are not executables

• We can form the executable ./a.out from the object modules using:
g++ main.o lcm.o gcd.o

• The executable is produced via a linker that links the object modules together

• One can mix .cpp files and .o files as arguments to g++. Example:
g++ main.cpp lcm.o gcd.o

Compilation

Compile into Object files

Library

Header files Object files

Compiling a Program

Executable
Write Run

Source code

• Header files typically have the declarations of the functions (and more) in the library
• Object files are the binary compiled version of functions
• It saves time to have the library functions pre-compiled

Pre-processor Compiler Linker

Compilation

Compile into Object files
Linker

Library

Header files Object files

Compiling a Program

Executable
Write RunPre-processor Compiler

Compile into Object files

Write Library CompilerPre-processor
Creating the

Source code

• Header files typically have the declarations of the functions (and more) in the library
• Object files are the binary compiled version of functions
• It saves time to have the library functions pre-compiled

Preprocessing and Headers
CS 101, 2025

Pre-Processor Directives

• #include "numbers.h" is a pre-processor directive

• Here, numbers.h is a header file

• The #include directive causes the contents of the header file to be placed
at the position where the directive appears

• #include and other pre-processor directives are processed, line-by-line

• Processing one directive can result in the appearance of another directive.
They are processed until no more directives are present.

• But same directive is not applied twice (to avoid infinite invocations)

#include

int GCD(int, int);

int LCM(int, int);

numbers.h

// contents of file iostream
// tens of thousands of
// lines ...

int GCD(int, int);

int LCM(int, int);

int main() {

 ...

}

Pre-processor

main.cpp

#include <iostream>

#include "numbers.h"

int main() {

 ...

}

$ g++ -E -P main.cpp

Headers Containing Headers

...

#include <ios>

#include <istream>

#include <ostream>

#include <streambuf>

...

iostream

// contents of file iostream
// tens of thousands of
// lines ...

int main() {

 ...

}

Pre-processor

main.cpp

#include <iostream>

int main() {
 ...

}

// has content from files
// included by iostream
// and files included in
// those files, and so on.

• Need to be
careful to avoid
an infinite cycle
of inclusions!

Headers Containing Headers

error: #include nested too deeplyPre-processor
main.cpp

#include "inc.h"

int main() {
 ...

}

#include "inc.h"

inc.h

• Need to be
careful to avoid
an infinite cycle
of inclusions!

• There are pre-processor directives that can be
used for conditional inclusion: coming up

#define
• #define VARIABLE value

makes the pre-processor replace the text VARIABLE with the text value

(when appearing as a “token” — e.g., not inside a string literal)

#define DELTA 1e-6
#define main_program int main()
#define DEBUG_ENABLED

• “Macros” with parameters can be defined too.

#define CLOSE(x,y) (abs((x)-(y)) <= DELTA)

#define repeat(X) for(int RPT_i = 0, RPT_n = X; \
 RPT_i < RPT_n; ++ RPT_i)

#ifdef

• #ifdef (alt: #if defined) or #ifndef (alt: #if !defined) to
conditionally include code based on whether a macro has been defined

 #define DEBUG_ENABLED // value is optional
 ...

 #ifdef DEBUG_ENABLED
 #define LOG(x) cerr << x << endl
 #else
 #define LOG(x) // ignore
 #endif
 ...
 LOG("Some problem");

Header Guards
...

#include <istream>

#include <ostream>

...

iostream

...

#include <ostream>

...

istream

// contains definitions of
// data types, which if
// repeated would result in
// compiler errors!

ostream

// including <istream>

// including <ostream> as
// required in <istream>

// remaining contents of
// istream included

// including <ostream> as
// required in <iostream>

// remaining contents of
// <iostream> included

Stop!
Cannot redeclare same
variables, data types (structs)
default arguments, etc.!

Header Guards
...

#include <istream>

#include <ostream>

...

iostream

...

#include <ostream>

...

istream

#ifndef _LIBCPP_OSTREAM

#define _LIBCPP_OSTREAM

// actual contents
...

#endif // _LIBCPP_OSTREAM

ostream

// including <istream>

// including <ostream> as
// required in <istream>

// define _LIBCPP_OSTREAM
// and include contents of
// ostream

// remaining contents of
// istream included

// _LIBCPP_OSTREAM is defined
// so #ifndef,,,#endif skipped

// remaining contents of
// <iostream> included

Pre-processor

main.cpp

Testing preprocessor.

Not a valid program.

#include "inc.txt"

#ifndef _INC_DONE
 #ifdef _INC_ALMOST_DONE
 #define _INC_DONE
 #else
 #define _INC_ALMOST_DONE
 #endif
hello
#include "inc.txt"
bye
#endif

inc.txt

Testing preprocessor.

Not a valid program.

hello

hello

bye

bye

Exercise: Explain this output

Optional: Header Guards

