
Instructor: Preethi Jyothi

Lecture 2:

- Variables, data types, operators
- cout/cin

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade

Pick the closest emoji that the following
piece of code will draw.

 Recap
#include <simplecpp>
main_program{
 turtleSim();
 int nsides = 40;
 repeat(nsides){
 forward(400.0/nsides);
 right(360.0/nsides);
 }

 forward(5); right(90);
 penUp();
 forward(50); right(90); forward(10);
 penDown(); forward(20); right(180);
 penUp(); forward(30); forward(10);
 penDown(); forward(20);

 hide();
 getClick();
}

B

A

C

D

• Recall:

 Variables, data types and operators

• We will cover four data types today (and more later): char, int, float and double

#include <simplecpp>
main_program {
 turtleSim();
 int nsides = 4;
 repeat(nsides) {
 forward(100);
 right(90);
 }
 getClick();
}

A variable called "nsides"
whose value can be set

and modified later

The type of the variable
is int: short for integer

= is the assignment operator

 Variables
• A variable occupies a region of memory (in a computer) into which you can store a value

ALU

Control
Unit

INPUT OUTPUT

Main
Memory

Simplified View of a
CPU (Central Processing Unit)

Variables
are stored

here

 Variables and data types

• Several variables of the same data type can be defined in a single statement:

data-type variable-name-1, variable-name-2, variable-name-3;

• A variable occupies a region of memory (in a computer) into which you can store a value

• A variable declaration is as follows:
data-type variable-name;

• Create variables of a particular data type by giving each variable a name, to refer to in
the rest of the program

 Variables and data types
• A variable occupies a region of memory (in a computer) into which you can store a value
• Create variables of a particular data type by giving each variable a name, to refer to in

the rest of the program
• A variable declaration is as follows:

data-type variable-name;

where data-type is one of:
Data type Possible values Used for

char -128 to 127 Characters

int -2147483648 to
2147483647

Standard size
Integers

float About 7 digits
of precision Real numbers

double About 15 digits
of precision Real numbers

More data types such as bool
will be covered in later lectures

 Variable names

• Variable names or identifiers can consist of letters, digits, and the underscore character "_"

• Reserved words in C++ (e.g., int, char, etc.) cannot be used as variable names

• Not recommended to start a name for an ordinary variable with "_"

• A variable name cannot start with a digit. E.g., 2ndname

• Case (lowercase vs. uppercase) is important and distinguishes variable names from one
another. E.g., coursetotal is different from CourseTotal

 char (short for character)

• char data type is most commonly used to store a single character

• Use single quotes around the character. Example of usage: char grade = 'A';

• An integer value is stored in char variables, referred to as ASCII values (ranging from 0 to
127). ASCII integer value to character mapping is at [1]. E.g., ASCII value of 'A' is 65.

• char j = 'A'; and char j = 65; are equivalent

• a-z, A-Z, 0-9 all have consecutive ASCII codes →

[1] https://en.cppreference.com/w/cpp/language/ascii

char in_char = ‘c’, out_char;
out_char = in_char + 'A' - 'a'

What does this code segment do?

Ans: Prints out the upper case letter
corresponding to the one in in_char

Assume only lower case letters in in_char

 char (short for character)

• char data type is most commonly used to store a single character

• Use single quotes around the character. Example of usage:

• An integer value is stored in char variables, referred to as ASCII values (ranging from 0 to
127). ASCII integer value to character mapping is at [1]. E.g., ASCII value of 'A' is 65.

• char j = 'A'; and char j = 65; are equivalent

• a-z, A-Z, 0-9 all have consecutive ASCII codes

• Escape sequences: Special characters such as ', ", \, etc. can be written as they are with an
escape sequence.

→

[1] https://en.cppreference.com/w/cpp/language/ascii

char j = '''; throws an error but char j = '\''; does not

char grade = 'A';

 int (short for integer) and float/double (short for floating-point)

• int represents integers in the range -2147483648 to 2147483647

• If you know you are only dealing with non-negative integers, use the data type unsigned int
that represents numbers in the range 0 to 4294967295

• Other flavours of int that we will learn later (short int, etc.)

int

• float/double are both used for decimals with 7 and 15 decimal digits precision, respectively.
Magnitude ranges are 1.17549 x 10-38 to 3.4028 x 1038 and 2.22507 x 10-308 to 1.7977 x 10308

• Typically use double unless you know you are dealing with small floating-point numbers

• Scientific notation: float i = 2E-3f that stands for 2 x (10-3)

 Note the suffix 'f' that denotes the value is float

float/double

 int (short for integer) and float/double (short for floating-point)

• int represents integers in the range -2147483648 to 2147483648

• If you know you are only dealing with non-negative integers, use the data type unsigned int
that represents numbers in the range 0 to 4294967295

• Other flavours of int that we will learn later (short int, etc.)

int

float/double
• float/double are both used for decimals with 7 and 15 decimal digits precision, respectively.

Magnitude ranges are 1.17549 x 10-38 to 3.4028 x 1038 and 2.22507 x 10-308 to 1.7977 x 10308

• Typically use double unless you know you are dealing with small floating-point numbers

• Scientific notation: float i = 2E-3f and double i = 2E-3

• Floating point arithmetic has many subtleties that we will cover in a later class

 Assignment operation
Assignment operator

variable = expression

• Semantics (Meaning): Evaluate expression and then store in the result in variable

• Syntax:

• Examples:

int nsides = 4; Here, expression is a constant (i.e., 4)

int i = 1;
i = i + 1; Here, expression is a simple arithmetic operation on i (i.e., i + 1)

int i = 1;
i = (i * i) + 2;

 Here, expression is another arithmetic operation on i with two
operators '*' and '+'

 Illustrating assignment

• What does this program do?

#include <simplecpp>
main_program {
 turtleSim();
 int x = 5;
 repeat(100) {
 forward(x); right(90);
 x = x + 5;
 }
 hide();
 getClick();
}

• int x = 5: x is assigned an initial value of 5 or
x is initialized with the value 5

• x = x + 5: Add 5 to x and then store this
value back into x

 Arithmetic operations

• Variables can be manipulated using arithmetic operations, much like in algebra

• Common arithmetic operators: +, - , *, / E.g.: x = (a / d) + (b * c)

• Preference order of operators:
• Multiplication and division have the same precedence, which is higher than ...
• ... addition and subtraction that have the same precedence
• Among operators of the same precedence, we go left-to-right

int x = 6 * 2 + 3; Here, x will evaluate to 15

int x = 6 / 3 * 2; Here, x will evaluate to 4

int x = 6 - 3 / 3 + 2; Here, x will evaluate to 7

 Order of assignment vs. arithmetic operators

• With arithmetic operators, evaluation order is left-to-right

• With multiple assignment operators, the rightmost assignment is evaluated first i.e. the order is
right-to-left

int x = 1, y = 2, z = 3;
x = y = z = 4;

 What are the values of x, y, z?

 Ans: x = 4, y = 4, z = 4

int x = 1, y = 2, z = 3;
x = y = z = x + z;

 What are the values of x, y, z?

 Ans: x = 4, y = 4, z = 4

int x = 1, y = 2, z = 3;
x = y = z = x - z + y;

 What are the values of x, y, z?

 Ans: x = 0, y = 0, z = 0

 Relational operators

• Relational operators are used to compare two variables or expressions

• Returns either false (zero) or true (non-zero) value

• Operators include:
• Greater than (>): sum > 10
• Greater than or equal to (>=): i >= 5
• Less than (<): sum < 10
• Less than or equal to (<=): i <= 5
• Equal to (==): a == 1
• Not equal to (!=): 1 != 2

 Note this is different from the assignment = operator

 Compound assignment operators

• A compound assignment is as follows:

• This is short-hand for:

variable += expression

variable = variable + expression

• Also exists for other arithmetic operators: -=, *=, /=

Input / Output
CS 101, 2025

• Recall:

 Recall code to draw a square

#include <simplecpp>
main_program {
 turtleSim();
 int nsides = 4;
 repeat(nsides) {
 forward(100);
 right(90);
 }
 getClick();
}

• What if I want to
• ask the user for their choice of nsides?
• print that number to the screen?

• Recall:

 Input/output: cin/cout operators

#include <simplecpp>
main_program {
 turtleSim();
 cout << "How many sides?";
 int nsides;
 cin >> nsides;
 repeat(nsides) {
 forward(100);
 right(90);
 }
 getClick();
}

Print "How many sides?"
to the screen

Read from keyboard
into the variables nsides

• Standard input (cin) and output (cout) streams: Get input (from a keyboard) and
produce output (on screen)

• cout used with insertion operators <<

• Multiple insertion operations (<<) may be chained in a single statement...
•

 Input/output: cin/cout operators

cout << "How many sides " << "in the polygon?";

... also with variables to print out their values:

cout << "There are " << nsides << " in the polygon" << endl;

• Note: cout typically ends with an endl so that the statement appears in the order of execution

• cin used with extraction operators >>

• Syntax:

• Multiple extraction operations (>>) may be chained in a single statement...
•

 Input/output: cin/cout operators

int x;
cin >> x;

cin >> a >> b;

• Any kind of space (space, tab, newline) can separate consecutive input operations

Coding Hygiene
CS 101, 2025

• Comments are very useful in helping the reader understand the code

• Single-line comments using //:

• Multi-line or block comments:

• Text between // and end of line, or between /* and */ is ignored by the compiler

 Comments

Image from: https://xkcd.com/1513/

int n = 4; // n refers to the number of sides in a polygon

/* The code below computes the sum of n numbers
 Input: Reads n numbers - i_1,i_2,...,i_n
 Output: Prints out i_1 + i_2
*/
repeat(n) {

• Common to use spaces and not tabs for indentation

• Use blank lines to separate sections within a file

• Choose one of the following styling of braces, and use consistently:

• Variable names must be meaningful (as far as possible); multiple word variables typically
separated by "_" (e.g., light_on)

• Typically initialize (if at all) variables as part of definition, and not as a separate statement.
That is, int i = 5; preferred over int i; i = 5;

• Or, ignore style guides and write obfuscated C code! [2]

 A few good coding styles/practices (e.g., [1])

[1] https://google.github.io/styleguide/cppguide.html

repeat(n)
{
 body
}

repeat(n) {
 body
}

OR

[2] https://www.ioccc.org/

https://google.github.io/styleguide/cppguide.html

Going from program statement to code
CS 101, 2025

Q. Write C++ code to calculate using the Taylor series expansion (where is in radians):sin(x) x

 Problem statements

sin(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ …

Ask for (in degrees) from the user and use a fixed number of terms. You can use PI
(offered by simplecpp) to access the value of .

x
π

[Easier Q]. Write C++ code to calculate the following series: 1 −
1
2

+
1
3

−
1
4

+
1
5

− …
HW

Next class: Variables, Operators, Data types
CS 101, 2025

