Introduction to Programming (CS 101)
Spring 2024

Lecture 22:

Course conclusion Instructor: Preethi Jyothi




Recap (I): Constructors/destructors

#include <iostream>
using namespace std,;

class Atom {
public:
Atom(const std::string& n) {
name = n; cout << name << " construct\n";

¥
~Atom() { cout << name << " destruct\n": }

Atom(const Atom& past) {
name = past.name,
cout << name << " copy construct\n";

private:
string name;

b

-

int main() A{
Atom t1("t1");
Atom t2 = t1;
Atomx t3 = &tl;

A

t1 construct

t1 copy construct
t1 destruct
t1 destruct

Note the pointer t3 going
out of scope does not trigger
the destructor.




Recap (ll): Copy constructor f::ﬁ;“::mezzzz;ej:d int main() {
' ]> Store s1(3);
012

class Store {
. . Store s2 = sl;
int size; 012 .
ﬂ intx data: destruct sl.print();
. . ! deStrUCt SZ ] prlnt( ) ;
Difference between a shallow public: y
copy and a deep copy: What Store(int s) : size(s) A
if you comment out the copy data = new int[size];
constructor definition in blue? for(int i = 0; i < size; ++1i) datalil = i;
This triggers a shallow copy. b
Both s1 and s2 will have Store(const Store& m) {
pointers to the same memory size = m.size; data = new int[size];
(reserved for data when sl for(int i = 0; i < size; ++i) datal[i] = m.datalil;
was created). When the ¥
destructor runs for s2, void print() {
delete]] is called twice on for(int i = 0: i < size: ++i) cout << datali] << " ":
the same memory! cout << endl;
| }

~Store() { delete[] data; cout << "destruct\n":}



Two Practice Questions
CS 101, 2025




| - Fill in the blanks

A Kelth number is defined as a number that
appears in the “Keith sequence” associated
with that number, as defined below. The

Keith sequence of a k-digit number starts with
the k numbers which are the digits of the
given number; each subsequent number In
the sequence is the sum of the previous Kk
numbers in the sequence.

—.g. Consider the 3-digit number 197. Its

Keith sequence is 1,9, 7, 17 (=1+9+7), 33
(=17+7+49), 57 (=33+17+7), 107 (=57+33+17),
197 (=107+57+33), ... Since 197 appears in Its
Keith seguence, It Is a Kelth number.




| - Fill in the blanks

int main() {

int n; cin >> n;
int seql, seqZ, seq3;

segl =
seql =
seq3 =

seql

seq2

seq3
}

if (BLANK5) cout << "yes";
else cout << "no'":

n

/ 100:;

BLANK1;

n

% 10;
while (seq3 < n) {
int seg® = seql,;

BLANK?Z;
BLANK3;
BLANK4;

—.g. Consider the 3-digit number 197. Its

Keith sequence is 1,9, 7, 17 (=1+9+7), 33

(=17+7+9), 57 (=

33+17+7), 107 (=57+33+17),

197 (=107+57+33), ... Since 197 appears in its
Keith seguence, it Is a Keith number.

whether a given
or not. Assume t
number.

-1l In the blanks |

N the program to check

input is a 3-digit Keith number

Ne user Inputs a positive 3-digit

BLANK1: (n / 10) % 10

BLANK?Z: seq2

BLANK3: seq3

BLANK4 : seq
BLANKS: seq

O + seql + seq?
3::



Il - Recursion

Given a positive integer n, we want to recursively count the number of ways in which n can be
partitioned into distinct positive integers. Is the code given below correct? If not, fix it.

#1include <iostream>
Example: n =5 using namespace std;
Answer: 3
int count(int n, int k) {
if(n == @) return 1;

The different partitions are: |
if(n < @) return 0;

O return (count(n-k, k+1) + count(n, k+1)):
1,4 !
2, 3
int main() {
int n;
cin >> n;

cout << count(n, 1) << endl;



Il - Recursion

Given a positive integer n, we want to recursively count the number of ways in which n can be
partitioned into distinct positive integers. Is the code given below correct? If not, fix it.

#include <iostream>

Example: n =5 using namespace std;
Answer: 3
int count(int n, int k) {
The different partitions are: %f(n == 08) return 1;
5 if(n <0 || k > n) return 0;
return (count(n-k, k+1) + count(n, k+1));
1.4 \
2, 3
int main() {
int n;
cin >> n;:

cout << count(n, 1) << endl;



Course Conclusion
CS 101, 2025




Your CS101 C++ journey

(oY s — U e

Revision ——

el C++
gR2e2 proficient

Pointers

More recursio

Functions  Recursion Arrays

STruct peferences
Operators

for, whike, do—-while

Loops
1f-else, Switch/ ternary
ondition
Data types
( ' ) Variables/
Sim|
C++

novice



What did you learn from the course?

Recall objectives from lecture 1

* Programming in C++ (Syntax and Semantics)
o Abllity to computationally think albout problems

* Good coding/programming practices

e [earned that seeing programs is necessary but
not sufficient




Progression of coding

* Assembly coding to coding using natural language

High-level

Programming
using natural
language

Assembly

languages:
e.q., C++)

languages:
Low-level

_start: o | 5
mov edx,len ; length of string - : urring the result CoT
mov eCX,msg ; addreSS Of String lnt maln( ) { C++ Program to Print the Factorial Using Recursion:
mov ebx,1 ; file descriptor ]
mov eax,4 ; system call number for write() Sto re Sl ( 3) ’
int 0x80 ; system call trap

Store s2 = sl;
mov ebx,0 ; exit code .
mov eax,]l ; system call number for exit() s]. P rlnt( ) ’
int 0x80 ; system call trap 2 _ ( )
sZ2.print();

section .data
msg db 'Hello, world!', Oxa }
len equ $ - msg




Why C++?

e Harder to learn but teaches you more transferable skills
 C++ IS typically more performant (widely used for native applications)
e Challenges of C++
- Memory management
+ Bulky syntax

+ Code can get obscure (esp. with preprocessor
directives)




|ldeas for projects in C++

* Design a social programming platform to support a class like CS101

* Design simple animations for concepts in basic sciences, maths, engineering sciences.
=.g., [1

* Automated stock trading (using financial algorithms)
 Games with a purpose, e.g., ESP game (by Luis Von Ahn [2])

* \Word games such as Wordle, crosswords for learning, etc.

[1] https://seeing-theory.brown.edu/bayesian-inference/index.html

[2] https://en.wikipedia.org/wiki/ESP_game



https://seeing-theory.brown.edu/bayesian-inference/index.html
https://en.wikipedia.org/wiki/ESP_game

Art of writing the right programs

e "[he product is only as good as the plan for the product.”
Carefully chart out requirements

e "[he best teamwork Is a healthy rivalry.”
Developing and testing go hand-in-hand

e "[he database Is the software base."
Versioning of code and recording errors.

e "Don’t just fix the mistakes — fix whatever permitted the mistake
in the first place.”
Make the process extremely detailed.

* Bug-free code is a (near) myth, but we should strive to write
(near-)perfect software

https://nparikh.org/assets/pdf/sipa6545/week1-cs-algorithms/write-right-stuff. pdf



Growing presence of Al in software development

Almost every AI CODING TOOLS USAGE
respondent_has
used Al coding
tools at work
BRAZIL

YES, I HAVE USED BOTH AT 17%
WORK AND OUTSIDE OF WORK

17%

YES, I HAVE USED AT WORK GERMANY

BUT NOT OUTSIDE OF WORK 27%

20%

Have you used Al coding tools? ( >

Image from: https://github.blog/news-insights/research/survey-ai-wave-grows/



Using Al for coding

* Not a good idea (as yet!) to use Al as the first resource when you're learning programming

- Can use it to summarize or rephrase concepts (starting from a trusted source)

* Al coding tools can help you become faster at writing code

 \ery useful in automating mundane / low

e Helpf
Or Sof

ware too

(e.q., git)

ROl tasks

Ul to quickly familiarize yourself with the basics of a new software platform (e.g., Docker)

https://nicholas.carlini.com/writing/2024/how-i-use-ai.html



Course Remnants & Concluding Remarks

* rinal exam: April 23, 2025 e Your programming journey has only begun
(9 am to 12 pm, Venues: LAOOT,
L AOCO2, LA201, LA202, LC001, LTOO1 « CS101 aims to lay the foundation for you

to explore not only C++, but other
programming languages (that you will likely

use in your years ahead) #

Syllabus: Lectures 1 to 22 with more
emphasis on syllabi post midsem)

e Answer sheets will be shown on or
before May 1, 2025

 Make-up exams and special test:
May 2, 2025




