
Instructor: Preethi Jyothi
Lecture 22:

- Course conclusion

Introduction to Programming (CS 101)
Spring 2024

 Recap (I): Constructors/destructors
#include <iostream>
using namespace std;

class Atom {
public:
 Atom(const std::string& n) {
 name = n; cout << name << " construct\n";
 }
 ~Atom() { cout << name << " destruct\n"; }
 Atom(const Atom& past) {
 name = past.name;
 cout << name << " copy construct\n";
 }

private:
 string name;
};

int main() {
 Atom t1("t1");
 Atom t2 = t1;
 Atom* t3 = &t1;
}

Note the pointer t3 going
out of scope does not trigger
the destructor.

t1 construct
t1 copy construct

t1 destruct
t1 destruct

output

 Recap (II): Copy constructor #include <iostream>
using namespace std;
class Store {
 int size;
 int* data;
 public:
 Store(int s) : size(s) {
 data = new int[size];
 for(int i = 0; i < size; ++i) data[i] = i;
 }
 Store(const Store& m) {
 size = m.size; data = new int[size];
 for(int i = 0; i < size; ++i) data[i] = m.data[i];
 }
 void print() {
 for(int i = 0; i < size; ++i) cout << data[i] << " ";
 cout << endl;
 }
 ~Store() { delete[] data; cout << "destruct\n";}
};

int main() {
 Store s1(3);
 Store s2 = s1;
 s1.print();
 s2.print();
}

Difference between a shallow
copy and a deep copy: What
if you comment out the copy
constructor definition in blue?
This triggers a shallow copy.
Both s1 and s2 will have
pointers to the same memory
(reserved for data when s1
was created). When the
destructor runs for s2,
delete[] is called twice on
the same memory!

0 1 2
0 1 2

destruct
destruct

output

Two Practice Questions
CS 101, 2025

A Keith number is defined as a number that
appears in the “Keith sequence” associated
with that number, as defined below. The
Keith sequence of a k-digit number starts with
the k numbers which are the digits of the
given number; each subsequent number in
the sequence is the sum of the previous k
numbers in the sequence.

 I - Fill in the blanks

E.g. Consider the 3-digit number 197. Its
Keith sequence is 1, 9, 7, 17 (=1+9+7), 33
(=17+7+9), 57 (=33+17+7), 107 (=57+33+17),
197 (=107+57+33), ... Since 197 appears in its
Keith sequence, it is a Keith number.

 I - Fill in the blanks
int main() {
 int n; cin >> n;
 int seq1, seq2, seq3;
 seq1 = n / 100;
 seq2 = BLANK1;
 seq3 = n % 10;
 while (seq3 < n) {
 int seq0 = seq1;
 seq1 = BLANK2;
 seq2 = BLANK3;
 seq3 = BLANK4;
 }
 if (BLANK5) cout << "yes";
 else cout << "no";
}

E.g. Consider the 3-digit number 197. Its
Keith sequence is 1, 9, 7, 17 (=1+9+7), 33
(=17+7+9), 57 (=33+17+7), 107 (=57+33+17),
197 (=107+57+33), ... Since 197 appears in its
Keith sequence, it is a Keith number.

BLANK1:

BLANK2:

BLANK3:

BLANK4:

BLANK5:

(n / 10) % 10

seq2

seq3

seq0 + seq1 + seq2

seq3 == n

Fill in the blanks in the program to check
whether a given input is a 3-digit Keith number
or not. Assume the user inputs a positive 3-digit
number.

Given a positive integer n, we want to recursively count the number of ways in which n can be
partitioned into distinct positive integers. Is the code given below correct? If not, fix it.

 II - Recursion

#include <iostream>
using namespace std;

int count(int n, int k) {
 if(n == 0) return 1;
 if(n < 0) return 0;
 return (count(n-k, k+1) + count(n, k+1));
}

int main() {
 int n;
 cin >> n;
 cout << count(n, 1) << endl;
}

Example: n = 5
Answer: 3

The different partitions are:
5
1, 4
2, 3

Given a positive integer n, we want to recursively count the number of ways in which n can be
partitioned into distinct positive integers. Is the code given below correct? If not, fix it.

 II - Recursion

#include <iostream>
using namespace std;

int count(int n, int k) {
 if(n == 0) return 1;
 if(n < 0 || k > n) return 0;
 return (count(n-k, k+1) + count(n, k+1));
}

int main() {
 int n;
 cin >> n;
 cout << count(n, 1) << endl;
}

Example: n = 5
Answer: 3

The different partitions are:
5
1, 4
2, 3

Course Conclusion
CS 101, 2025

 Your CS101 C++ journey

Arrays
More recursion

Namespaces
Headers

Pointers

Classes

Exceptions

Debugging

Revision

Variables/
simplecpp

Data types
Conditions

if-else, switch, ternary

for, while, do-while
Loops

Operators
struct

Functions
References

Recursion

C++
novice

C++
proficient

 What did you learn from the course?
 Recall objectives from lecture 1

• Programming in C++ (Syntax and Semantics)

• Ability to computationally think about problems

• Good coding/programming practices

• Learned that seeing programs is necessary but
not sufficient

 Progression of coding

• Assembly coding to coding using natural language

Assembly
languages:
Low-level

_start:
 mov edx,len ; length of string
 mov ecx,msg ; address of string
 mov ebx,1 ; file descriptor
 mov eax,4 ; system call number for write()
 int 0x80 ; system call trap

 mov ebx,0 ; exit code
 mov eax,1 ; system call number for exit()
 int 0x80 ; system call trap

section .data
msg db 'Hello, world!', 0xa
len equ $ - msg

High-level
languages:
(e.g., C++)

int main() {
 Store s1(3);
 Store s2 = s1;
 s1.print();
 s2.print();
}

Programming
using natural

language

 Why C++?

• Harder to learn but teaches you more transferable skills

• C++ is typically more performant (widely used for native applications)

• Challenges of C++

• Memory management

• Bulky syntax

• Code can get obscure (esp. with preprocessor
 directives)

 Ideas for projects in C++

• Design a social programming platform to support a class like CS101

• Design simple animations for concepts in basic sciences, maths, engineering sciences.
E.g., [1]

• Automated stock trading (using financial algorithms)

• Games with a purpose, e.g., ESP game (by Luis Von Ahn [2])

• Word games such as Wordle, crosswords for learning, etc.

[1] https://seeing-theory.brown.edu/bayesian-inference/index.html
[2] https://en.wikipedia.org/wiki/ESP_game

https://seeing-theory.brown.edu/bayesian-inference/index.html
https://en.wikipedia.org/wiki/ESP_game

 Art of writing the right programs

• "The product is only as good as the plan for the product."
Carefully chart out requirements

• "The best teamwork is a healthy rivalry."
Developing and testing go hand-in-hand

• "The database is the software base."
Versioning of code and recording errors.

• "Don’t just fix the mistakes — fix whatever permitted the mistake
in the first place."
Make the process extremely detailed.

• Bug-free code is a (near) myth, but we should strive to write
(near-)perfect software

https://nparikh.org/assets/pdf/sipa6545/week1-cs-algorithms/write-right-stuff.pdf

 Growing presence of AI in software development

Image from: https://github.blog/news-insights/research/survey-ai-wave-grows/

 Using AI for coding

• Not a good idea (as yet!) to use AI as the first resource when you're learning programming

• Can use it to summarize or rephrase concepts (starting from a trusted source)

• AI coding tools can help you become faster at writing code

• Very useful in automating mundane / low ROI tasks

• Helpful to quickly familiarize yourself with the basics of a new software platform (e.g., Docker)
or software tool (e.g., git)

https://nicholas.carlini.com/writing/2024/how-i-use-ai.html

 Course Remnants & Concluding Remarks

• Your programming journey has only begun

• CS101 aims to lay the foundation for you
to explore not only C++, but other
programming languages (that you will likely
use in your years ahead) 🚀

Thanks!

• Final exam: April 23, 2025 
(9 am to 12 pm, Venues: LA001,
LA002, LA201, LA202, LC001, LT001
Syllabus: Lectures 1 to 22 with more
emphasis on syllabi post midsem)

• Answer sheets will be shown on or
before May 1, 2025

• Make-up exams and special test:
May 2, 2025

