
Instructor: Preethi Jyothi

Lecture 4:

- while loops, break/continue, do while, scope

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade

What is the output from the following
piece of code?

 Recap-I (if and logical operators)

#include <simplecpp>
main_program{

 int i = 1, j = 1, k = -1;

 if(!i || j && k)
 i += 1;
 else
 j += 1;

 cout << i << " " << j << " " << k;
}

B

A

C

D

1 1 -1

1 2 -1

2 1 -1

2 2 -1

What is the output from the following
piece of code?

 Recap-II (switch statement)
#include <simplecpp>
main_program{

 int i = 0, j = 1, k = -1;

 switch(!i * j - k) {
 case 2:
 case 1:
 j += 1; k += 1;
 case 0:
 i += 1;
 break;
 default:
 k += 1;
 }

 cout << i << " " << j << " " << k;
}

B

A

C

D

1 1 0

0 2 0

1 2 1

1 2 0

What is the output from the following
piece of code?

 Recap-III (ternary operator)

#include <simplecpp>
main_program{

 int i = 0, j = 0;

 cout << (i > j ? i-1 : j+1) << endl;
}

B

A

C

0

1

-1

An aside: nan and inf
CS 101, 2025

• nan:Short for Not a Number; cannot be defined or represented

• Examples where nan appears:
• Log of a non-positive number
• Square root of -1

• inf:Short for Infinity; numbers that are too large (in absolute value)

• Examples where inf appears:
• Divide (non-zero) number by zero
• Overflow: When a number exceeds the maximum representable floating-point number

• Note both these quantities relate to floating point numbers

 NaN (Not a Number) vs. inf (Infinity)

while statement
CS 101, 2025

 Compute average of scores

• Requirement: Read as input a sequence of student's scores (0 to 100) and print its average
• Number of students is not known beforehand
• Assume that at least one positive score will be given
• Treat a negative number as a signal to end the sequence

• Example:
• Input: 80,20,-5 Output: 50

• Implement using repeat?
• repeat repeats fixed number of times and we do not know the number of students

• New looping constructs (while, do while, for) that naturally support such requirements

 while statement

• Syntax:

while(condition){
 body
}

• Semantics:
1. Evaluate condition
2. If condition evaluates to true, then body is executed
3. If condition evaluates to false, then skip the while block

and move to the statement following while
4. Go back to step 1 and repeat

condition

start of while

body

true

next statement after while

false

 while statement (I)

• What does this program do?

#include <simplecpp>

main_program {
 int i = 0;
 while(i <= 10) {
 i = i + 2;
 cout << i << endl;
 }
}

#include <simplecpp>

main_program {
 int i = 0;
 while(i <= 10) {
 cout << (i+=2) << endl;
 }
}

equivalent to

2
4
6
8

10
12

output

 while statement (II)

• What does this program do?

#include <simplecpp>

main_program {
 int i = 0;
 while(false) {
 i = i + 2;
 cout << i << endl;
 }
}

What if this was true? Infinite loop!

Nothing will be printed

output

• The while condition
must eventually
become false,
otherwise the program
will never halt.

 Code to average student's scores

Demo in class and code shared on Moodle

break/continue statements
CS 101, 2025

 break statement within while loop

• Syntax of break within a while loop:

while(condition){
 body1
 break;
 body2

}

⋮

• Semantics:
• if condition is satisfied, body1 is executed and when control reaches break, the

execution of the while statement is terminated.
• That is, body2 is not executed if break appears right before it.
• Execution continues from the next statement following the while block.

 break in code to average student's scores

• Consider break in the following piece of code that implements averaging student's scores:

main_program {
 float next, sum = 0;
 int count = 0;
 while(true) {
 cin >> next;
 if(next < 0) break;
 sum += next;
 count += 1;
 }
 cout << sum/count << endl;
}

if next < 0, then the while loop
execution terminates

Execution continues from the statement
after while, i.e., cout << ...

 break in code to average student's scores

• Consider break in the following piece of code that implements averaging student's scores:

main_program {
 float next, sum = 0;
 int count = 0;
 while(true) {
 cin >> next;
 if(next < 0) break;
 sum += next;
 count += 1;
 }
 cout << sum/count << endl;
}

Note how break is written. Since {} is
omitted, the single statement after if
can appear on the same line.

• If break appears inside a while which is itself nested inside another while, then the
inner while statement is terminated

 continue statement within while loop

• Syntax of continue within a while loop:

while(condition){
 body1
 continue;
 body2
}

• Semantics:
• if condition is satisfied, body1 is executed and when control reaches continue, it

goes to the while loop for the next iteration.
• body2 i.e., statements from continue to the end of the loop are skipped.

 Averaging student's scores, with a constraint

• Ignore if a score > 100, and move on to the next score in the input

main_program {
 float next, sum = 0;
 int count = 0;
 while(true) {
 cin >> next;
 if(next < 0) break;
 sum += next;
 count += 1;
 }
 cout << sum/count << endl;
}

 Averaging student's scores, with a constraint

• Ignore if a score > 100, and move on to the next score in the input

main_program {
 float next, sum = 0;
 int count = 0;
 while(true) {
 cin >> next;
 if(next > 100) continue;
 if(next < 0) break;
 sum += next;
 count += 1;
 }
 cout << sum/count << endl;
}

if next > 100, then control is transferred
to the beginning of the while loop

ddo while statement
CS 101, 2025

 do while statement

• Syntax:

do{
 body
}while(condition)

• Semantics: Equivalent to

{ body }
while(condition){
 body
}

• Compared to while, can avoid one condition evaluation, if it holds anyway in the beginning
• Compared to while, do while is less commonly used

• Note: The above equivalence holds only when body does not contain a continue
statement. continue is only used within loop bodies.

Blocks and scope
CS 101, 2025

 Blocks and scope

• Code inside {} is referred to as a block

• repeat, if, etc. typically consists of blocks; one could create them otherwise too by
just adding {}

• Variables can be declared inside a block

main_program {
 int sum = 0;
 repeat(10) {
 int term;
 cin >> term;
 sum += term;
 }
 cout << sum << endl;
}

 How definitions in a block execute

• A variable is defined/created every time control reaches the definition.

• All variables defined in a block are destroyed every time control reaches the end of the
block.

• “Creating” a variable is only notional; the compiler simply starts using that region of
memory from then on.

• Likewise “destroying” a variable is notional.

 Scope and shadowing

• Variables defined outside a block can be used inside
the block, if no variable of the same name is defined
inside the block.

• If a variable of the same name is defined, then from
the point of definition to the end of the block, the
newly defined variable gets used.

• The new variable is said to “shadow” the old variable.

• The region of the program where a variable defined in
a particular definition can be used is said to be the
"scope" of the definition.

main_program {
 int i = 3;
 cout << i << endl;
 {
 cout << i << endl;
 int i = 8;
 cout << i << endl;
 }
 cout << i << endl;
} 3

3
8
3

output

Next class: Looping construct "for"
CS 101, 2025

