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What is the output from the following 
piece of code? The formatting of the 
statements may not correctly reflect the 
underlying behaviour.

 Recap-I (nested if):  Dangling else problem

#include <simplecpp> 

main_program{ 
  int n = -1; 
  if(n < 10) 
    if(n > 0) 
      cout << "Positive number\n"; 
  else 
    cout << "Number's more than 10\n"; 

}

B

A

C

Number's more than 10

No output

Positive number



What does this program output (in words)? 
For n = 44, what value of p is printed?

 Recap-II (while statement)

#include <simplecpp> 
main_program{ 

  unsigned int n; 
  cin >> n; 
  unsigned int p = 1; 
   
  while(p * 2 <= n) 
    p *= 2; 

  cout << p; 
}

B

A

C

D

44

42

32

64



 Recap-III (while and break)

Demo in class and code (guess.cpp) shared on Moodle



Constants 
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 Constants
• A constant is a variable with a fixed value defined before the program runs

const int i = 1;

• We use the const keyword to define constants:

• A statement i = 5; after the const definition above will lead to a compiler error

• const is an annotation to any type that ensures that it will not be changed

i is a constant 1 is a literal 

• Why use constant variables instead of just literals themselves? 
• Improved readability 
• Modular if the value needs to be changed; can make the change in just one place 



for statement 
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 Motivation: for statement
• Example: Write a program to print a table of cubes of numbers from 1 to 100

int i = 1; 

repeat(100) { 
  cout << i << "|" << i*i*i << endl; 
  i+=1; 
}

• The idiom above, which is, "do something for every number between x and y" occurs 
very commonly

• The for loop, with its syntax, makes it easy to implement this idiom



for syntax and semantics

condition

previous statement before for

body

true

next statement after for

false

for(initialization; condition; update) { 
   body 
} 

• Syntax:

• Example:
for(int i = 1; i <= 100; i++) { 
  cout << i << " " << i*i << endl; 
}

• Semantics:  
• Before the first iteration of the loop, initialization is executed 
• Within each iteration:  

• If condition evaluates to false, the loop terminates. 
• If condition evaluates to true, body is executed, followed by update. Then, the next 

iteration begins.

update

initialization



 while and for

int d = 2; 
while(x > 1) { 
 while(x % d == 0) { 
   x /= d; 
   cout << d << " "; 
 } 
 d+=1; 
}

update

initialization condition

for(int d = 2; x > 1; d+=1) { 
 while(x % d == 0) { 
   x /= d; 
   cout << d << " "; 
 } 
}

initialization condition update

• Note that a new variable d (int d) is defined in the initialization. d is accessible within the 
loop body, i.e. the scope of d is the for loop's body.  d is accessible within "condition" and 
"update" as well. 

• Note that the scope of d in the code on the left extends beyond the outer while loop. 
However, the scope of d in the code on the right is only within the for loop; d is not 
accessible outside the for loop.



 for examples
• repeat(n) { ... } can be replaced with:

for(int i = 0; i < n; i+=1) { ... }

for(int i = n; i > 0; i-=1) { ... }
OR

• for( ; ;) is allowed. That is, empty condition, empty initialization and empty 
update is allowed.    
• This would be an infinite loop, like while(true) 
• Would need a break statement to get out of the loop 



 Increment, decrement operators

• for(int i = 0; i < n; i+=1) { ... } is more commonly written as

using the increment (++) operator. 

for(int i = 0; i < n; i++) { ... }

OR
for(int i = 0; i < n; ++i) { ... }

• There is similarly a -- decrement operator (i--, --i)

• Both ++i and i++ in the for loop above work as shorthand for i = i + 1

... with an important caveat



 Increment, decrement operators
• An important difference between the pre-increment (++i) and post-increment (i++) operators: 

• ++i will first increment i and evaluate to the incremented value 

• i++ will evaluate to the original value of i prior to incrementing 

• Similarly, the pre-decrement (--i) and post-decrement (i--) operators

for(int i = 0; i < 10;) {  
    cout << i++ << "\n"; 
}

for(int i = 0; i < 10;) {  
    cout << ++i << "\n"; 
}

This would output 1 to 10

output

This would output 0 to 9

output



 Increment, decrement operators

int x = 0, y = 0; 

for(int i = 0; i < 3; i++) {  
    x += i++; 
} 

for(int i = 0; i < 3; ++i) {  
    y += ++i; 
} 
cout << x << "\n"; 
cout << y << "\n";

2
output

4
output

• What is the output of this program?



 nested for example

012 
012 
012

output

• What does this program do?

#include <simplecpp> 

main_program { 
    for(int i = 0; i < 3; ++i) { 
       for(int j = 0; j < 3; j++) cout << j; 
       cout << "\n"; 
    } 
}



 Another for example

The first for loop will 
ignore non-digit letters till 

the first digit is 
encountered. Then, a 

number is accumulated 
from the digits. 

output

• What does this program do?

char c; 
unsigned int n; 

for(cin >> c; c<'0' || c>'9'; cin >> c); 
for(n=0; c>='0' && c<='9'; n=n*10+(c-'0'), cin>>c); 

Note the , (comma) operator. Different 
from , used as a separator (E.g., int 
i, j;). Expressions separated by a 
comma are evaluated left-to-right.  

Note the empty body 
of this for loop. 



 break across different loop structures

while(condition) { 
  // ...		 
  break; 
  body  
}

• break can appear only within a loop body or 
within switch (case) blocks 

• break within nested loops will terminate only the 
enclosing loop (and not break out of all nested 
loops)

do { 
  // ...		 
  break; 
  body  
}while(condition)

for(initialization;condition;update) { 
  // ...		 
  break; 
  body  
}

• Note consistent behaviour of break across while, 
do-while and for loop structures:  

• Causes a jump to the statement immediately 
following the enclosing loop



 continue across different loop structures

while(condition) { 
  // ...		 
  continue; 
  body  
}

• Note consistent behaviour of continue across while, 
do-while and for loop structures:  

• Causes a jump to the end of the loop body

do { 
  // ...		 
  continue; 
  body  
}while(condition)

for(initialization;condition;update) { 
  // ...		 
  continue; 
  body  
}



 continue in a nested loop

main_program { 
 for(int i = 0; i < 3; i++) {  
   for(int j = 0; j < 3; j++) {  
     if(j == 0) 
       continue; 
     cout << i << "," << j << endl; 
   } 
 } 
}

• What is the output of this program?

0, 1 
0, 2 
1, 1 
1, 2 
2, 1 
2, 2

output



Next class: Internal Representations of data types 
CS 101, 2025


