
Instructor: Preethi Jyothi

Lecture 5:

- for loop, increment/decrement operators, constants

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade

What is the output from the following
piece of code? The formatting of the
statements may not correctly reflect the
underlying behaviour.

 Recap-I (nested if): Dangling else problem

#include <simplecpp>

main_program{
 int n = -1;
 if(n < 10)
 if(n > 0)
 cout << "Positive number\n";
 else
 cout << "Number's more than 10\n";

}

B

A

C

Number's more than 10

No output

Positive number

What does this program output (in words)?
For n = 44, what value of p is printed?

 Recap-II (while statement)

#include <simplecpp>
main_program{

 unsigned int n;
 cin >> n;
 unsigned int p = 1;

 while(p * 2 <= n)
 p *= 2;

 cout << p;
}

B

A

C

D

44

42

32

64

 Recap-III (while and break)

Demo in class and code (guess.cpp) shared on Moodle

Constants
CS 101, 2025

 Constants
• A constant is a variable with a fixed value defined before the program runs

const int i = 1;

• We use the const keyword to define constants:

• A statement i = 5; after the const definition above will lead to a compiler error

• const is an annotation to any type that ensures that it will not be changed

i is a constant 1 is a literal

• Why use constant variables instead of just literals themselves?
• Improved readability
• Modular if the value needs to be changed; can make the change in just one place

for statement
CS 101, 2025

 Motivation: for statement
• Example: Write a program to print a table of cubes of numbers from 1 to 100

int i = 1;

repeat(100) {
 cout << i << "|" << i*i*i << endl;
 i+=1;
}

• The idiom above, which is, "do something for every number between x and y" occurs
very commonly

• The for loop, with its syntax, makes it easy to implement this idiom

for syntax and semantics

condition

previous statement before for

body

true

next statement after for

false

for(initialization; condition; update) {
 body
}

• Syntax:

• Example:
for(int i = 1; i <= 100; i++) {
 cout << i << " " << i*i << endl;
}

• Semantics:
• Before the first iteration of the loop, initialization is executed
• Within each iteration:

• If condition evaluates to false, the loop terminates.
• If condition evaluates to true, body is executed, followed by update. Then, the next

iteration begins.

update

initialization

 while and for

int d = 2;
while(x > 1) {
 while(x % d == 0) {
 x /= d;
 cout << d << " ";
 }
 d+=1;
}

update

initialization condition

for(int d = 2; x > 1; d+=1) {
 while(x % d == 0) {
 x /= d;
 cout << d << " ";
 }
}

initialization condition update

• Note that a new variable d (int d) is defined in the initialization. d is accessible within the
loop body, i.e. the scope of d is the for loop's body. d is accessible within "condition" and
"update" as well.

• Note that the scope of d in the code on the left extends beyond the outer while loop.
However, the scope of d in the code on the right is only within the for loop; d is not
accessible outside the for loop.

 for examples
• repeat(n) { ... } can be replaced with:

for(int i = 0; i < n; i+=1) { ... }

for(int i = n; i > 0; i-=1) { ... }
OR

• for(; ;) is allowed. That is, empty condition, empty initialization and empty
update is allowed.
• This would be an infinite loop, like while(true)
• Would need a break statement to get out of the loop

 Increment, decrement operators

• for(int i = 0; i < n; i+=1) { ... } is more commonly written as

using the increment (++) operator.

for(int i = 0; i < n; i++) { ... }

OR
for(int i = 0; i < n; ++i) { ... }

• There is similarly a -- decrement operator (i--, --i)

• Both ++i and i++ in the for loop above work as shorthand for i = i + 1

... with an important caveat

 Increment, decrement operators
• An important difference between the pre-increment (++i) and post-increment (i++) operators:

• ++i will first increment i and evaluate to the incremented value

• i++ will evaluate to the original value of i prior to incrementing

• Similarly, the pre-decrement (--i) and post-decrement (i--) operators

for(int i = 0; i < 10;) {
 cout << i++ << "\n";
}

for(int i = 0; i < 10;) {
 cout << ++i << "\n";
}

This would output 1 to 10

output

This would output 0 to 9

output

 Increment, decrement operators

int x = 0, y = 0;

for(int i = 0; i < 3; i++) {
 x += i++;
}

for(int i = 0; i < 3; ++i) {
 y += ++i;
}
cout << x << "\n";
cout << y << "\n";

2
output

4
output

• What is the output of this program?

 nested for example

012
012
012

output

• What does this program do?

#include <simplecpp>

main_program {
 for(int i = 0; i < 3; ++i) {
 for(int j = 0; j < 3; j++) cout << j;
 cout << "\n";
 }
}

 Another for example

The first for loop will
ignore non-digit letters till

the first digit is
encountered. Then, a

number is accumulated
from the digits.

output

• What does this program do?

char c;
unsigned int n;

for(cin >> c; c<'0' || c>'9'; cin >> c);
for(n=0; c>='0' && c<='9'; n=n*10+(c-'0'), cin>>c);

Note the , (comma) operator. Different
from , used as a separator (E.g., int
i, j;). Expressions separated by a
comma are evaluated left-to-right.

Note the empty body
of this for loop.

 break across different loop structures

while(condition) {
 // ...		
 break;
 body
}

• break can appear only within a loop body or
within switch (case) blocks

• break within nested loops will terminate only the
enclosing loop (and not break out of all nested
loops)

do {
 // ...		
 break;
 body
}while(condition)

for(initialization;condition;update) {
 // ...		
 break;
 body
}

• Note consistent behaviour of break across while,
do-while and for loop structures:

• Causes a jump to the statement immediately
following the enclosing loop

 continue across different loop structures

while(condition) {
 // ...		
 continue;
 body
}

• Note consistent behaviour of continue across while,
do-while and for loop structures:

• Causes a jump to the end of the loop body

do {
 // ...		
 continue;
 body
}while(condition)

for(initialization;condition;update) {
 // ...		
 continue;
 body
}

 continue in a nested loop

main_program {
 for(int i = 0; i < 3; i++) {
 for(int j = 0; j < 3; j++) {
 if(j == 0)
 continue;
 cout << i << "," << j << endl;
 }
 }
}

• What is the output of this program?

0, 1
0, 2
1, 1
1, 2
2, 1
2, 2

output

Next class: Internal Representations of data types
CS 101, 2025

