
Instructor: Preethi Jyothi

Lecture 6:

- Internal representations of data types

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

 Reminder: Theory Quiz 1

• Details:
• Date/ Time: Feb 5th, 2025, 8:30 am to 9:30 am
• Venues: LA001, LA002, LA201, LA202, LH101, LH102

• Syllabus:
• All the content covered in lectures 1 to 5

• Mode:
• Closed book / closed notes quiz
• No devices (phones, laptops, tablets, smart watches, etc.) allowed
• No calculator needed
• Seating chart will be shared next week

What is the output of the following
program?

 Recap-I: To increment or not to increment (and continue)

main_program {

 for(int i = 0; i < 2; i++) {
 for(int j = 0; j < 2; j++) {
 if(i == j++)
 continue;
 cout << i << "," << j << endl;
 }
 }

}

B

A

C

2,1

1,1

0,2
1,1

D
0,1
1,1

1,2E

 Recap-II: Compute n choose 2

main_program {
 unsigned int n, count = 0;
 cin >> n;

 for(int i = 1; ;i++) {
 for(int j = ; ;j++)
 count += 1;
 }

 cout << n << " choose 2 = " << count << endl;
}

Given a non-negative integer , fill in all three boxes in the code template below to compute

 = (the well-known combination formula to choose 2 from n items)

n

(n
2) C(n,2) =

n!
2(n − 2)!

Given a non-negative integer , fill in all three boxes in the code template below to compute

 = (the well-known combination formula to choose 2 from n items)

n

(n
2) C(n,2) =

n!
2(n − 2)!

 Recap-II: Compute n choose 2

main_program {
 unsigned int n, count = 0;
 cin >> n;

 for(int i = 1; i < n; i++) {
 for(int j = i + 1; j <= n; j++)
 count += 1;
 }

 cout << n << " choose 2 = " << count << endl;
}

Data types and their representations
CS 101, 2025

 bool type
• Simplest data type that takes two values true, false.

• Internally occupies a byte of memory (equivalent to 8 bits)

• Other types can be converted to bool
• Implicitly: By using it where a bool expression is expected. E.g., bool b = expr,
if(expr), etc.

• Explicitly: An expression expr can be explicitly cast to bool by writing bool(expr)

• Zero is treated as false, all other non-zero values are treated as true
• Conversely, for bool to int, false converted to 0 and true to 1
• Arithmetic on bool treats the underlying quantities like integers

• What is x here?
int x; bool y; x = y = 5; x = 1

output

bool b1, b2;
b1 = 1; b2 = -1;

cout << b1 + b2 << endl;

 cout << (b1+=b2) << endl;

 cout << (b1+=-1) << endl;

 bool arithmetic

2
output

1
output

0
output

 Binary representation 0 0
1 1

0 00
1 01
2 10
3 11

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

• Using bits, we can represent different numbers
• bn-1 … b1b0 stands for the number
bn-1*2n-1 + … + b1*21 + b0*20

• Numbers [0,7] uses 3 bits, [0,15] uses 4 bits

• We can use bits to represent negative numbers too

• Standard format: Two's complement
• n bits to represent integers in the range

[-2n-1, 2n-1 - 1]

n 2n

.
.

.
.
.

.
.
.

.
.
.

.

0 1
2

8 79

15
14

0
1

2

--8
7-7

-1
-2

.
.

.
.
.

.

• In C++, char data type corresponds to a single byte, i.e., 8 bits

• unsigned char works like an integer in the range [0,255]
• 00000000 is 0, and 11111111 is 255

• signed char works like an integer in the range [-128, 127]
• 00000000 is 0, and 01111111 is 127
• 10000000 is -128, and 11111111 is -1

• Operations like +, -, *, / work with char like for integers, and the result is an integer
(can be converted back to char, if desired)

• Converting (implicitly or by casting) integers to char is done by mod 256 (i.e. % 256)

 char type

.
.

.

.
.

.

.
.

.

.
.

.

0
1

2

128 127129

255
254

0
1

2

-128
127-127

-1

-2

.
.

.

.
.

.

int x = 306; char y; y = x; cout << y;

char ASCII
0 48
1 49
2 50
3 51

2 output

• We can carry out bit-level manipulations using &, |, ~ bitwise operators: Same semantics as
AND, OR, NOT, respectively

• These operators can be applied bitwise on bytes
• 00001111 & 11110000 00000000
• 00001111 | 11110000 11111111
• ~00110011 11001100

• XOR operator, ^:
• 0 ^ 0 0
• 1 ^ 0 1
• 0 ^ 1 1
• 1 ^ 1 0

→
→

→

→
→
→
→

 Bitwise operations

 Example: char operations

• Demo in class of code to convert lowercase to uppercase and vice-versa

• Note:
• ASCII code of the character 'A' is 01000001 (65)
• ASCII code of the character 'a' is 01100001 (97)

• int and unsigned int correspond to 4 bytes, i.e., 32 bits

• int takes values in the range [-231, 231-1] (≈ [-2 billion, 2 billion])

• unsigned int takes values in the range [0, 232 - 1] (≈ [0, 4 billion]

• short int and unsigned short int correspond to 16 bits

• long long int and unsigned long long int correspond to 64 bits

• long int and unsigned long int correspond to 32 bits (same as int)

 int type

int

4 bytes

short

2 bytes
8 bytes

lo
ng

Next class: More about data types
CS 101, 2025

