Introduction to Programming (CS 101)
Spring 2024

Lecture 7:
More about data types, floating point

Instructor: Preethi Jyothi

Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

Recap-I: bool and 1nt types

What is the output of the following
program??

A 1,32
& 1,1

32,32

main_program <
bool b = 32;
int 1 = b;
cout << b << ", "

h

<< i1 << endl:

Recap-II: char arithmetic

What is the output of the following

program®
@ 2 main_program A

char c = '9' + '9' - '@' - '0"';
@ 18 cout << int(c) << endl;

+
57 (ASCII code of '9')

b[) 48 (ASCII code of '0')

Recap-Ill: Palindrome

=il N th

eb

the numbe
palindrome, b

r1h

anks be
e same when read either in forward or backward directions. E.g., 2332 is a

oW to check whether a non-negative integer n is a palindrome or Not, I1.e. IS

Ut 432 1S not.

main_program {

unsigned int n, r = 0;

cin >> n:

for(int q = n;[____ [;9 = DA
r=[_]

I3

if(n == r) cout << "Palindrome" << endl;

else cout << "Not Palindrome" << endl:;

Recap-Ill: Palindrome

=il in the b
the numbe

al

S below to check whether a non-negative integer n is a palindrome or not, I.e. IS

rthe same when read either in forward or backward directions. E.g., 2332 is a
palindrome, b

Ut 432 1S not.

main_program <
unsigned int n, r = 0;
cin >> n;

for(int q = n; g > 0; g = g/10){
r=(r x 10) + (q % 10);
}

if(n == r) cout << "Palindrome" << endl:;
else cout << "Not Palindrome" << endl:

An aside: lvalues and rvalues
CS 101, 2025

lvalues and rvalues

e |value always has a defined region of memory, SO you can refer to .

- Most common example of Ivalue expressions are variable names (including const
variables). E.g., 1nt a;

»+ Only an Ivalue can appear on the left side of an assignment. E.g., a = 5;
- a = b, a += Db, and other assignment operations are Ivalue expressions
- a, b (comma expression) where b is an Ivalue

* rvalue refer to expressions that evaluate to a value (an rvalue is not an Ivalue!)
- bool, char, 1nt literals such as false, 'A", 42, etc.

- arithmetic expressions (@ + b), logical expressions (a && b), comparison expressions
(@ '= b)

- a, b (comma expression) where b is an rvalue

e +4+3, —a are lvalue expressions, but a++, a—— are not. (More about this when we learn about
references.)

Data types and their representations (contd)
CS 101, 2025

Recap: Binary representations, bool, 1nt

* Binary representation using n bits (two's complement format for signed numbers).
Recall the circular schematic to help visualize this format.

e The bit representation bn-1 .. b1be stands for the signed number: —bn-1%2n-1 + ... + bpk21
+ be*x2? (note the sign applies only to the most significant bit bn-1)

* [ype casting: You can explicitly cast one data type to another.

= g.int x; bool b = bool(x);
- 1nt can be converted to char by mod 256

 Bitwise operations (&, |, ~, 7)act bitwise on byte sequences

1nt: Literal formats

e 1nt literal is an integer constant written in a program. E.g., int a = =1, b = 4,

e 1nt literals are typically in decimal. But literals can also be represented in binary, by starting
the literal with @b. E.g., 0011010 == 26

e 1nt literals can also be represented in octal (base 8, starting with @) or hexadecimal (base 16,
starting with @x) formats

Why do coders confuse
032 == 26 (dn-1x8"1 + .. + d1k8! + dg*x89) Halloween with Chriskmas?

O0xla == 26 (dn-1%1671 + .. + dik161 + dgx160) Because oct 31 =dec 258 §
* Hexadecimal format allows for compact representation of long binary sequences.
- The byte 00011010 can be written as @x1a (or Ox1A)

a,b,c,d,e, T inhexadecimal format correspond to the numbers
10,11,12,13,14,15 respectively

e Note: c1n reads decimal integers

Internal representations are binary

e Binary representation of integers

- An n-bit binary representation bn-1 ... D1be stands for the number
bn-1k2n-1 + .. + b1k21 + bgk20

- Example: Binary 110 represents the number 6 (1*22 + 1*21 + 0*20)

* Binary representation of fractions

* bn-1 .. D1bg . b-1b-2 ... b_n stands for the number bn-1%2"-1 + .. + b1%21 + bg*k2°
+ b-1/21 + b-3/22 + .. + b_p/2"

- Example: Binary 110.101 represents the number 6 (122 + 121 + 0720) + % (1/2 + 0/22 +
1/23)

float and double type

 Tloat represents floating point numbers that correspond to 4 bytes, i.e., 32 bits

* While representing a real number as a floating point number, we will use some bits for
precision, and some for scale (both signed)

E.g.: Indecimal, 7.8234 x 102 = 7/82.34 has 5 digits of precision, and its scale given by
the exponent 2 is such that it is between 100 and 999

* 1 bit for sign. Precision of 24 bits (23 bits stored, a leading 1 is implicit). Scale stored using
8-bits: 27126 to 2127 (two values of the exponent are used for indicating special values such
as nan, 1nf, etc.).

- E.g.:Inbinary, 9b1.1 x 23 = 0b0.0011

« doub le (for double precision floating number) uses 8 bytes i.e., 64 bits

+ 1 bit for sign, 53 bits for precision (one implicit), 11 bits for scale.

float literals

* Format for floating point literals (numbers appearing in the programs) and also as used by
cin/cout

E.g.: We write num E exp (with no spaces) to mean num x 10€XP, where num can
optionally have a decimal point

Note: Exponent is for 10. Also, the number is in decimal.
Examples: 314E-2, —0.01, etc. E is optional if . present.
06.023e23 (can use either e or E), 1.5e+2 (+ sign is optional)

o By default, the literal is taken to be a doub le. Suffix f or F to force f loat, if you want.

Working with real numbers

e For the sake of better precision, use doub le instead of f loat

- Using doub Le can be a little less efficient in large applications: more memory needed,
and (hence) slower

 WWhen comparing, allow a “tolerance” (and be prepared for false positives)

- Instead of a == b, check that absolute value of (@ — b) is less than or equal to
epsilon

- Choice of the tolerance value eps 1 lon will be application dependent

Floating point arithmetic: Precision issues

» Order matters

LProduces O as output!

float f = 5e7; // 50 million > 224
cout << 1 + f — f << endl; // What is the output?
cout << f - f + 1 << endl; // What 1s the OUtpUt?<Produces1asexpectedl
- . output
* Internal representations are binary i | oomﬂ—‘
ot equal to 0. |

cout << 1 + 0.001F — 1 << endl; // What is the output?
cout << 1 + 0.03125 - 1 << endl; // What is the output?

output
Equal to 0.03125! I

Bit shift operators

» Recall that the operators &, |, © and ~ can be used for bit-level manipulations

 Bit shift operators << and >> operate on an integral type (char, 1nt, etc.) variable, and

takes a number (how much to shift by) as an additional input

* (a << n) shifts the bits in a by n positions to the left; n most significant bits fall off, and n

least significant bits are set to 0.

—ssentially (a << n) is the same as a*2%. .*2 (n times) done more e

e Similarly (a >> n) shifts the bits in a by n positions to the right; n least significant bits fall
or 1 (for negative

off, and n most significant bits are set to @ (for unsigned or non-negative a)
signed a)

ficiently

=ssentially (@ >> n) isthe same as a/ (2x..%*2) (n times) if a is unsigned or non-

negative; for negative a, division rounds towards @, while >> rounds away from 0

Example: << operator

 Demo in class of code to convert an integer to binary format

Common C++ Errors
CS 101, 2025

Some common C++ errors (based on concepts studied so far)

e Using = (assignment) instead of == (equal 10)

» Not enclosing a multiple-statement body within parenthesis 1 }

* Dangling else

e \ariable scope Issues

* |nteger division when floats/doubles are required

* Qperator precedence; use parentheses whenever precedence is unclear
32, bool b = 1;

e Loop limits being off by one (e.g., using1 = @ — ninsteadof1 = @ — n-1forn
terations)

e Lossy type casting. E.g., 1nt 1

e Division by zero

e Seqguentially address compiler errors; errors could compound

Next class: Practice Session
CS 101, 2025

