
Instructor: Preethi Jyothi

Lecture 7:

- More about data types, floating point

Introduction to Programming (CS 101)
Spring 2024

- Based on material developed by Prof. Abhiram Ranade and Prof. Manoj Prabhakaran

What is the output of the following
program?

 Recap-I: bool and int types

main_program {
 bool b = 32;
 int i = b;
 cout << b << "," << i << endl;
}

B

A

C

1,32

1,1

32,32

What is the output of the following
program?

 Recap-II: char arithmetic

main_program {
 char c = '9' + '9' - '0' - '0';
 cout << int(c) << endl;
}

B

A

C

9

18

57 (ASCII code of '9')

D 48 (ASCII code of '0')

 Recap-III: Palindrome

main_program {
 unsigned int n, r = 0;
 cin >> n;

 for(int q = n; ;q =){
 r =
 }

 if(n == r) cout << "Palindrome" << endl;
 else cout << "Not Palindrome" << endl;
}

Fill in the blanks below to check whether a non-negative integer n is a palindrome or not, i.e. is
the number the same when read either in forward or backward directions. E.g., 2332 is a
palindrome, but 432 is not.

 Recap-III: Palindrome

main_program {
 unsigned int n, r = 0;
 cin >> n;

 for(int q = n; q > 0; q = q/10){
 r = (r * 10) + (q % 10);
 }

 if(n == r) cout << "Palindrome" << endl;
 else cout << "Not Palindrome" << endl;
}

Fill in the blanks below to check whether a non-negative integer n is a palindrome or not, i.e. is
the number the same when read either in forward or backward directions. E.g., 2332 is a
palindrome, but 432 is not.

An aside: lvalues and rvalues
CS 101, 2025

• lvalue always has a defined region of memory, so you can refer to it.
• Most common example of lvalue expressions are variable names (including const

variables). E.g., int a;
• Only an lvalue can appear on the left side of an assignment. E.g., a = 5;
• a = b, a += b, and other assignment operations are lvalue expressions
• a, b (comma expression) where b is an lvalue

• rvalue refer to expressions that evaluate to a value (an rvalue is not an lvalue!)
• bool, char, int literals such as false, 'A', 42, etc.
• arithmetic expressions (a + b), logical expressions (a && b), comparison expressions

(a != b)
• a, b (comma expression) where b is an rvalue

• ++a, --a are lvalue expressions, but a++, a-- are not. (More about this when we learn about
references.)

 lvalues and rvalues

Data types and their representations (contd)
CS 101, 2025

• Binary representation using n bits (two's complement format for signed numbers).
Recall the circular schematic to help visualize this format.

• The bit representation bn-1 … b1b0 stands for the signed number: -bn-1*2n-1 + … + b1*21
+ b0*20 (note the sign applies only to the most significant bit bn-1)

• Type casting: You can explicitly cast one data type to another.
• E.g. int x; bool b = bool(x);
• int can be converted to char by mod 256

• Bitwise operations (&, |, ~, ^) act bitwise on byte sequences

 Recap: Binary representations, bool, int

.
.

.

.
.

.

.
.

.

.
.

.

0
1

2

128 127129

255
254

0
1

2

-128
127-127

-1

-2

.
.

.

.
.

.

• int literal is an integer constant written in a program. E.g., int a = -1, b = 4;
• int literals are typically in decimal. But literals can also be represented in binary, by starting

the literal with 0b. E.g., 0b11010 == 26
• int literals can also be represented in octal (base 8, starting with 0) or hexadecimal (base 16,

starting with 0x) formats
• 032 == 26 (dn-1*8n-1 + … + d1*81 + d0*80)
• 0x1a == 26 (dn-1*16n-1 + … + d1*161 + d0*160)

• Hexadecimal format allows for compact representation of long binary sequences.
• The byte 00011010 can be written as 0x1a (or 0x1A)
• a,b,c,d,e,f in hexadecimal format correspond to the numbers
10,11,12,13,14,15 respectively

• Note: cin reads decimal integers

 int: Literal formats

Why do coders confuse
Halloween with Christmas?

 Because oct 31 dec 25! 🤷≡

• Binary representation of integers
• An n-bit binary representation bn-1 … b1b0 stands for the number
bn-1*2n-1 + … + b1*21 + b0*20

• Example: Binary 110 represents the number 6 (1*22 + 1*21 + 0*20)

• Binary representation of fractions
• bn-1 … b1b0 . b-1b-2 … b-m stands for the number bn-1*2n-1 + … + b1*21 + b0*20
+ b-1/21 + b-2/22 + … + b-m/2m

• Example: Binary 110.101 represents the number 6 (1*22 + 1*21 + 0*20) + ⅝ (1/2 + 0/22 +
1/23)

 Internal representations are binary

• float represents floating point numbers that correspond to 4 bytes, i.e., 32 bits

• While representing a real number as a floating point number, we will use some bits for
precision, and some for scale (both signed)
• E.g.: In decimal, 7.8234 x 102 = 782.34 has 5 digits of precision, and its scale given by

the exponent 2 is such that it is between 100 and 999

• 1 bit for sign. Precision of 24 bits (23 bits stored, a leading 1 is implicit). Scale stored using
8-bits: 2-126 to 2127 (two values of the exponent are used for indicating special values such
as nan, inf, etc.).

• E.g.: In binary, 0b1.1 x 2-3 = 0b0.0011

• double (for double precision floating number) uses 8 bytes i.e., 64 bits
• 1 bit for sign, 53 bits for precision (one implicit), 11 bits for scale.

 float and double type

• Format for floating point literals (numbers appearing in the programs) and also as used by
cin/cout
• E.g.: We write num E exp (with no spaces) to mean num × 10exp, where num can

optionally have a decimal point
• Note: Exponent is for 10. Also, the number is in decimal.
• Examples: 314E-2, -0.01, etc. E is optional if . present.
• 6.023e23 (can use either e or E), 1.5e+2 (+ sign is optional)

• By default, the literal is taken to be a double. Suffix f or F to force float, if you want.

 float literals

• For the sake of better precision, use double instead of float
• Using double can be a little less efficient in large applications: more memory needed,

and (hence) slower

• When comparing, allow a “tolerance” (and be prepared for false positives)
• Instead of a == b, check that absolute value of (a - b) is less than or equal to
epsilon

• Choice of the tolerance value epsilon will be application dependent

 Working with real numbers

• Order matters

float f = 5e7; // 50 million > 224
cout << 1 + f - f << endl; // What is the output?
cout << f - f + 1 << endl; // What is the output?

• Internal representations are binary

cout << 1 + 0.001F - 1 << endl; // What is the output?
cout << 1 + 0.03125 - 1 << endl; // What is the output?

 Floating point arithmetic: Precision issues

Produces 0 as output!

output

Produces 1 as expected

output

Not equal to 0.001F!

output

Equal to 0.03125!

output

• Recall that the operators &, |, ^ and ~ can be used for bit-level manipulations

• Bit shift operators << and >> operate on an integral type (char, int, etc.) variable, and
takes a number (how much to shift by) as an additional input

• (a << n) shifts the bits in a by n positions to the left; n most significant bits fall off, and n
least significant bits are set to 0.

• Essentially (a << n) is the same as a*2*..*2 (n times) done more efficiently

• Similarly (a >> n) shifts the bits in a by n positions to the right; n least significant bits fall
off, and n most significant bits are set to 0 (for unsigned or non-negative a) or 1 (for negative
signed a)

• Essentially (a >> n) is the same as a/(2*..*2) (n times) if a is unsigned or non-
negative; for negative a, division rounds towards 0, while >> rounds away from 0

 Bit shift operators

 Example: << operator

• Demo in class of code to convert an integer to binary format

Common C++ Errors
CS 101, 2025

• Using = (assignment) instead of == (equal to)
• Not enclosing a multiple-statement body within parenthesis { }
• Dangling else
• Variable scope issues
• Integer division when floats/doubles are required
• Operator precedence; use parentheses whenever precedence is unclear
• Lossy type casting. E.g., int i = 32; bool b = i;
• Loop limits being off by one (e.g., using i = 0 n instead of i = 0 n-1 for n

iterations)
• Division by zero
• Sequentially address compiler errors; errors could compound

→ →

 Some common C++ errors (based on concepts studied so far)

Next class: Practice Session
CS 101, 2025

