
Tutorial Sheet 11

1. Let y(x) =

{
ex − 1, x ≥ 0
1− e−x, x < 0

}
. Check that the derivative of y is continuous. Verify that

y(x) is a solution of y′ = |y|+ 1 on (−∞,∞).

2. Find the general solution for the following equations.

(a) y′ + 3 y = cos 10x

(b) y′ + 2 y = x2

(c) y′ + y − sin2 x = 0

(d) y′ + 2y − (1 + x3) = 0

3. Find the general solution for the following equations.

(a) y′ − 2x

1 + x2
y = 0

(b) e10x
2
y′ − xy = 0

(c) (1 + cos2 x) y′ − sin 2x y = 0

(d) y′ + e2x cos 3x y = 0

4. Find the general solution for the following equations.

(a) xy′ + 2y = 8x2

(b) (x− 2)(x− 1)y′ − (4x− 3)y = (x− 2)3

(c) x2y′ + 3xy = ex

5. Solve the following non-linear differential equations.

(a) y′ = 2y − 10y2

(b) 5x2y′ − 3xy + exy6 = 0

(c) xy′ + 4y = 16x2y1/2

6. Solve the following differential equations.

(a)
dy

dx
=

x+ 3y

x− y

(b) y′ =
x3 + y3

xy2

7. Following may not be separable but can be made separable by substitution.
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(a) y′ =
−6x+ y − 3

2x− y − 1

(b) y′ =
−x+ 3y − 14

x+ y − 2
.

(c) (3x+ 2y + 2)y′ − (2x+ 3y + 10) = 0

(d) (x+ y − 2)y′ − (2x− y − 3) = 0

8. Show that the initial value problem y′ =
√
y, y(0) = 0 has more than one solution by

finding at least two solutions explicitly.

9. Find all initial conditions such that (x2 − x)y′ = (2x− 1)y has no solution, precisely one
solution, and more than one solution.

10. Let xy′ − 2y = −1.

(a) Find a general solution to the above problem on R− {0}.
(b) Show that y is a general solution for the above ODE if and only if

y =


1

2
+ c1x

2, x ≥ 0

1

2
+ c2x

2, x < 0

where c1, c2 are arbitrary constants.

(c) Conclude that all solutions of the ODE on R are solutions of the initial value problem

xy′ − 2y = −1, y(0) =
1

2

(d) Show that if x0 ̸= 0 and y0 is arbitrary, then the initial value problem

xy′ − 2y = −1, y(x0) = y0 has infinitely many solutions on R.
Why does this not contradict existence and uniqueness theorem for linear ODEs?

11. Solve the following IVP’s

(a) (1 + 2y)y′ = 2x, y(0) = −2.

(b) y′ =
(1 + 3x2)

3y2 − 6y
, y(0) = 1.

(c) y′ = 2 cos 2x/(3 + 2y), y(0) = −1.

12. In each of following problems determine (without solving the problem) an interval in which
the solution of the given initial value problem is certain to exist.

(a) y′ + (tan x)y = sin x , y(π) = 0.

(b) (4− x2)y′ + 2xy = 3x2, y(1) = −3.

13. In each of following problems solve the given initial value problem and determine how the
interval in which the solution exists depends on the initial value y0.



(a) y′ + y3 = 0, y(0) = y0

(b) y′ =
x2

y(1 + x3)
, y(0) = y0

14. (a) Verify that both y1(x) = 1 − x and y2(x) = −x2/4 are solutions of the initial value
problem

y′ =
−x+ (x2 + 4y)1/2

2
, y(2) = −1

Where are these solutions valid?

(b) Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of the existence uniqueness theorem for ODE.
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1. Determine if the following equations are exact and solve them.

(a) (3y cosx+ 4xex + 2x2ex) dx+ (3 sinx+ 3) dy = 0.

(b) (
1

x
+ 2x) dx+ (

1

y
+ 2y) dy = 0.

(c) (y sin(xy) + xy2 cos(xy)) dx+ (x sin(xy) + xy2 cos(xy)) dy = 0.

(d) (yexy cos 2x− 2exy sin 2x+ 2x) dx+ (xexy cos 2x− 3) dy = 0.

(e)
x

(x2 + y2)3/2
dx+

y

(x2 + y2)3/2
= 0.

2. Solve the following IVP.

(a) (4x3y2 − 6x2y − 2x− 3)dx+ (2x4y − 2x3) dy = 0 y(1) = 3.

(b) (y3 − 1)ex dx+ 3y2(ex + 1) dy = 0, y(0) = 0.

(c) (9x2 + y − 1) dx− (4y − x) dy = 0, y(1) = 0.

3. Find all the functions M such that the following equation is exact.

M(x, y) dx+ 2xy sinx cos y dy = 0

4. Find all the functions N such that the equation is exact.

(ln(xy) + 2y sinx dx+N(x, y) dy = 0.

5. Suppose M and N are continuous and have continuous partial derivatives My and Nx that
satisfy the exactness condition My = Nx on an open rectangle R around (x0, y0). Show
that if (x, y) is in R and

F (x, y) =

∫ x

x0

M(s, y0) ds+

∫ y

y0

N(x, t) dt.

then Fx = M and Fy = N . (HINT: Use Leibniz Rule for differentiation under the integral
sign)

6. Solve using the previous exercise. (x2 + y2) dx+ 2xy dy = 0.

7. Solve the initial value problem y′ +
2

x
y = − 2xy

x2 + 2x2 + 1
, y(1) = −2.

8. Solve the following after finding an integrating factor.

(a) (27xy2 + 8y3) dx+ (18x2y + 12xy2) dy = 0.

(b) −y dx+ (x4 − x) dy = 0.



(c) y sin y dx+ x(sin y − y cos y) dy = 0.

(d) y(1 + 5 ln |x|) dx+ 4x ln |x| dy = 0.

(e) (3x2y3 − y2 + y) dx+ (−xy + 2x) dy = 0.

(f) y dx+ (2x− yey) dy = 0.

(g) (a cos(xy)− y sin(xy)) dx+ (b cos(xy)− x sin(xy)) dy = 0.

9. Let y′+p(x)y = f(x). Show that µ = ±e
∫
p(x) dx is an integrating factor. Find the explicit

solution using this integrating factor.

10. Show that if (Nx −My)/(xM − yN) = R, where R depends on the quantity xy only, then
the differential equation M +Ny′ = 0 has an integrating factor of the form µ(xy). Find
a general formula for this integrating factor.

11. Use the previous problem to solve (3x+
6

y
) + (

x2

y
+ 3

y

x
)
dy

dx
= 0.

12. Consider the initial value problem y′ = y1/3, y(0) = 0.

(a) Is there a solution that passes through the point (1, 1)? If so, find it.

(b) Is there a solution that passes through the point (2, 1)? If so, find it.

13. Apply the Picard’s iteration method to the following initial value problems and get four
iterations:

(a) y′ = x+ y, y(0) = 0

(b) y′ = 2y2, y(0) = 1

(c) y′ = 2
√
y, y(1) = 0
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1. Find the general solution of y′′ − 2y′ + 2y = 0. Solve it with initial conditions

(a) y(0) = 3, y′(0) = −2

(b) y(0) = k0, y
′(0) = k1.

2. Compute the Wronskians of the given set of functions.

(a) {ex, ex sinx}
(b) {x1/2, x−1/3}
(c) {x ln |x|, x2 ln |x|}.

3. Find the Wronskian of a given set of solutions of y′′ + 3(x2 + 1)y′ − 2y = 0, given that
W (π) = 0.

4. Find the Wronskian of a given set of solutions of (1− x2)y′′ − 2xy′ + a(a+ 1)y = 0, given
that W (0) = 1.

5. Find the Wronskian of a given set of solutions of x2y′′ + xy′ + (x2 − ν2)y = 0, given that
W (1) = 1.

6. Given one solution y1, find other solution y2 s.t. {y1, y2} is linearly independent set.

(a) y′′ − 6y′ + 9y = 0; y1 = e3x,

(b) x2y′′ − xy′ + y = 0; y1 = x.

(c) (x2 − 4)y′′ + 4xy′ + 2y = 0; y1 = 1/(x− 2).

7. Suppose p1, p2, q1, q2 are continuous on (a, b) and the equations y′′ + p1(x)y
′ + q1(x)y = 0

and y′′ + p2(x)y
′ + q2(x)y = 0 have the same solutions on (a, b). Show that p1 = p2 and

q1 = q2 on (a, b). [Hint. Use Abel’s formula.]

8. Find a linear homogeneous ODE for which the given functions form a fundamental set of
solutions on some interval.

(a) ex cos 2x, ex sin 2x

(b) x, e2x

(c) cos(lnx), sin(lnx).

9. Solve the following IVPs.

(a) y′′ + 14y′ + 50y = 0, y(0) = 2, y′(0) = −17.

(b) 6y′′ − y′ − y = 0, y(0) = 10, y′(0) = 0.

(c) 4y′′ − 4y′ − 3y = 0, y(0) =
13

12
, y′(0) =

23

24



(d) 4y′′ − 12y′ + 9y = 0, y(0) = 3, y′(0) =
5

2

10. Find a particular solution of x2y′′ + xy′ − 4y = 2x4.

11. (Principle of Superposition) Assume y1 is a solution of a(x)y′′ + b(x)y′ + c(x)y = f1(x)
and y2 is a solution of a(x)y′′ + b(x)y′ + c(x)y = f2(x). Show that y1 + y2 is a solution of
a(x)y′′ + b(x)y′ + c(x)y = f1(x) + f2(x).

12. Find the general solution of

(a) x2y′′ − 3xy′ + 3y = x

(b) y′′ − 3y′ + 2y = 1/(1 + e−x)

(c) x2y′′ + xy′ − 4y = −6x− 4

(d) x2y′′ − 2xy′ + 2y = x9/2

(e) y′′ − 2y′ + y = 14x3/2ex

(f) y′′ +4xy′ + (4x2 +2)y = 4e−x(x+2), given that y1 = e−x2
, y2 = xe−x2

are solutions of
homogeneous part.
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1. Solve the following differential equations

(a) y′′′ − y = 0.

(b) y(4) + 64y = 0.

(c) y(5) + y(4) + y′′′ + y′′ + y′ + y = 0.

(d) y′′′ − 2y′′ + 4y′ − 8y = 0, y(0) = 0, y′(0) = −2, y′′(0) = 0

(e) y′′′ − 6y′′ + 12y′ − 8y = 0, y(0) = 1, y′(0) = −1, y′′(0) = −4

(f) y(4) + 2y′′′ − 2y′′ − 8y′ − 8y = 0, y(0) = 5, y′(0) = −2, y′′(0) = 6, y′′′(0) = 8.

(g) y(4) + 2y′′ + y = 0.

2. Find the fundamental set of solutions for the following equations.

(a) (D2 + 9)3D2y = 0.

(b) D3(D − 2)2(D2 + 4)2y = 0.

(c) [(D − 1)4 − 16]y = 0

3. Find a particular solution using Anhilator method. Write down the Anhilator explicitly.
Do not evaluate the coefficients.

(a) y′′′ − 2y′′ + y′ = t3 + 2et

(b) y(4) − y′′′ − y′′ + y′ = t2 + 4 + t sin t.

(c) y(4) + 4y′′ = sin 2t+ tet + 4.

(d) y′′′ − 2y′′ + y′ − 2y = −ex[(9− 5x+ 4x2) cos 2x− (6− 5x− 3x2) sin 2x]

(e) y(4) − 7y′′′ + 18y′′ − 20y′ + 8y = e2x(3− 8x− 5x2).

(f) y(4) + 5y′′′ + 9y′′ + 7y′ + 2y = e−x(30 + 24x)− e−2x.

4. Find the general solution using the annihilator method (method of undetermined coeffi-
cients).

(a) y′′ − 2y′ − 3y = ex(−8 + 3x).

(b) y′′ + y = e−x(2− 4x+ 2x2) + e3x(8− 12x− 10x2).

(c) y′′ + 3y′ − 2y = e−2x[(4 + 20x) cos 3x+ (26− 32x) sin 3x].

(d) y′′ + 2y′ + y = 8x2 cosx− 4x sinx.

(e) y′′′ − y′′ − y′ + y = 2e−t + 3

(f) y(4) − 4y′′ = 3t+ cos t.

(g) y′′′ − y′′ − y′ + y = ex(7 + 6x).

(h) 4y(4) − 11y′′ − 9y′ − 2y = −ex(1− 6x).

(i) y′′′ + 3y′′ + 4y′ + 12y = 8 cos 2x− 16 sin 2x.



(j) y(4) + 3y′′′ + 2y′′ − 2y′ − 4y = −e−x(cosx− sinx)

5. Let P0(x)y
′′ + P1(x)y

′ + P2(x)y = F (x). Let y1 be a solution to the corresponding ho-
mogeneous equation. Then making the substitution uy1 in the differential gives a second
order equation of the form Q0(x)u

′′ + Q1(x)u
′ = F . This is really a first order equation

in variable z = u′ and can be solved using the variation of parameters method. This is
called the method of reduction of order. Use the method of reduction of order to solve
(2− x)y′′′ + (2x− 3)y′′ − xy′ + y = 0 given that y1(x) = ex is a solution.
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1. Determine if the following improper integrals exist.

(a)
∫∞
0 (t2 + 1)−1 dt, (b)

∫∞
1 t−2et dt

2. Find the Laplace transform of following functions.

(a) cosh t sin t

(b) cosh2 t

(c) t sinh 2t

(d) sin(t+
π

4
)

(e) f(t) =

{
e−t, 0 ≤ t < 1
e−2t, t ≥ 1

(f) f(t) =

{
t, 0 ≤ t < 1
1, t ≥ 1

3. (a) Prove that if L(f(t)) = F (s), then L(tkf(t)) = (−1)kF (k)(s).

[Hint. Assume that we can differentiate the integral
∫∞
0 e−stf(t)dt with respect to s under

the integral sign.]

(b) Using L(1) = 1/s, show that L(tn) =
n!

sn+1
, n an integer.

4. Show that if f is piecewise continuous and of exponential order, then lims→∞ F (s) = 0.

5. Show that if f is continuous on [0,∞) and of exponential order s0 > 0, then

L

(∫ t

0
f(τ)dτ

)
=

1

s
L(f), s > s0.

6. Suppose f is piecewise continuous and of exponential order, and limt→0+ f(t) exists. Show
that

L

(
f(t)

t

)
=

∫ ∞

s
F (r)dr.

7. Suppose f is piecewise continuous on [0,∞).

(a) If the integral g(t) =
∫ t
0 e

−s0τf(τ)dτ satisfies the inequality |g(t)| ≤ M, t ≥ 0, then
f has a Laplace transform F (s) defined for s > s0.

[Hint. Use integration by parts to show that∫ T

0
e−stf(t)dt = e−(s−s0)T g(T ) + (s− s0)

∫ T

0
e−(s−s0)tg(t)dt

(b) Show that if L(f) exists for s = s0, then it exists for s > s0.



8. Find the Laplace transform of the following functions.

(a)
sinωt

t
, ω > 0,

(b)
eat − ebt

t

(c)
cosh t− 1

t
,

(d)
sinh2 t

t
.

9. Suppose f is continuous on [0, T ] and f(t + T ) = f(t) for all t ≥ 0. We say f is periodic
with period T .

(a) Show that the Laplace transform L(f) is defined for s > 0.

(b) Show that

F (s) =
1

1− e−sT

∫ T

0
e−stf(t)dt, s > 0

10. Find the Laplace transform of the following periodic functions.

(a) f(t) =

{
t, 0 ≤ t < 1

2− t, 1 ≤ t < 2
, f(t+ 2) = f(t), t ≥ 0.

(b) f(t) =

{
1, 0 ≤ t < 1/2
−1, 1/2 ≤ t < 1

, f(t+ 1) = f(t), t ≥ 0.

(c) f(t) =

{
sin t, 0 ≤ t < π
0, π ≤ t < 2π

, f(t+ 2π) = f(t), t ≥ 0.

(d) f(t) = | sin t|.

11. Find the inverse Laplace transform of the following functions.

(a)
3

(s− 7)4
,

(b)
2s− 4

s2 − 4s+ 13
,

(c)
s2 − 1

(s2 + 1)2
,

(d)
s2 − 4s+ 3

(s2 − 4s+ 5)2
,

(e)
s3 + 2s2 − s− 3

(s+ 1)4
,

(f)
3− (s+ 1)(s− 2)

(s+ 1)(s+ 2)(s− 2)
,

(g)
3 + (s− 2)(10− 2s− s2)

(s− 2)(s+ 2)(s− 1)(s+ 3)
,



(h)
2 + 3s

(s2 + 1)(s+ 2)(s+ 1)
,

(i)
3s+ 2

(s2 + 4)(s2 + 9)
,

(j)
17s− 15

(s2 − 2s+ 5)(s2 + 2s+ 10)
,

(k)
2s+ 1

(s2 + 1)(s− 1)(s− 3)
.

12. Solve the following IVP’s using Laplace transforms.

(a) y′′ + 3y′ + 2y = et, y(0) = 1, y′(0) = −6,

(b) y′′ − 3y′ + 2y = 2e3t, y(0) = 1, y′(0) = −1

(c) y′′ + y = sin 2t, y(0) = 0, y′(0) = 1,

(d) y′′ + 4y = 3 sin t, y(0) = 1, y′(0) = −1.

(e) y′′ + y = t, y(0) = 0, y′(0) = 2,

(f) y′′ + 2y′ + y = 6 sin t− 4 cos t, y(0) = −1, y′(0) = 1.

(g) y′′ − 5y′ + 6y = 10et cos t, y(0) = 2, y′(0) = 1,

(h) y′′ + 4y′ + 5y = e−t(cos t+ 3 sin t), y(0) = 0, y′(0) = 4.
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1. Find the Laplace transform of the following functions using the Laplace transform of step
functions.

(a) f(t) =

{
tet, 0 ≤ t < 1
et, t ≥ 1

(b) f(t) =


t, 0 ≤ t < 1
t2, 1 ≤ t < 2
0, t ≥ 2

2. Find the inverse Laplace transform of the following functions.

(a) H(s) =
e−πs(1− 2s)

s2 + 4s+ 5
.

(b) H(s) =
1

s
− 2

s3
+ e−2s

(
3

s
− 1

s2

)
+ e−3s

(
4

s
+

3

s2

)
.

3. Solve the following IVPs using Laplace transform.

(a) y′′ − y =

{
e2t, 0 ≤ t < 2
1, t ≥ 2

. y(0) = 3, y′(0) = −1.

(b) y′′ − 5y′ + 4y =


1, 0 ≤ t < 1
−1, 1 ≤ t < 2
0, t ≥ 2

. y(0) = 3, y′(0) = −5.

(c) y′′ + 9y =


cos t, 0 ≤ t <

3π

2

sin t, t ≥ 3π

2

y(0) = 0, y′(0) = 0.

(d) y′′ + y =

{
t, 0 ≤ t < π
−t, t ≥ π

. y(0) = 0, y′(0) = 0.

(e) y′′ − 3y′ + 2y =

{
0, 0 ≤ t < 2
2t− 4, t ≥ 2

. y(0) = 0, y′(0) = 0.

(f) y′′ + 2y′ + y =

{
et, 0 ≤ t < 1
et − 1, t ≥ 1

. y(0) = 3, y′(0) = −1.

(g) y′′ + 2y′ + 2y =


t2, 0 ≤ t < 1
−t, 1 ≤ t < 2
−1, t ≥ 3π

. y(0) = 2, y′(0) = −1.

4. Solve the IVP and find a formula in terms of f for the solution that does not involve any
step functions and represents y on each interval of continuity of f

(a) y′′ + y = f(t) y(0) = 0, y′(0) = 0;

f(t) = m+ 1, mπ ≤ t < (m+ 1)π, m = 0, 1, . . ..



(b) y′′ + y = f(t) y(0) = 0, y′(0) = 0;

f(t) = (−1)m, mπ ≤ t < (m+ 1)π, m = 0, 1, . . ..

(c) y′′ − y = f(t) y(0) = 0, y′(0) = 0;

f(t) = m+ 1, mπ ≤ t < (m+ 1)π, m = 0, 1, . . ..

Hint: You will need the formula for 1 + r + . . .+ rm =
1− rm+1

1− r
(r ̸= 1).

(d) y′′ + 2y′ + 2y = f(t) y(0) = 0, y′(0) = 0;

f(t) = (m+ 1)(sin t+ 2 cos t), 2mπ ≤ t < 2(m+ 1)π, m = 0, 1, . . ..

5. Express the following inverse transform as an integral.

(a)
1

s2(s2 + 4)

(b)
s

s2(s2 + 4)

(c)
s

(s+ 2)(s2 + 9)

(d)
1

(s+ 1)2(s2 + 4s+ 5)

(e)
1

s2(s− 2)3

6. Find the Laplace transform

(a)
∫ t
0 sin aτ cos b(t− τ) dτ .

(b)
∫ t
0 sinh aτ cosh b(t− τ) dτ .

(c) et
∫ t
0 sinωτ cosω(t− τ) dτ .

(d) et
∫ t
0 e

2τ sinh(t− τ) dτ .

(e)
∫ t
0 (t− τ)4 sin 2τ dτ .

(f)
∫ t
0 (t− τ)7e−τ sin 2τ dτ .

(g)
∫ t
0 (t− τ)7τ8 dτ

(h)
∫ t
0 (t− τ)6τ7 dτ

(i)
∫ t
0 e

−τ sin(t− τ) dτ

7. Find a formula for the solutions of the IVP.

(a) y′′ + 3y′ + y = f(t), y(0) = 0, y′(0) = 0.

(b) y′′ + 4y = f(t), y(0) = 0, y′(0) = 0.

(c) y′′ + 6y′ + 9y = f(t), y(0) = 0, y′(0) = −2.

(d) y′′ + ω2y = f(t), y(0) = a, y′(0) = b.

(e) y′′ − 5y′ + 6y = f(t), y(0) = 1, y′(0) = 3.



8. Solve the integral equation

(a) y(t) = t−
∫ t
0 (t− τ)y(τ) dτ .

(b) y(t) = 1 + 2
∫ t
0 cos(t− τ)y(τ) dτ .

(c) y(t) = t+
∫ t
0 y(τ)e

−(t−τ) dτ .

9. Show that f ∗ g = g ∗ f .

10. Show that if p(s) = as2 + bs+ c has distinct real zeros r1 and r2 then the solution of

ay′′ + by′ + cy = f(t), y(0) = k0, y′(0) = k1

is

y(t) = k0
r2e

r1t − r2e
r2t

r2 − r1
+ k1

er2t − er1t

r2 − r1
+

1

a(r2 − r1)

∫ t

0
(er2τ − er1τ )f(t− τ) dτ

11. For the above problem find a formula for the solution if the roots of p(s) are repeated and
is given by r, and when the roots are complex λ± iω.


