
MA 110

Linear Algebra and Differential Equations

Lecture 10

Prof. Sudhir R. Ghorpade
Department of Mathematics

IIT Bombay
http://www.math.iitb.ac.in/∼srg/

Spring 2025

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 10



Axiomatic approach to the determinant function

For an axiomatic approach to the determinant function, we
refer to the write up on the Moodle page of the course. This
is meant as optional reading for those interested and will have
no bearing on any of the exams in this course.

In this approach, the three crucial properties of the
determinant function mentioned earlier become the defining
properties. Suppose we write n × n matrices in terms of their
columns. A real-valued function defined on the set of all n × n
matrices satisfying the three crucial properties is called a
determinant function. We then show that such a function
exists and is unique. The formulas for the expansion of a
determinant in terms of the jth row or the kth column can
then be deduced.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 10



Linear Transformations

Just as we can define a continuous function from a subset of
Rn to Rm, we now define a ‘linear’ function from a subspace
of Rn×1 to Rm×1.

Let V be a subspace of Rn×1, and let W be a subspace of
Rm×1. A linear transformation or a linear map from V to
W is a function T : V → W which ‘preserves’ the operations
of addition and scalar multiplication, that is, for all x, y ∈ V
and α ∈ R,

T (x + y) = T (x) + T (y) and T (α x) = αT (x).

It follows that if T : V → W is linear, then T (0) = 0, and
T ‘preserves’ linear combinations of vectors in V , that is,

T (α1x1 + · · ·+ αkxk) = α1T (x1) + · · ·+ αkT (xk)

for all x1, . . . , xk ∈ V and α1, . . . , αk ∈ R.
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Model Example
Let V := Rn×1,W := Rm×1 and A be an m×n matrix, that is,
A ∈ Rm×n. Define TA : Rn×1 → Rm×1 by

TA(x) = Ax for x ∈ V .

The properties of matrix multiplication show that TA is linear.

Conversely, suppose T : Rn×1 → Rm×1 is linear. We show that

T = TA for some A ∈ Rm×n. Let x :=
[
x1 · · · xn

]T ∈ Rn×1.
Then x = x1e1 + · · ·+ xnen, where e1, . . . , en are the basic
column vectors in Rn×1. Since T is linear, we obtain

T (x) = x1T (e1) + · · ·+ xnT (en).

Define ck :=T (ek) for k = 1, . . . , n, and A :=
[
c1 · · · cn

]
.

Then T (x) = x1c1 + · · ·+ xncn = Ax for all x ∈ Rn×1. Thus
A ∈ Rm×n and T = TA. (Note: kth column of A is T (ek).)
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Thus every linear transformation T : Rn×1 → Rm×1 is given by

T


x1...
xn


 :=

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 for

x1...
xn

 ∈ Rn×1,

where a11, . . . , a1n, . . . , am1, . . . , amn ∈ R.

Similarly, one can define a linear map T : R1×n → R1×m, and
find that for

[
x1 · · · xn

]
∈ R1×n,

T
( [

x1 · · · xn
] )

:=
[
a11x1 +· · ·+ a1nxn · · · am1x1 +· · ·+ amnxn

]
.

Remark: Let D be an open subset of R1×2, [x0, y0] ∈ D, and
let a function f : D → R be differentiable at [x0, y0]. Then the
total derivative of f at [x0, y0] is a linear map (which depends
on f ) given by T ([x , y ]) = αx + βy for [x , y ] ∈ R1×2, where
α := fx(x0, y0) and β := fy (x0, y0).
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Let A, B ∈ Rm×n and α, β ∈ R. Then αA + βB ∈ Rm×n and

TαA+βB(x) = (αA + βB)x = αTA(x) + βTB(x)

for x ∈ Rn×1. We write this as follows:

TαA+βB = αTA + βTB.

Next, let A ∈ Rm×n and B ∈ Rn×p. Then AB ∈ Rm×p, and

TAB(x) = (AB)x = A(Bx) = TA(Bx) = TA(TB(x)) = TA◦TB(x)

for x ∈Rp×1 by the associativity of matrix multiplication. Thus

TAB = TA ◦ TB.

This says that the linear map associated with the product AB
of matrices A and B is the composition of the linear maps
associated with A and associated with B in the same order.
This partially justifies the definition of matrix multiplication.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 10



Examples
Let A ∈ R2×2. Then TA : R2×1 → R2×1.

(i) Let A :=

[
2 0
0 2

]
. Then TA :

[
x1 x2

]T 7−→ [
2x1 2x2

]T
.

TA stretches each vector by a factor of 2.

(ii) Let A :=

[
0 1
1 0

]
. Then TA :

[
x1 x2

]T 7−→ [
x2 x1

]T
.

TA is the reflection in the line x1 = x2.

(iii) Let A :=

[
−1 0
0 −1

]
.Then TA :

[
x1 x2

]T 7→ [
−x1 −x2

]T
.

TA is the reflection in the origin.

(iv) Let A :=

[
cos θ − sin θ
sin θ cos θ

]
, where θ ∈ (−π, π]. Then

TA :
[
x1 x2

]T 7−→ [
x1 cos θ − x2 sin θ x1 sin θ + x2 cos θ

]T
.

TA is the rotation through an angle θ.

These are geometric interpretations of matrices.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 10



While constructing an m×n matrix which represents a
transformation from Rn×1 to Rm×1, we made an explicit use of
the standard basis of Rn×1 consisting of the basic column
vectors e1, . . . , en (in this order). Also, we implicitly used the
standard basic column vectors e1, . . . , em in Rm×1 (in this
order) when we wrote A :=

[
T (e1) · · · T (en)

]
.

More generally, let an ordered basis E := (x1, . . . , xn) of Rn×1

and an ordered basis F :=(y1, . . . , ym) of Rm×1 be given. Then
there are unique a11, . . . , a1n, . . . , am1, . . . , amn ∈ R such that

T (x1) = a11y1 + · · ·+ aj1yj + · · ·+ am1ym,
...

...
...

T (xk) = a1ky1 + · · ·+ ajkyj + · · ·+ amkym,
...

...
...

T (xn) = a1ny1 + · · ·+ ajnyj + · · ·+ amnym.
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The m×n matrix [ajk ] is called the matrix of the linear
transformation T : Rn×1 → Rm×1 with respect to the
ordered basis E := (x1, . . . , xn) of Rn×1 and the ordered basis

F :=(y1, . . . , ym) of Rm×1. This matrix is denoted by ME
F (T ) .

Note: The kth column of ME
F (T ) is

[
a1k · · · amk

]T
, where

T (xk) = a1ky1 + · · ·+ ajkyj + · · ·+ amkym for k = 1, . . . , n.

The m×n matrix ME
F (T ) represents the linear map T in the

following sense. For α1, . . . , αn ∈ R,

T (α1x1 + · · ·+ αnxn) =
n∑

k=1

αkT (xk)=
n∑

k=1

αk

( m∑
j=1

ajkyj

)

=
m∑
j=1

( n∑
k=1

ajkαk

)
yj = β1y1 + · · ·+ βmym,

where βj :=
∑n

k=1 ajkαk for j = 1, . . . ,m. Thus
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T

([
x1 · · · xn

] α1
...
αn

)=
[
y1 · · · ym

] β1...
βm

,

while ME
F (T )

α1
...
αn

 =

a11 · · · a1n
...

...
...

am1 · · · amn


α1

...
αn

=

β1...
βm

.
Conversely, suppose we are given an m×n matrix A. Define
T : Rn×1 → Rm×1 as follows. For x := α1x1 + · · ·+ αnxn, let

T (x) := β1y1 + · · ·+ βmym, where

β1...
βm

 := A

α1
...
αn

.
Then T is a linear map, and ME

F (T ) = A.
In particular, this holds if E and F are the standard ordered
bases of Rn×1 and Rm×1 respectively.
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Examples
(i) Consider the map T : R2×1 → R3×1 defined by

T (x) :=
[
x1 − x2 −x1 + 2x2 x2

]T
for x :=

[
x1 x2

]T
.

Then T is a linear map. If E := (e1, e2) is the standard
ordered basis for R2×1 and F := (e1, e2, e3) is the standard

ordered basis for R3×1, then ME
F (T ) =

 1 −1
−1 2
0 1

.

On the other hand, let E ′ := (e′1, e
′
2), where e′1 := e1 and

e′2 := e1 + e2, and let F ′ := (e′1, e
′
2, e

′
3), where

e′1 := e1, e′2 := e1 + e2 and e′3 := e1 + e2 + e3. Then

T (e′1) =
[
1 −1 0

]T
= 2

[
1 0 0

]T−[1 1 0
]T

= 2e′1−e′2,

T (e′2) =
[
0 1 1

]T
= −

[
1 0 0

]T
+
[
1 1 1

]T
= −e′1+e′3.

Hence ME ′

F ′(T ) =

 2 −1
−1 0
0 1

.
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(ii) Consider the map T : R3×1 → R3×1 defined by T (x) :=[
2.9x1 + 0.6x2 − 0.1x3 2.9x1 + 1.6x2 − 1.1x3 2.5x1 + x2 + 1.5x3

]T
for x :=

[
x1 x2 x3

]T
. Then T is a linear map.

If E := (e1, e2, e3) is the standard ordered basis for R3×1, then

ME
E (T ) =

1

10

29 6 −1
29 16 −11
25 10 15

.

On the other hand, let E ′ := (e′1, e
′
2, e

′
3), where

e′1 :=
[
−1 3 −1

]T
, e′2 :=

[
1 −1 3

]T
, e′3 :=

[
2 1 4

]T
.

Then it can be checked that

T (e′1) = e′1, T (e′2) = 2 e′2, T (e′3) = 3 e′3.

Hence ME ′

E ′(T ) =

1 0 0
0 2 0
0 0 3

, which is a diagonal matrix!
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Remark: We have shown that if T : Rn×1 → Rm×1 is linear
map, and if E and F are ordered bases of Rn×1 and Rm×1

respectively, then T is represented by an m×n matrix ME
F (T )

with respect to E and F . Now let V and W be subspaces of
dimension n and m of some possibly higher dimensional spaces
of vectors, and let T be a linear map from V to W . Even in
this case, if E and F are ordered bases of V and W
respectively, then the linear map T from V to W is
represented, with respect to E and F , by an m×n matrix.

This matrix is denoted by ME
F (T ) .

Thus if E := (x1, . . . , xn) and F := (y1, . . . , ym), and we let
A := ME

F (T ), then for x = α1x1 + · · ·+ αnxn ∈ V and
y = β1y1 + · · ·+ βmym ∈ W , we see that

T (x) = y ⇐⇒ A

α1
...
αn

 =

β1...
βm

 .
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Remark: Let V be a subspace of Rn×1, W be a subspace of
Rm×1, and let T : V → W be a linear map. Two important
subspaces associated with T are as follows.

(i) N (T ) := {x ∈ V : T (x) = 0}, called the null space of T ,

(ii) I(T ) :={T (x) : x ∈ V }, called the image space of T .

We note that
a linear map T is one-one ⇐⇒ N (T ) = {0}, and
a linear map T is onto ⇐⇒ I(T ) = W .

Further, if V := Rn×1, W := Rm×1, and A ∈ Rm×n, then

N (TA) = {x ∈ Rn×1 : Ax = 0} = N (A),

I(TA) = {Ax : x ∈ Rn×1} = C(A).

The last equality follows by noting that if A =
[
c1 · · · cn

]
,

then Ax = x1c1 + · · ·+ xncn for x :=
[
x1 · · · xn

]
∈ Rn×1.
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Example

Let A :=

 1 −1
−1 2
0 1

 ∈ R3×2. Then TA : R2×1 → R3×1.

In fact, TA :
[
x1 x2

]T 7−→ [
x1 − x2 −x1 + 2x2 x2

]T
for all[

x1 x2
]T ∈ R2×1. Clearly, N (TA) = {0}. Also,

I(TA) =
{ [

y1 y2 y3
]T ∈ R3×1 : y1 + y2 − y3 = 0

}
.

To see this, note that (x1 − x2) + (−x1 + 2x2)− x2 = 0 for all[
x1 x2

]T ∈ R2×1, and if
[
y1 y2 y3

]T ∈ R3×1 satisfies
y1 + y2 − y3 = 0, then we may let x1 := y1 + y3, x2 := y3, so
that x1 − x2 = y1, −x1 + 2x2 = y2 and x2 = y3, that is,

TA(
[
x1 x2

]T
) =

[
y1 y2 y3

]T
.

Note: I(TA) is a plane through the origin
[
0 0 0

]T
in R3×1.
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Complex Numbers

In our development of matrix theory, we have so far used real
numbers as scalars, and we have considered matrices whose
entries are real numbers. Now we introduce an extension of R
which has all the properties that R has (and one more).

A complex number is a 2× 2 matrix

[
a b
−b a

]
, where

a, b ∈ R. The set of all complex numbers is denoted by C.
Addition and multiplication in C are defined as in R2×2. Thus[

a b
−b a

]
+

[
c d
−d c

]
=

[
a + c b + d
−(b + d) a + c

]
and [

a b
−b a

] [
c d
−d c

]
=

[
ac − bd ad + bc
−(ad + bc) ac − bd

]
.

These algebraic operations possess all the usual properties
such as associativity, distributivity and commutativity.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 10



Moreover, the map a 7−→
[
a 0
0 a

]
from R to C is one-one.

Hence we identify a ∈ R with

[
a 0
0 a

]
∈ C. We define

i :=

[
0 1
−1 0

]
, so that i2 =

[
−1 0
0 −1

]
= −

[
1 0
0 1

]
.

We write

[
a b
−b a

]
=

[
1 0
0 1

]
a +

[
0 1
−1 0

]
b ∈ C as a + ib.

It follows that (a + ib) + (c + id) = (a + c) + i(b + d) and
(a + ib)(c + id) = (ac − bd) + i(ad + bc).

Let z ∈ C. Then z = x + iy for unique x , y ∈ R. Then x is
called the real part of z , and it is denoted by <(z), while y is
called the imaginary part of z , and it is denoted by =(z).

The complex number x − iy is called the conjugate of
z = x + iy , and it is denoted by z .
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