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Recall: The last time we discussed linear transformation
T : V → W where V ,W are vector (sub)spaces. If
dimV = n and dimW = m and if E := (x1, . . . , xn) and
F :=(y1, . . . , ym) are ordered basis of V and W , respectively,

then we can associate to T the m × n matrix ME
F (T ) ; it is

called the matrix of T with respect to the ordered bases
E and F . For each k = 1, . . . , , n, the kth column of this
matrix consists of the coefficients of T (xk) when expressed as
a linear combination of y1, . . . , ym.

We also discussed complex numbers and noted that they could
be defined using certain 2× 2 matrices with entries in R. The
set of all complex numbers is denoted by C and we regard R
as a subset of C.

Let z ∈ C. Then z = x + iy for unique x , y ∈ R. Then x is
called the real part of z , and it is denoted by <(z), while y is
called the imaginary part of z , and it is denoted by =(z).
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Let z ∈ C. Then z = x + iy for unique x , y ∈ R. The
conjugate of z is defined to be the complex number
z := x − iy .

We define the absolute value of z = x + iy by

|z | :=
√
zz =

√
x2 + y 2.

Note that the following triangle inequality holds.

|z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C.

You may prove this as an exercise!

Also, note that

max {|<(z)|, |=(z)|} ≤ |z | ≤ |<(z)|+|=(z)| for all z ∈ C.
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We shall use complex numbers as scalars and consider
matrices whose entries are complex numbers.

The set of all m × n matrices with entries in C is denoted by
Cm×n. In particular, C1×n is the set of all row vectors of length
n, while Cm×1 is the set of all column vectors of length m.
For A := [ajk ] ∈ Cm×n, define A∗ := [akj ]. Then A∗ ∈ Cn×m.
It is called the conjugate transpose or the adjoint of A.
Note: (αA + βB)∗=αA∗+βB∗ for A,B ∈ Cm×n and
α, β ∈ C. In case m = n, then (AB)∗ = B∗A∗.

A square matrix A = [ajk ] is called Hermitian or
self-adjoint if A∗ = A, that is, if ajk = akj for all j , k .
A square matrix A = [ajk ] is called skew-Hermitian or
skew self-adjoint if ajk = −akj for all j , k .

Note: Every diagonal entry of a self-adjoint matrix is real since
ajj = ajj =⇒ ajj ∈ R for j = 1, . . . , n. On the other hand, the
real part of every diagonal entry of a skew self-adjoint matrix
is equal to 0 since ajj = −ajj =⇒ <(ajj) = 0 for j = 1, . . . , n.
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Note: If x :=
[
x1 · · · xn

]T ∈ Cn×1 is a column vector, then
x∗ =

[
x1 · · · xn

]
∈ C1×n is a row vector, and

x∗x = |x1|2 + · · ·+ |xn|2. It follows that x∗x = 0 ⇐⇒ x = 0.

A matrix A ∈ Cm×n defines a linear transformation from Cn×1

to Cm×1, and every linear transformation from Cn×1 to Cm×1

can be represented by a matrix A ∈ Cm×n (with respect to an
ordered basis for Cn×1 and an ordered basis for Cm×1).

Similarly, we can consider vector subspaces of Cn×1, and the
concepts of linear dependence of vectors and of the span of a
subset carry over to Cn×1. The Fundamental Theorem for
Linear Systems remains valid for matrices with complex entries.

Having thus completed our discussion of solution of a linear
system, we shall turn to solution of an ‘eigenvalue problem’
associated with a matrix. In this development, the role of
complex numbers will turn out to be important.
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Matrix Eigenvalue Problem

The German word ‘eigen’ means ‘belonging to itself’. The
eigenvalue problem for a matrix consists of finding a nonzero
vector which is sent to a scalar multiple of itself by the linear
transformation defined by the matrix.

Eigenvalue problems come up frequently in many engineering
branches, quantum mechanics, physical chemistry, biology, and
even in economics and psychology.

Please refer to Section 8.2 of Kreyszig’s book for applications
of eigenvalue problems to stretching of elastic membranes, to
vibrating mass-spring systems, to Markov processes and to
population control models.
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In the development that follows, we shall use either real
numbers or complex numbers as scalars. To facilitate a
general discussion which applies to both types of scalars, we
shall write K to mean either R or C. When we want to switch
to a special treatment valid for only the real scalars, or only
for the complex scalars, we shall specify K := R or K := C.

Definition

Let A be an n × n matrix with entries in K, that is, let
A ∈ Kn×n. A scalar λ ∈ K is called an eigenvalue of A if

Ax = λ x for some x ∈ Kn×1 with x 6= 0.

Any nonzero vector x ∈ Kn×1 satisfying Ax = λ x is called an
eigenvector of A corresponding to the eigenvalue λ. Further,

{x ∈ Kn×1 : Ax = λ x} = N (A− λI).

is called the eigenspace of A associated with λ.
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How to find eigenvalues

Let A = [ajk ] ∈ Kn×n and let λ ∈ K. Clearly,

λ is an eigenvalue of A ⇐⇒ N (A− λI) 6= {0}
⇐⇒ rank(A− λI) < n

⇐⇒ det(A− λI) = 0.

The last condition suggests that we consider the polynomial

pA(t) := det(A− t I) = det

a11 − t · · · a1n
...

...
...

an1 · · · ann − t

 .
This is called the characteristic polynomial of A. It is a
polynomial of degree n with coefficients in K and for λ ∈ K,

λ is an eigenvalue of A⇐⇒ λ is a root of pA, i.e., pA(λ) = 0.

In particular, an n × n matrix with entries in K has at most n
eigenvalues in K.
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Algebraic and Geometric Multiplicities
Definition

Let A = [ajk ] ∈ Kn×n and let λ ∈ K be an eigenvalue of A.

The algebraic multiplicity of λ (as an eigenvalue of A)
is the order m of the root λ of pA(t), i.e., m is the largest
positive integer such that (t − λ)m divides pA(t).

The geometric multiplicity of λ (as an eigenvalue of A)
is the dimension of its eigenspace, i.e., dimN (A− λI).

Observe that if λ ∈ K be an eigenvalue of A, then

geometric multiplicity of λ = nullity(A−λI) = n−rank(A−λI).
This can be calculated by solving the homogeneous system
(A− λI)x = 0 using, for instance, Gaussian elimination. In
fact, GEM and back substitution will also give the basic
solutions, i.e., a set of eigenvectors of A which forms a basis
of the eigenspace of A associated to λ.
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Examples

(i) Let A = diag(a1, . . . , an), i.e., let A be a diagonal matrix
with diagonal entries a1, . . . , an in that order. Clearly

pA(t) = (a1 − t)(a2 − t) · · · (an − t).

Thus the eigenvalues of A are precisely a1, . . . , an. Note that
this can also be seen directly since Aek = akek for each
k = 1, . . . , n, where e1, . . . , en are the basic column vectors in
Kn×1. Observe that in this case the algebraic multiplicity of
each eigenvalue is equal to its geometric multiplicity. Indeed, if
λ ∈ {a1, . . . , an}, then the algebraic multiplicity of λ equals

m := the number of i ∈ {1, . . . , n} such that ai = λ.

To find the geometric multiplicity of λ, consider A− λI and
note that this is a diagonal matrix with exactly m rows of zeros
and n−m nonzero rows. So rank(A− λI) = n−m and hence

geometric multiplicity of λ = nullity(A− λI) = m.
Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 11



Examples Contd.

(ii) Let A be an upper triangular matrix with diagonal entries
a11, . . . , ann. Again, the characteristic polynomials factors as

pA(t) = (a11 − t)(a22 − t) · · · (ann − t).

So the eigenvalues of A are precisely a11, . . . , ann. The
algebraic multiplicities can be found as in the previous
example. However, they may not always coincide with the
corresponding geometric multipliciities.

For example, consider the 2× 2 matrix A :=

[
3 1
0 3

]
. Clearly 3

is the only eigenvalue of A and its algebraic multiplicity is 2.
On the other hand, the homogeneous linear system
(A− 3I)x = 0 comprises of the equations x2 = 0 and 0 = 0.
So the eigenspace of A associated with the eigenvalue 3 has
[1 0]T as its basis. Thus the geometric multiplicity of the
eigenvalue 3 of A is 1.
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Remarks on finding eigenvalues and eigenvectors
In general, solving an eigenvalue problem Ax = λ x is much
harder than finding solutions of a linear system Ax = b. In the
latter case, the matrix A and the right side b are given. On
the other hand, in the eigenvalue problem, the ‘unknown’
vector x appears on both sides of the equation, and
additionally, an ‘unknown’ scalar λ appears on the right side.

We need to find an eigenvalue λ of A and a corresponding
eigenvector x of A simultaneously. It is tough, but if one of
them is known beforehand, then the other can be found easily.
Suppose a scalar λ is known to be an eigenvalue of A. Then
all eigenvectors of A corresponding to λ can be obtained by
finding the general solution of the homogeneous linear system
(A− λI) x = 0. Next, suppose a nonzero vector x is known to
be an eigenvector of A. Then one only needs to calculate Ax
and observe that it is a scalar multiple of x. This scalar is the
corresponding eigenvalue of A.
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Examples

(i) Let A :=

−2 2 −3
2 1 −6
−1 −2 0

, and suppose somehow we know

that λ := −3 is an eigenvalue of A. Let

B := A− (−3)I = A + 3I =

 1 2 −3
2 4 −6
−1 −2 3

 .
By EROs, we can transform B to B′ :=

1 2 −3
0 0 0
0 0 0

 . Now the

solution space of B′x = 0 is {x ∈ R3×1 : x1 + 2x2 − 3x3 = 0},
which is also the solution space of Bx := (A + 3I)x = 0, the

basic solutions being s2 :=
[
−2 1 0

]T
and s3 :=

[
3 0 1

]T
.

Thus the eigenvectors of A corresponding to the eigenvalue
λ = −3 are the nonzero linear combinations of s2 and s3. The
geometric multiplicity of the eigenvalue −3 is equal to 2.
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(ii) Let A :=
1

10

29 6 −1
29 16 −11
25 10 15

, and suppose somehow we

know that x :=
[
1 −1 3

]T
is an eigenvector of A. We easily

find that Ax = 2
[
1 −1 3

]T
. Hence is the corresponding

eigenvalue of A.

We saw that eigenvalue problems for diagonal matrices are the
easiest to solve. We wonder when a nondiagonal matrix would
‘behave like a diagonal matrix’. To make this precise, we
introduce the following notion.

Definition

Let A, B ∈ Kn×n. We say that A is similar to B (over K) if
there is an invertible P ∈ Kn×n such that B=P−1AP, that is,
AP=PB. In this case, we write A ∼ B.
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One can easily check (i) A ∼ A, (ii) if A ∼ B then B ∼ A,
and (iii) if A ∼ B and B ∼ C, then A ∼ C.

Examples

(i) Let A :=

[
4 −3
2 −1

]
. Let P :=

[
3 1
2 1

]
, so that

P−1 :=

[
1 −1
−2 3

]
. Then A is similar to the matrix

B :=

[
1 −1
−2 3

] [
4 −3
2 −1

] [
3 1
2 1

]
=

[
1 −1
−2 3

] [
6 1
4 1

]
=

[
2 0
0 1

]
,

which is a diagonal matrix.

(ii) Let A ∈ Kn×n. Then A ∼ I ⇐⇒ A = I.

(iii) Let A ∈ Kn×n, and let E be n×n an elementary matrix.
Then B := EAE−1 is similar to A. Note: EA is obtained from
A by an elementary row operation on A, and B is obtained
from EA by the ‘reverse column operation’ on EA.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 11



Similarity and Eigenvalues

Recall that λ ∈ K is an eigenvalue of A ∈ Kn×n if Ax = λx
for some x ∈ Kn×1 with x 6= 0. It turns out that similar
matrices have the same eigenvalues. In fact, more is true.

Proposition

Let A, A′ ∈ Kn×n be similar. Then pA(t) = pA′(t). In
particular, λ ∈ K is an eigenvalue of A if and only if λ is an
eigenvalue of A′. Consequently, the algebraic multiplicity of λ
as an eigenvalue of A is equal to the algebraic multiplicity of λ
as an eigenvalue of A′. Furthermore, the geometric
multiplicity of λ as an eigenvalue of A is equal to the
geometric multiplicity of λ as an eigenvalue of A′.

Proof: SInce A ∼ A′, there is an invertible P ∈ Kn×n such
that A′ = P−1AP. Writing I = P−1P, we see that

pA′(t) = det(A′−tI) = det(P−1AP−tI) = det(A−tI) = pA(t).
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Proof Contd. It remains to prove the assertion about
geometric multiplicity. Let λ be an eigenvalue of A and x be
an eigenvector of A corresponding to λ. Then x 6= 0 and
Ax = λx. Since A′ = P−1AP, we see that x′ := P−1x satisfies
A′x′ = λx′. Also x′ 6= 0 since P is invertible. Thus x′ is an
eigevector of A′ corresponding to λ. Also, it is easy to check
that {x1, . . . , xg} is a basis for N (A− λI) if and only if
{P−1x1, . . . ,P−1xg} is a basis for N (A′ − λI). Hence the
geometric multiplicity of λ as an eigenvalue of A is equal to
the geometric multiplicity of λ as an eigenvalue of A′.
Examples:

(i) A :=

[
λ 1
0 λ

]
⇒ pA(t) = det

[
λ− t 1

0 λ− t

]
= (λ− t)2.

Hence λ is the only eigenvalue of A, and its algebraic
multiplicity is 2. But its geometric multiplicity is 1 since

A−λI =

[
0 1
0 0

]
=⇒ rank(A−λI) = 1 =⇒ nullity(A−λI) = 1.
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Note that in the above example, if A were similar to a
diagonal matrix D, then we must have D = diag(λ, λ), since
eigenvalues and their algebraic multiplicities of A and D have
to be the same. But the geometric multiplicity of λ as an
eigenvalue of D is 2. This shows that A is not diagonalizable.

(ii) A :=

 3 0 0
−2 4 2
−2 1 5

 ⇒ pA(t) = det

3− t 0 0
−2 4− t 2
−2 1 5− t

.

Computing the determinant, we find pA(t) = (3− t)2(6− t).
Hence 3 is an eigenvalue of A of algebraic multiplicity 2, and 6
is an eigenvalue of A of algebraic multiplicity 1. Also,

A− 3I =

 0 0 0
−2 1 2
−2 1 2

⇒ rank(A− 3I) = 1.

So nullity(A− 3I) = 2. In fact,
{ [

1 0 1
]T
,
[
1 2 0

]T }
is

a basis of the eigenspace of A corresponding to eigenvalue 3,
and so its geometric multiplicity is equal to 2.
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Similarity and Change of Basis

Similarity of matrices has the following characterisation.

Proposition

Let A, B ∈ Kn×n. Then A ∼ B if and only if there is an
ordered basis E for Kn×1 such that B is the matrix of the
linear transformation TA : Kn×1 → Kn×1 with respect to E .

In fact, B = P−1AP if and only if the columns of P form an
ordered basis, say E , for Kn×1 and B = ME

E (TA).

Proof. Let B := [bjk ]. Now A ∼ B ⇐⇒ there is an invertible
matrix P such that AP = PB. This is the case if and only if
there is an ordered basis E := (x1, . . . , xn) for Kn×1 such that

A
[
x1 · · · xn

]
=
[
x1 · · · xn

] b11 · · · b1n
...

...
...

bn1 · · · bnn

 .
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The kth column of LHS is Axk and the kth column of RHS is
the linear combination of x1, . . . , xn with coefficients from the
kth column of B. Thus Axk = b1kx1 + · · ·+ bnkxn for
k = 1, . . . , n. This means the kth column of ME

E (TA) is the

kth column
[
b1k · · · bnk

]T
of B, k =1, . . . , n, that is,

B = ME
E (TA).

The above result says that just as A is the matrix of the linear
transformation TA defined by A with respect to the standard
ordered basis (e1, . . . , en) for Kn×1, the matrix B := P−1AP is
the matrix of the same linear transformation TA with respect
to the ordered basis for Kn×1 consisting of the columns of P.

Now we shall make precise what we mean by ‘a matrix A
behaves like a diagonal matrix’.

Definition

A matrix A ∈ Kn×n is called diagonalizable (over K) if A is
similar to a diagonal matrix (over K).
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Proposition (A Characterization of Diagonalizability)

A matrix A ∈ Kn×n is diagonalizable if and only if there is a
basis for Kn×1 consisting of eigenvectors of A. In fact,
X−1AX = D, where X :=

[
x1 · · · xn

]
and

D := diag(λ1, . . . , λn) ⇐⇒ {x1, . . . , xn} is a basis for Kn×1

and Axk = λkxk for k = 1, . . . , n.

Proof. A is diagonalizable ⇐⇒ there is an invertible matrix
X and a diagonal matrix D such that AX = XD. This is the
case if and only if there is a basis {x1, . . . , xn} for Kn×1 and
there are λ1, . . . , λn ∈ K such that

A
[
x1 · · · xn

]
=
[
x1 · · · xn

]
diag(λ1, . . . , λn),

The kth column of LHS is Axk and the kth column of RHS is
the linear combination of x1, . . . , xn with coefficients
0. . . . , 0, λk , 0, . . . , 0, that is, Axk = λkxk , k = 1, . . . , n.
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