MA 110 Linear Algebra and Differential Equations Lecture 12

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay http://www.math.iitb.ac.in/~srg/

Spring 2025

Similarity and Eigenvalues

Recall that $\lambda \in \mathbb{K}$ is an eigenvalue of $\mathbf{A} \in \mathbb{K}^{n \times n}$ if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \in \mathbb{K}^{n \times 1}$ with $\mathbf{x} \neq \mathbf{0}$. It turns out that similar matrices have the same eigenvalues. In fact, more is true.

Proposition

Let $\mathbf{A}, \mathbf{A}' \in \mathbb{K}^{n \times n}$ be similar. Then $p_{\mathbf{A}}(t) = p_{\mathbf{A}'}(t)$. In particular, $\lambda \in \mathbb{K}$ is an eigenvalue of \mathbf{A} if and only if λ is an eigenvalue of \mathbf{A}' . Consequently, the algebraic multiplicity of λ as an eigenvalue of \mathbf{A} is equal to the algebraic multiplicity of λ as an eigenvalue of \mathbf{A}' . Furthermore, the geometric multiplicity of λ as an eigenvalue of \mathbf{A} is equal to the geometric multiplicity of λ as an eigenvalue of \mathbf{A}' .

Proof: Since $\mathbf{A} \sim \mathbf{A}'$, there is an invertible $\mathbf{P} \in \mathbb{K}^{n \times n}$ such that $\mathbf{A}' = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. Writing $\mathbf{I} = \mathbf{P}^{-1}\mathbf{P}$, we see that

$$p_{\mathbf{A}'}(t) = \det(\mathbf{A}' - t\mathbf{I}) = \det(\mathbf{P}^{-1}\mathbf{A}\mathbf{P} - t\mathbf{I}) = \det(\mathbf{A} - t\mathbf{I}) = p_{\mathbf{A}}(t).$$

Proof Contd. It remains to prove the assertion about geometric multiplicity. Let λ be an eigenvalue of **A** and **x** be an eigenvector of **A** corresponding to λ . Then $\mathbf{x} \neq \mathbf{0}$ and $Ax = \lambda x$. Since $A' = P^{-1}AP$, we see that $x' := P^{-1}x$ satisfies $\mathbf{A}'\mathbf{x}' = \lambda\mathbf{x}'$. Also $\mathbf{x}' \neq \mathbf{0}$ since **P** is invertible. Thus \mathbf{x}' is an eigevector of \mathbf{A}' corresponding to λ . Also, it is easy to check that $\{\mathbf{x}_1, \ldots, \mathbf{x}_g\}$ is a basis for $\mathcal{N}(\mathbf{A} - \lambda \mathbf{I})$ if and only if $\{\mathbf{P}^{-1}\mathbf{x}_1,\ldots,\mathbf{P}^{-1}\mathbf{x}_{\sigma}\}$ is a basis for $\mathcal{N}(\mathbf{A}'-\lambda\mathbf{I})$. Hence the geometric multiplicity of λ as an eigenvalue of **A** is equal to the geometric multiplicity of λ as an eigenvalue of **A**'. Examples:

(i)
$$\mathbf{A} := \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \Rightarrow p_{\mathbf{A}}(t) = \det \begin{bmatrix} \lambda - t & 1 \\ 0 & \lambda - t \end{bmatrix} = (\lambda - t)^2.$$

Hence λ is the only eigenvalue of \mathbf{A} , and its algebraic
multiplicity is 2. But its geometric multiplicity is 1 since
 $\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Longrightarrow \operatorname{rank}(\mathbf{A} - \lambda \mathbf{I}) = 1 \Longrightarrow \operatorname{nullity}(\mathbf{A} - \lambda \mathbf{I}) = 1.$

Note that in the above example, if **A** were similar to a diagonal matrix **D**, then we must have $\mathbf{D} = \operatorname{diag}(\lambda, \lambda)$, since eigenvalues and their algebraic multiplicities of **A** and **D** have to be the same. But the geometric multiplicity of λ as an eigenvalue of **D** is 2. This shows that **A** is not diagonalizable.

(ii)
$$\mathbf{A} := \begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix} \Rightarrow p_{\mathbf{A}}(t) = \det \begin{bmatrix} 3-t & 0 & 0 \\ -2 & 4-t & 2 \\ -2 & 1 & 5-t \end{bmatrix}.$$

Computing the determinant, we find $p_{\mathbf{A}}(t) = (3-t)^2(6-t)$. Hence 3 is an eigenvalue of **A** of algebraic multiplicity 2, and 6 is an eigenvalue of **A** of algebraic multiplicity 1. Also,

$$\mathbf{A} - 3\mathbf{I} = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{bmatrix} \Rightarrow \mathsf{rank}(\mathbf{A} - 3\mathbf{I}) = 1.$$

So nullity $(\mathbf{A} - 3\mathbf{I}) = 2$. In fact, $\{\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}\}$ is a basis of the eigenspace of \mathbf{A} corresponding to eigenvalue 3, and so its geometric multiplicity is equal to 2.

Prof. S. R. Ghorpade, IIT Bombay

Similarity and Change of Basis

Similarity of matrices has the following characterisation.

Proposition

Let $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{n \times n}$. Then $\mathbf{A} \sim \mathbf{B}$ if and only if there is an ordered basis E for $\mathbb{K}^{n \times 1}$ such that \mathbf{B} is the matrix of the linear transformation $T_{\mathbf{A}} : \mathbb{K}^{n \times 1} \to \mathbb{K}^{n \times 1}$ with respect to E.

In fact, $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ if and only if the columns of \mathbf{P} form an ordered basis, say E, for $\mathbb{K}^{n \times 1}$ and $\mathbf{B} = \mathbf{M}_{E}^{E}(\mathcal{T}_{\mathbf{A}})$.

Proof. Let $\mathbf{B} := [b_{jk}]$. Now $\mathbf{A} \sim \mathbf{B} \iff$ there is an invertible matrix \mathbf{P} such that $\mathbf{AP} = \mathbf{PB}$. This is the case if and only if there is an ordered basis $E := (\mathbf{x}_1, \dots, \mathbf{x}_n)$ for $\mathbb{K}^{n \times 1}$ such that

$$\mathbf{A}\begin{bmatrix}\mathbf{x}_1 & \cdots & \mathbf{x}_n\end{bmatrix} = \begin{bmatrix}\mathbf{x}_1 & \cdots & \mathbf{x}_n\end{bmatrix}\begin{bmatrix}b_{11} & \cdots & b_{1n}\\ \vdots & \vdots & \vdots\\ b_{n1} & \cdots & b_{nn}\end{bmatrix}$$

The *k*th column of LHS is $\mathbf{A}\mathbf{x}_k$ and the *k*th column of RHS is the linear combination of $\mathbf{x}_1, \ldots, \mathbf{x}_n$ with coefficients from the *k*th column of **B**. Thus $\mathbf{A}\mathbf{x}_k = b_{1k}\mathbf{x}_1 + \cdots + b_{nk}\mathbf{x}_n$ for $k = 1, \ldots, n$. This means the *k*th column of $\mathbf{M}_E^E(T_{\mathbf{A}})$ is the *k*th column $\begin{bmatrix} b_{1k} & \cdots & b_{nk} \end{bmatrix}^T$ of **B**, $k = 1, \ldots, n$, that is, $\mathbf{B} = \mathbf{M}_E^E(T_{\mathbf{A}})$.

The above result says that just as **A** is the matrix of the linear transformation $T_{\mathbf{A}}$ defined by **A** with respect to the standard ordered basis $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ for $\mathbb{K}^{n \times 1}$, the matrix $\mathbf{B} := \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is the matrix of the same linear transformation $T_{\mathbf{A}}$ with respect to the ordered basis for $\mathbb{K}^{n \times 1}$ consisting of the columns of **P**.

Now we shall make precise what we mean by 'a matrix **A** behaves like a diagonal matrix'.

Definition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is called **diagonalizable** (over \mathbb{K}) if \mathbf{A} is similar to a diagonal matrix (over \mathbb{K}).

Characterization of Diagonalizability

Recall the definition.

Definition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is called **diagonalizable** (over \mathbb{K}) if \mathbf{A} is similar to a diagonal matrix (over \mathbb{K}).

We stated the following characterization of diagonalizability.

Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A} . In fact,

$$\begin{split} \mathbf{P}^{-1}\mathbf{A}\mathbf{P} &= \mathbf{D}, \text{ where } \mathbf{P}, \mathbf{D} \in \mathbb{K}^{n \times n} \text{ are of the form} \\ \mathbf{P} &= \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \text{ and } \mathbf{D} &= \text{diag}(\lambda_1, \dots, \lambda_n) \\ \Longleftrightarrow & \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ is a basis for } \mathbb{K}^{n \times 1} \text{ and} \\ \mathbf{A}\mathbf{x}_k &= \lambda_k \mathbf{x}_k \text{ for } k = 1, \dots, n. \end{split}$$

Proof of a characterization of diagonalizability

Proof. The result is a consequence of the earlier characterization of similarity. It can also be seen as follows.

A is diagonalizable

 $\iff \exists \text{ invertible matrix } \mathbf{P} \text{ and diagonal matrix } \mathbf{D} \text{ in } \mathbb{K}^{n \times n}$ such that $\mathbf{AP} = \mathbf{PD}$

$$\iff \exists \text{ a basis } \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ for } \mathbb{K}^{n \times 1} \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{K} \text{ such} \\ \text{ that } \mathbf{A} \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \text{ diag}(\lambda_1, \dots, \lambda_n) \\ \iff \exists \text{ a basis } \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ of } \mathbb{K}^{n \times 1} \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{K} \text{ such} \\ \text{ that } \mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k \text{ for } k = 1, \dots, n. \qquad \Box$$

Application: If a matrix **A** is diagonalizable and we find invertible **P** such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} = \text{diag}(\lambda_1, \dots, \lambda_n)$, then any power of **A** can be found easily. This is seen as follows:

$$\mathbf{A}^{m} = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) \cdots (\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) = \mathbf{P}\mathbf{D}^{m}\mathbf{P}^{-1} = \mathbf{P}\operatorname{diag}(\lambda_{1}^{m}, \ldots, \lambda_{n}^{m})\mathbf{P}^{-1}.$$

Example: Consider $\mathbf{A} := \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$. Then

$$p_{\mathbf{A}}(t) = \det \begin{bmatrix} t-4 & 3\\ -2 & t+1 \end{bmatrix} = (t-4)(t+1)+6 = (t-2)(t-1).$$

Thus 2 and 1 are the eigenvalues of **A** and it is easy to see that $\begin{bmatrix} 3\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$ are corresponding eigenvectors. So $\mathbf{P} = \begin{bmatrix} 3 & 1\\2 & 1 \end{bmatrix}$ satisfies $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \text{diag}(2, 1)$, which can be written as $\mathbf{A} = \begin{bmatrix} 3 & 1\\2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1\\2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1\\2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1\\-2 & 3 \end{bmatrix}$. Hence

$$\mathbf{A}^{m} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2^{m} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 2^{m}3 & 1 \\ 2^{m}2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{m}3 - 2 & -2^{m}3 + 3 \\ 2^{m}2 - 2 & -2^{m}2 + 3 \end{bmatrix} \text{ for } m \in \mathbb{N}.$$

Eigenvectors corresponding to distinct eigenvalues

Our next result is about the linear independence of eigenvectors corresponding to distinct eigenvalues of a matrix.

Lemma

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of \mathbf{A} . Let $\mathbf{x}_1, \ldots, \mathbf{x}_k$ belong to the eigenspaces of \mathbf{A} corresponding to $\lambda_1, \ldots, \lambda_k$ respectively. Then

$$\mathbf{x}_1 + \cdots + \mathbf{x}_k = \mathbf{0} \iff \mathbf{x}_1 = \cdots = \mathbf{x}_k = \mathbf{0}.$$

In particular, if $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are eigenvectors of **A** corresponding to $\lambda_1, \ldots, \lambda_k$ respectively, then the set $\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ is linearly independent.

Proof. We use induction on the number k of distinct eigenvalues of **A**. Clearly, the result holds for k = 1. Let $k \ge 2$ and assume that the result holds for k - 1.

Suppose $\mathbf{x} := \mathbf{x}_1 + \dots + \mathbf{x}_{k-1} + \mathbf{x}_k = \mathbf{0}$. Then $\mathbf{A}\mathbf{x} = \mathbf{0}$, that is, $\lambda_1 \mathbf{x}_1 + \dots + \lambda_{k-1} \mathbf{x}_{k-1} + \lambda_k \mathbf{x}_k = \mathbf{0}$. Also, multiplying the first equation by λ_k , we obtain $\lambda_k \mathbf{x}_1 + \dots + \lambda_k \mathbf{x}_{k-1} + \lambda_k \mathbf{x}_k = \mathbf{0}$. Subtraction gives $(\lambda_1 - \lambda_k)\mathbf{x}_1 + \dots + (\lambda_{k-1} - \lambda_k)\mathbf{x}_{k-1} = \mathbf{0}$.

By the induction hypothesis,

$$(\lambda_1 - \lambda_k)\mathbf{x}_1 = \cdots = (\lambda_{k-1} - \lambda_k)\mathbf{x}_{k-1} = \mathbf{0}$$
. Since
 $\lambda_1 \neq \lambda_k, \ldots, \lambda_{k-1} \neq \lambda_k$, we obtain $\mathbf{x}_1 = \cdots = \mathbf{x}_{k-1} = \mathbf{0}$, and
so $\mathbf{x}_k = \mathbf{0}$ as well.

Now let $\mathbf{x}_1, \ldots, \mathbf{x}_k$ be eigenvectors. If $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k = \mathbf{0}$, then $\alpha_1 \mathbf{x}_1 = \cdots = \alpha_k \mathbf{x}_k = \mathbf{0}$. But $\mathbf{x}_1 \neq \mathbf{0}, \ldots, \mathbf{x}_k \neq \mathbf{0}$, so that $\alpha_1 = \cdots = \alpha_k = \mathbf{0}$. Thus $\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ is linearly independent.

Theorem

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of \mathbf{A} . Let g_j be the geometric multiplicity of λ_j for $j = 1, \ldots, k$. Then $g_1 + \cdots + g_k \leq n$. Further, \mathbf{A} is diagonalizable if and only if $g_1 + \cdots + g_k = n$. **Proof.** Let V_j denote the eigenspace $\mathcal{N}(\mathbf{A} - \lambda_j \mathbf{I})$ of $\mathbb{K}^{n \times 1}$, and let E_j be a basis for V_j consisting of g_j eigenvectors of \mathbf{A} corresponding to λ_j for j = 1, ..., k.

We claim that the set $E := E_1 \cup \cdots \cup E_k$ is linearly independent. Let \mathbf{x} be a linear combination of elements of E. Collate the elements of E_i for each j = 1, ..., k and write $\mathbf{x} = \mathbf{x}_1 + \cdots + \mathbf{x}_k$, where $\mathbf{x}_i \in V_i$ for $j = 1, \dots, k$. Suppose $\mathbf{x} = \mathbf{0}$. Then $\mathbf{x}_i = \mathbf{0}$ for $i = 1, \dots, k$ by the previous lemma. For $j \in \{1, \ldots, k\}$, \mathbf{x}_i is a linear combination of elements of the set E_i , and since the set E_i is linearly independent, every coefficient in this linear combination must be 0. Since this holds for each j = 1, ..., k, we see that every coefficient in the linear combination \mathbf{x} of elements of E must be 0. Hence O.K.

The number of elements in the linearly independent set E is $g_1 + \cdots + g_k$. Since E is a subset of the n dimensional vector space $\mathbb{K}^{n \times 1}$, it follows that $g_1 + \cdots + g_k \leq n$.

Now suppose $g_1 + \cdots + g_k = n$. Then *E* is a linearly independent subset of $\mathbb{K}^{n \times 1}$ having *n* elements. Thus *E* is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of **A**. Hence **A** is diagonalizable.

Conversely, suppose **A** is diagonalizable. Then there is a basis for $\mathbb{K}^{n\times 1}$ consisting of *n* eigenvectors of **A**. For $j = 1, \ldots, k$, let h_j elements of this basis belong to V_j . Since these elements form a linearly independent subset of V_j , we see that $h_j \leq g_j$ for $j = 1, \ldots, k$. Hence $n = h_1 + \cdots + h_k \leq g_1 + \cdots + g_k \leq n$. This shows that $g_1 + \cdots + g_k = n$.

Corollary

If $\mathbf{A} \in \mathbb{K}^{n \times n}$ has *n* distinct eigenvalues, then **A** is diagonalizable.

Proof. Clearly, $n = 1 + \cdots + 1 \le g_1 + \cdots + g_n \le n$, and so $g_1 + \cdots + g_n = n$. Hence the above theorem applies.

The case of $\mathbb{K} = \mathbb{C}$

In case $\mathbb{K} = \mathbb{C}$, then by the Fundamental Theorem of Algebra, every polynomial of degree *n* with coefficients in \mathbb{C} has exactly *n* roots in \mathbb{C} , counting multiplicities. In particular, the characteristic polynomial $p_{\mathbf{A}}(t)$ of any $\mathbf{A} \in \mathbb{C}^{n \times n}$ has exactly *n* roots in \mathbb{C} , counting multiplicities. More precisely, we can factor

$$p_{\mathbf{A}}(t) = (\lambda_1 - t)^{m_1} \cdots (\lambda_k - t)^{m_k},$$

where $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ are distinct and $m_1, \ldots, m_k \in \mathbb{N}$ satisfy $m_1 + \cdots + m_k = n$.

As an immediate consequence, we obtain the following result.

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then there are distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ of \mathbf{A} having algebraic multiplicities m_1, \ldots, m_k such that $m_1 + \cdots + m_k = n$.

Proposition

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of \mathbf{A} . Let g_j and m_j be the geometric multiplicity and the algebraic multiplicity of λ_j respectively for $j = 1, \ldots, k$. (i) If \mathbf{A} be diagonalizable, then $g_j = m_j$ for $j = 1, \ldots, k$.

(ii) If $\mathbb{K} = \mathbb{C}$, and $g_j = m_j$ for j = 1, ..., k, then **A** is diagonalizable.

Proof. (i) Since **A** is diagonalizable, $g_1 + \cdots + g_k = n$. Hence $0 \le (m_1 - g_1) + \cdots + (m_k - g_k) \le n - n = 0$. But $m_j - g_j \ge 0$, and so $g_j = m_j$ for $j = 1, \dots, k$. (ii) Since $\mathbb{K} = \mathbb{C}$, $m_1 + \cdots + m_k = n$. Also, since $g_j = m_j$ for $j = 1, \dots, k$, we see that $g_1 + \cdots + g_k = m_1 + \cdots + m_k = n$. Hence **A** is diagonalizable.

Remark

Part (ii) of the above proposition does not hold if $\mathbb{K} = \mathbb{R}$. For example, let $\mathbf{A} := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$. Then $p_{\mathbf{A}}(t) = (1-t)(1+t^2)$, and the geometric multiplicity as well as the algebraic multiplicity of the only (real) eigenvalue 1 of \mathbf{A} is equal to 1. Thus the 3×3 matrix \mathbf{A} is not diagonalizable (over \mathbb{R}) since the sum of the geometric multiplicities of its eigenvalues is less than 3.

On the other hand, if $\mathbb{K} = \mathbb{C}$, then $p_{\mathbf{A}}(t) = (1-t)(t-i)(t+i)$, and for each of the eigenvalues 1, i, -i of \mathbf{A} , the geometric multiplicity as well as the algebraic multiplicity is equal to 1, and so \mathbf{A} is diagonalizable (over \mathbb{C}).