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Recall that we discussed the following notions and results.

Matrix of a linear transformation of vector (sub)spaces

Eigenvalues, eigenvectors, and eigenspaces of a square
matrix with entries in K (where K = R or C)

Characteristic polynomial of a square matrix

Algebraic multiplicity and geometric multiplicity

Similarity of square matrices. Diagonalizability

Similarity and change of basis

A ∈ Kn×n diagonalizable ⇐⇒ Kn×1 has a basis of
eigenvectors of A

Linear independence of eigenvectors corresponding to
distinct eigenvalues

A ∈ Kn×n diagonalizable ⇐⇒ sum of geometric
multiplicities of distinct eigenvalues of A is equal to n

A ∈ Kn×n diagonalizable =⇒ alg. mult. = geom. mult.
for every eigenvalue of A. Converse is true if K = C.
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Relating geometric and algebraic multiplicities

The inequality shown below may have been used in the proof
of a result on diagonalization given earlier.

Proposition

Let A ∈ Kn×n and let λ be an eigenvalue of A. Then the
geometric multiplicity of λ is less than or equal to its algebraic
multiplicity.

Proof. Let g be the geometric multiplicity of λ. Let
(v1, . . . , vg ) be an ordered basis of the eigenspace of λ; extend
it to an ordered basis (v1, . . . , vg , vg+1, . . . , vn) of Kn×1.
Define P :=

[
v1 · · · vn

]
. Then P is invertible since its n

columns v1, . . . , vn are linearly independent. Consider
A′ := P−1AP. Since Avj = λvj and Pej = vj for j = 1, . . . , g ,
we see that the j th column of A′ is given by

A′ej = P−1APej = P−1Avj = λP−1vj = λej .
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Hence

A′ =


λ · · · 0
...

. . .
...

0 · · · λ

C

O D


where C ∈ Kg×(n−g),O ∈ K(n−g)×g and D ∈ K(n−g)×(n−g).
Expanding by the first column, we see that

det(A′ − tI) = (λ− t)gq(t),

where q(t) is a polynomial of degree n − g . Thus

pA(t) = pA′(t) = det(A′ − tI) = (λ− t)gq(t).

Thus (λ− t)g divides the characteristic polynomial pA(t) of
A. Since the algebraic multiplicity of λ is the largest integer m
such that (λ− t)m divides pA(t), we obtain g ≤ m.

We now recall the result on diagonalization given earlier.
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Proposition

Let A ∈ Kn×n, and let λ1, . . . , λk be the distinct eigenvalues
of A. Let gj and mj be the geometric multiplicity and the
algebraic multiplicity of λj respectively for j = 1, . . . , k .

(i) A diagonalizable =⇒ gj = mj for j = 1, . . . , k .

(ii) K = C and gj = mj for j = 1, . . . , k =⇒ A diagonalizable.

Remark: Let A be a square matrix and λ an eigenvalue of A.
If the geometric multiplicity g of λ is less than the algebraic
multiplicity m of λ, then the eigenvalue λ is called defective,
and m − g is called its defect. If a matrix does not have any
defective eigenvalue, then the matrix is called nondefective.

The above proposition tells us that when K = C, a square
matrix A is diagonalizable if and only if it is nondefective. We
shall later show that if K = C, then every square matrix can
be ‘upper triangularized’, that is, it is similar to an upper
triangular matrix. In fact, we will prove a stronger result.
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Existence and Location of Eigenvalues

Let A ∈ Kn×n and λ ∈ K. Since λ is an eigenvalue of A if and
only if λ is root of the characteristic polynomial of A, and
since this polynomial is of degree n, the matrix A can have at
most n distinct eigenvalues. Let k ∈ N with 1 ≤ k ≤ n. It is
easy to see that the matrix A := diag(1, 2, . . . , k , k , . . . , k) has
exactly k distinct eigenvalues.

If K = R, then A may not have any eigenvalue if n is even,
and A has at least one eigenvalue if n is odd. On the other
hand, if K = C, then A has exactly n eigenvalues, if we count
them according to their algebraic multiplicities.

Often, it is not enough to know that so many eigenvalues of A
exist; one would like to know where they are located. In this
connection, we give a ‘localization’ result.
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Gerschgorin disks and Gerschgorin Theorem

Let A := [ajk ] ∈ Kn×n. For j ∈ {1, . . . , n}, define
rj :=

∑
k 6=j |ajk |, and let D(ajj , rj) := {a ∈ K : |a − ajj | ≤ rj},

which is a closed disk in K with centre at the jth diagonal
entry of A and radius equal to the sum of the absolute values
of the off-diagonal entries in the jth row of A; it is called the
jth Gerschgorin disk of the matrix A.

Proposition (Gerschgorin Theorem)

Let A ∈ Kn×n. Every eigenvalue of A belongs in one of the
Gerschgorin disks of A.

Proof. Let A := [ajk ]. Let λ ∈ K be an eigenvalue of A, and

let x :=
[
x1 · · · xn

]T
be a corresponding eigenvector. Let

j ∈ {1, . . . , n} be such that |xj |=max{|xk | : k = 1, . . . , n}.
Then xj 6= 0 since x 6= 0. Multiplying x by 1/xj , we may
assume that xj = 1 and |xk | ≤ 1 for all k 6= j .
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Comparing the jth components in the vector equation
Ax = λx, we obtain∑

k 6=j

ajkxk + ajjxj = λxj , that is,
∑
k 6=j

ajkxk + ajj = λ.

Now the triangle inequality for elements of K shows that

|λ− ajj | =

∣∣∣∣∑
k 6=j

ajkxk

∣∣∣∣ ≤∑
k 6=j

|ajkxk | ≤
∑
k 6=j

|ajk | = rj .

Thus λ belongs to the jth Gerschgorin disk of A.

Example Let A :=


10 −1 0 1
0.2 8 0.3 0.1
1 −1 2 1
1 0.5 −1 11

. The centres of the

Gerschgorin disks are 10, 8, 2, 11 with the respective radii
2, 0.6, 3, 2.5. Hence if λ is an eigenvalue of A, then either
|λ− 10| ≤ 2 or |λ− 8| ≤ 0.6 or |λ− 2| ≤ 3 or |λ− 11| ≤ 2.5.
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Inner Product and Norm

Let K := R, the set of real numbers, or K := C, the set of
complex numbers. For a scalar α ∈ K, we denote its conjugate
by α. If α ∈ R, then of course, α = α.

Consider column vectors x :=

x1...
xn

 and y :=

y1...
yn

 in Kn×1.

The conjugate transpose (or the adjoint) x∗ :=
[
x1 · · · xn

]
of x is a row vector in K1×n. The inner product of x with y
is defined by

〈x, y〉 := x∗y = x1y1 + · · ·+ xnyn.

Note: If K = R, then 〈x, y〉 is just the scalar product of
xxx := (x1, . . . , xn) and yyy := (y1, . . . , yn) in Rn.
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The inner product function 〈· , ·〉 : Kn×1 ×Kn×1 → K has the
following crucial properties. For x, y, z ∈ Kn×1 and α, β ∈ K,

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0 (positive definite),

2. 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 (linear in 2nd variable),

3. 〈y, x〉 = 〈x, y〉 (conjugate symmetric).

From the above three crucial properties, conjugate linearity in
the 1st variable follows: 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.

Let x :=
[
x1 · · · xn

]T ∈ Kn×1. We define the norm of x by

‖x‖ := 〈x, x〉1/2 = (|x1|2 + · · ·+ |xn|2)1/2.

For n = 1, the norm of x ∈ K is the absolute value |x | of x .

Clearly, max{|x1|, . . . , |xn|} ≤ ‖x‖ ≤ |x1|+ · · ·+ |xn|.
If x ∈ Kn×1 and ‖x‖ = 1, then we say that x is a unit vector.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 13



Theorem

Let x, y ∈ Kn×1. Then
(i) (Schwarz Inequality) |〈x, y〉| ≤ ‖x‖‖y‖.
(ii) (Triangle Inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof. Suppose x :=
[
x1 · · · xn

]T
and y :=

[
y1 · · · yn

]T
.

(i) If ‖x‖ = 0 or ‖y‖ = 0, then x = 0 or y = 0. Hence we are
done. Now let ‖x‖ 6= 0 and ‖y‖ 6= 0. Then

|x j |
‖x‖
|yj |
‖y‖
≤ 1

2

( |xj |2
‖x‖2

+
|yj |2

‖y‖2
)

for j = 1, . . . , n,

since |αβ| = |α| |β| ≤ (|α|2 + |β|2)/2 for all α, β ∈ K. Hence

|〈x, y〉| ≤
n∑

j=1

|x j | |yj | ≤
‖x‖‖y‖

2
(1 + 1) = ‖x‖‖y‖.
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(ii) Since 〈x, y〉+ 〈y, x〉 = 2R 〈x, y〉, we see that

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + ‖y‖2 + 2R 〈x, y〉
≤ ‖x‖2 + ‖y‖2 + 2 |〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖‖y‖ (by the Schwarz inequality)

= (‖x‖+ ‖y‖)2.

Thus ‖xxx + yyy‖ ≤ ‖xxx‖+ ‖yyy‖.
We observe that the norm function ‖ · ‖ : Kn×1 → K satisfies
the following three crucial properties:
(i) ‖x‖ ≥ 0 for all x ∈ Kn×1 and ‖x‖ = 0 ⇐⇒ x = 0,

(ii) ‖αx‖ = |α|‖x‖ for all α ∈ K and x ∈ Kn×1,

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Kn×1.
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The properties of the norm function allow us to define the
distance between two vectors in Kn×1. Let x, y ∈ Kn×1. Then
the distance between x and y is defined by

d(x, y) := ‖x− y‖.

The distance function d : Kn×1 ×Kn×1 → K has the following
analogous properties.

(i) d(x, y) ≥ 0 for all x, y ∈ Kn×1, d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ Kn×1,

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Kn×1.

The inner product defined earlier allows us to say when two
column vectors are perpendicular to each other.
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