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Recall that we discussed the following notions and results.
@ Matrix of a linear transformation of vector (sub)spaces

e Eigenvalues, eigenvectors, and eigenspaces of a square
matrix with entries in K (where K =R or C)

Characteristic polynomial of a square matrix
Algebraic multiplicity and geometric multiplicity
Similarity of square matrices. Diagonalizability
Similarity and change of basis

A € K™ diagonalizable <= K"*! has a basis of
eigenvectors of A
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@ Linear independence of eigenvectors corresponding to
distinct eigenvalues

@ A € K"*" diagonalizable <= sum of geometric
multiplicities of distinct eigenvalues of A is equal to n

@ A € K"*" diagonalizable = alg. mult. = geom. mult.
for every eigenvalue of A. Converse is true if K = C.
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Relating geometric and algebraic multiplicities

The inequality shown below may have been used in the proof
of a result on diagonalization given earlier.

Proposition

Let A € K" and let A\ be an eigenvalue of A. Then the
geometric multiplicity of A is less than or equal to its algebraic
multiplicity.

Proof. Let g be the geometric multiplicity of \. Let
(v1,...,Vg) be an ordered basis of the eigenspace of \; extend
it to an ordered basis (v1,..., Vg, Vgi1,...,V,) of K™,
Define P := [vl v,,]. Then P is invertible since its n
columns vy, ..., v, are linearly independent. Consider
A’ := P !'AP. Since Av; = \v; and Pe; = v, for j=1,... g,
we see that the j th column of A’ is given by

A'ej = P_lAPeJ- = P_lAVJ' = )\P_IVJ = )\ej.
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Hence
A --- 0
A Pt Cc
0 --- )\
o | D
where C € K&x(n=8) O € K("8)*& and D € K("—&)x(n—g),
Expanding by the first column, we see that

det(A" — tl) = (A — t)8q(t),

where g(t) is a polynomial of degree n — g. Thus
pa(t) = pa(t) = det(A" — tl) = (A — t)8q(t).

Thus (X — t)# divides the characteristic polynomial pa(t) of
A. Since the algebraic multiplicity of A is the largest integer m
such that (A — t)™ divides pa(t), we obtain g < m. O

We now recall the result on diagonalization given earlier.
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Proposition

Let A € K™ and let A1, ..., \x be the distinct eigenvalues
of A. Let gj and m; be the geometric multiplicity and the
algebraic multiplicity of \; respectively for j =1,... k.

(i) A diagonalizable = g; = m; for j =1,... k.

(i) K=C and g = m; for j =1,..., k => A diagonalizable.

Remark: Let A be a square matrix and A\ an eigenvalue of A.
If the geometric multiplicity g of X is less than the algebraic

multiplicity m of ), then the eigenvalue \ is called defective,
and m — g is called its defect. If a matrix does not have any
defective eigenvalue, then the matrix is called nondefective.

The above proposition tells us that when K = C, a square
matrix A is diagonalizable if and only if it is nondefective. We
shall later show that if K = C, then every square matrix can
be ‘upper triangularized’, that is, it is similar to an upper

triangular matrix. In fact, we will prove a stronger result.
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Existence and Location of Eigenvalues

Let A € K™" and A € K. Since A is an eigenvalue of A if and
only if X\ is root of the characteristic polynomial of A, and
since this polynomial is of degree n, the matrix A can have at
most n distinct eigenvalues. Let k € Nwith 1 < k < n. Itis
easy to see that the matrix A := diag(1,2,...,k, k,..., k) has
exactly k distinct eigenvalues.

If K =R, then A may not have any eigenvalue if n is even,
and A has at least one eigenvalue if nis odd. On the other
hand, if K = C, then A has exactly n eigenvalues, if we count
them according to their algebraic multiplicities.

Often, it is not enough to know that so many eigenvalues of A
exist; one would like to know where they are located. In this
connection, we give a ‘localization’ result.
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Gerschgorin disks and Gerschgorin Theorem

Let A :=[au] € K™". For j € {1,...,n}, define

= Yy 2l and let D(ay. ) = {a € K : |a— 2] < 1},
which is a closed disk in K with centre at the jth diagonal
entry of A and radius equal to the sum of the absolute values
of the off-diagonal entries in the jth row of A; it is called the
Jjth Gerschgorin disk of the matrix A.

Proposition (Gerschgorin Theorem)

Let A € K"*". Every eigenvalue of A belongs in one of the
Gerschgorin disks of A.

Proof. Let A := [ay]. Let A € K be an eigenvalue of A, and

let x ;= [xl x,,}T be a corresponding eigenvector. Let
J€{1,...,n} besuch that |xj|=max{|x| : k =1,...,n}.
Then x; # 0 since x # 0. Multiplying x by 1/x;, we may
assume that x; =1 and |x| <1 for all k # .
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Comparing the jth components in the vector equation
Ax = \x, we obtain

Z ajxi + ajxj = Ax;j, thatis, Z ajkXk + aj = A
k#j k#j

Now the triangle inequality for elements of K shows that

N =il =D awa] <D lawal < lapl = .
ki P ki
Thus X belongs to the jth Gerschgorin disk of A. O]
10 -1 0 1
Example Let A := 012 _81 0; Oil . The centres of the

1 05 -1 11
Gerschgorin disks are 10, 8, 2, 11 with the respective radii
2, 0.6, 3, 2.5. Hence if X is an eigenvalue of A, then either
IA—=10/ <2o0r A =8/ <0.60r |A—2[ <3or|A—11] <25.
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Inner Product and Norm

Let K := R, the set of real numbers, or K := C, the set of
complex numbers. For a scalar a € K, we denote its conjugate
by a@. If a € R, then of course, @ = a.

X1 N1
Consider column vectors x := | : | andy:= | : | in K™,
Xn Yn
The conjugate transpose (or the adjoint) x™:= [)‘(1 S X
of x is a row vector in K", The inner product of x with y

is defined by
<X, y> = X*y = 71)’1 +ooe 4+ Ynyn-

Note: If K =R, then (x, y) is just the scalar product of
x:=(x1,...,x,) and y := (y1,...,¥n) in R™.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 13



The inner product function (-, -) : K™ x K™! — KK has the
following crucial properties. For x,y,z € K™! and «, 3 € K,

1. (x,x) >0and (x,x) =0 <= x =0 (positive definite),
2. (x, ay + fz) = a(x, y) + B(x, z) (linear in 2nd variable),

3. (y, x) = (x, y) (conjugate symmetric).

From the above three crucial properties, conjugate linearity in
the 1st variable follows: (ax + 8y, z) = a(x, z) + (y, z).

Let x := [xl . x,,}T € K™ We define the norm of x by
x| == (%, )% = (paf® + -+ + [x )2

For n =1, the norm of x € K is the absolute value |x| of x.
Clearly, max{|xt|, ..., [x:|} < |Ix|| < |xa| + -+ + |xal-

If x € K™ and ||x|| = 1, then we say that x is a unit vector.
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Let x, y € K™ Then
(i) (Schwarz Inequality) |(x, y)| < [|x]|||y]|-

(i) (Triangle Inequality) [|x + y|| < |Ix|| + |lyll-

Proof. Suppose x := [xl x,,}T and y ;= [yl y,,}T.

(i) If ||x|| =0 or |ly|]| =0, then x =0 or y = 0. Hence we are
done. Now let ||x|| # 0 and ||y|| # 0. Then

| 2

— 1/ 1x.|2 ,
%] |yJ!§_<!XJ| L ) forj=1...n

[ yll®

I {lyl — 2
since [@B| = |a| |8] < (Ja]? + |8[?)/2 for all o, 3 € K. Hence

~ X[yl
[y <D Rl < == (1) =[xyl

j=t
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(i) Since (x, y) + (y, x) = 293 (x, y), we see that

Ix+yl* = (x+y, x+y)=[x|>+ [yl + 29 (x, y)

< x4 Nyl + 21, y)
< IxI1? + Iyl + 2 [1x||lyll (by the Schwarz inequality)
= (IIxll +llyll)*

Thus [|x + y|| < llx[| + llyll O

We observe that the norm function || - || : K™ — K satisfies

the following three crucial properties:
(i) ||x|| > 0 for all x € K™! and ||x|| =0 <= x=0,

(ii) ||ax|| = |af||x|| for all & € K and x € K"™<?,
(iii) fx + yll < [[x]] + lly]l for all x,y € K.
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The properties of the norm function allow us to define the
distance between two vectors in K" Let x,y € K™, Then
the distance between x and y is defined by

d(x,y) =[x —yl|.
The distance function d : K™! x K™! — K has the following
analogous properties.
(i) d(x,y) > 0 for all x,y € K™, d(x,y) =0 <= x=y,
(i) d(x,y) = d(y,x) for all x,y € K™,
(i) d(x,y) < d(x,z) + d(z,y) for all x,y,z € K"™*!,

The inner product defined earlier allows us to say when two
column vectors are perpendicular to each other.
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