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Recall that we defined inner product and norm on Kn and
established some basic properties. Let K := R or K := C,

Inner product of x, y ∈ Kn is

〈x, y〉 := x∗y = x1y1 + · · ·+ xnyn.

Norm of x = (x1, . . . , xn) ∈ Kn is

‖x‖ := 〈x, x〉1/2 = (|x1|2 + · · ·+ |xn|2)1/2.

The inner product is positive definite, linear in the second
variable, and conjugate symmetric (and hence conjugate
linear in the first variable).

‖x‖ ≥ 0 for all x ∈ Kn×1 and ‖x‖ = 0 ⇐⇒ x = 0,

‖αx‖ = |α|‖x‖ for all α ∈ K and x ∈ Kn×1,

(Schwarz Inequality) |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ Kn.

(Triangle Inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ Kn.

The distance between x and y is d(x, y) := ‖x− y‖.
Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 14



Orthogonality

Let x, y ∈ Kn×1. We say that x and y are orthogonal (to
each other) if 〈x, y〉 = 0, and then we write x ⊥ y.

Clearly, x ⊥ x ⇐⇒ ‖x‖ = 0 ⇐⇒ x = 0.

Let E be a subset of Kn×1, and define

E⊥ := {y ∈ Kn×1 : y ⊥ x for all x ∈ E}.
It is easy to see that E⊥ is a subspace of Kn×1.

Proposition (Pythagoras Theorem)

Let x, y ∈ Kn×1. If x ⊥ y, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Proof.

‖x + y‖2 = 〈x + y, x + y〉 = 〈x + y, x〉+ 〈x + y, y〉
= 〈x, x〉+ 〈y, x〉+ 〈x, y〉+ 〈y, y〉
= ‖x‖2 + 0 + 0 + ‖y‖2 = ‖x‖2 + ‖y‖2.
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We now introduce an important concept.
Let y be a nonzero vector in Kn×1. For x ∈ Kn×1, define

Py(x) :=
〈y, x〉
〈y, y〉 y.

It is called the (perpendicular) projection of the vector x in
the direction of the vector y. Note that Py : Kn×1 → Kn×1 is
a linear map and its image space is one dimensional. Also,
Py(y) = y, so that (Py)2 := Py ◦ Py = Py.

b
x

b
Py(x)b

y

b

x− Py(x)

Note that Py(x) is a scalar multiple of y for every x ∈ Kn×1.
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An important property of the projection of a vector in the
direction of another (nonzero) vector is the following:

Proposition

Let y ∈ Kn×1 be nonzero. Then for every x ∈ Kn×1,(
x− Py(x)

)
⊥ y.

Proof. Let x ∈ Kn×1. The result follows from

〈y, x− Py(x)〉 = 〈y, x〉−〈y, Py(x)〉 = 〈y, x〉−〈y, x〉〈y, y〉〈y, y〉 = 0.

Let E be a subset of Kn×1. Then E is said to be orthogonal
if any two (distinct) element of E are orthogonal (to each
other), that is, x ⊥ y for all x, y in E with x 6= y.

For example, E := {0, e1 + e2, e1 − e2} is an orthogonal
subset of Kn×1.
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Proposition

Let E be a subset of Kn×1. If E is orthogonal and if 0 6∈ E ,
then E is linearly independent.

Proof. Let x1, . . . , xk be distinct vectors in E , and let
α1, . . . , αk be scalars such that α1x1 + · · ·+ αkxk = 0. Fix
j ∈ {1, . . . , k}. Since 〈xj , xi〉 = 0 for all i 6= j , we obtain

0 = 〈xj , α1x1 + · · ·+ αkxk〉 =
k∑

`=1

α`〈xj , x`〉 = αj〈xj , xj〉.

But 〈xj , xj〉 6= 0 since xj 6= 0. Hence αj = 0.

The converse of the above proposition is not true, that is, a
linear linearly independent subset of Kn×1 need not be
orthogonal. For example, the subset {e1, e1 + e2} of Kn×1 is
linearly independent, but not orthogonal.
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We now address the question: Can we modify a linearly
independent set E to construct an orthogonal set, retaining
the span of the elements in E at each step of the procedure?

Let E be an ordered linearly independent set of column
vectors. Suppose x1 is the first vector in E . Then x1 6= 0. Let
y1 := x1. Let x2 be the second vector in E . If x2 is not
orthogonal to y1, then it makes sense to subtract from x2, the
projection of x2 in the direction of y1, so that
y2 := x2−Py1(x2) is orthogonal to y1. Also, in replacing x2 by
y2, we do not alter the span of {x1, x2} since y2 is a linear
combination of x2 and y1, and x2 is a linear combination of y2
and y1, where y1 = x1.

Let x3 be the third vector in E . If x3 is not orthogonal to y1
and y2, then we may subtract from x3, the projections of x3 in
the directions of y1 and y2. Then y3 := x3 − Py1(x3)− Py2(x3)
is orthogonal to y1 as well as to y2. We can see this as follows.
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〈y1, y3〉 = 〈y1, x3 − Py1(x3)〉 − 〈y1, Py2(x3)〉 = 0− 0 = 0,

and similarly 〈y3, y2〉 = 0. We illustrate these vectors in the
following figure.

b

y2

b
y1

b
y3 = x3 − Py1(x3)− Py2(x3)

x3

Py1(x3) + Py2(x3)

b

bPy1(x3)

b
Py2(x3)

b
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This procedure can be continued to yield the famous

Gram-Schmidt Orthogonalization Process (G-S OP)

Let (x1, . . . , xk) be an ordered linearly independent set in
Kn×1. Define y1 := x1.
Let 1 ≤ j < k . Suppose we have found y1, . . . , yj in Kn×1

such that the set {y1, . . . , yj} is orthogonal, and also
span{y1, . . . , yj} = span{x1, . . . , xj}. Define

yj+1 := xj+1 − Py1(xj+1)− · · · − Pyj (xj+1).

Then span{y1, . . . , yj+1} = span{x1, . . . , xj+1} since
yj+1 ∈ span{y1, . . . , yj , xj+1} = span{x1, . . . , xj , xj+1} and
xj+1 ∈ span{y1, . . . , yj , yj+1}.
To show that the set {y1, . . . , yj+1} is orthogonal, it is enough
to show that yj+1 ∈ {y1, . . . , yj}⊥.
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Let i ∈ {1, . . . , j}. Then

〈yi , yj+1〉 = 〈yi , xj+1 − Py1(xj+1)− · · · − Pyj (xj+1)〉
= 〈yi , xj+1〉 − 〈yi , Py1(xj+1)〉 − · · · − 〈yi , Pyj (xj+1)〉
= 〈yi , xj+1〉 − 〈yi , Pyi (xj+1)〉 (since yi ⊥ yj , i 6= j)

= 〈yi , xj+1 − Pyi (xj+1)〉
= 0 (by the important property of the projection).

We remark that since the set {x1, . . . , xk} is linearly
independent, all vectors y1, y2, . . . , yk constructed in the G-S
OP are nonzero: Clearly, y1 = x1 6= 0. Also, if yj+1 = 0 for
some j ∈ {1, . . . , k − 1}, then xj+1 would belong to
span{y1, . . . , yj} = span{x1, . . . , xj}.
This completes the construction of the G-S OP.
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Definition

An orthogonal set whose elements are unit vectors is called an
orthonormal set.

Any orthogonal set whose elements are nonzero vectors can
always be turned into an orthonormal set by dividing each
element by its own norm.

Thus given an ordered linearly independent set (x1, . . . , xk),
we can construct an ordered orthogonal set (y1, . . . , yk) by the
G-S OP, and if we let uj := yj/‖yj‖ for j = 1, . . . , k , then
(u1, . . . ,uk) is an ordered orthonormal set such that
span{x1, . . . , xk} = span{y1, . . . , yk} = span{u1, . . . ,uk}.
Example: For j = 1, . . . , n, let xj := j(e1 + · · ·+ ej). Then
E := (x1, . . . , xn) is an ordered linearly independent subset of
Kn×1. We claim that the G-S OP gives yj := jej for
j = 1, . . . , n. Indeed, y1 := x1 = e1. Also, assuming that
yj = jej , we see that
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yj+1 = xj+1 − Py1(xj+1)− · · · − Pyj (xj+1)

= (j + 1)(e1 + · · ·+ ej+1)− (j + 1)e1 − · · · − (j + 1)ej

= (j + 1)ej+1.

Hence our claim is justified. Since ‖yj‖ = j for each j , we let
uj := yj/j , so that uj = ej for each j = 1, . . . , n. Clearly,
(u1, . . . ,uk) is an ordered orthonormal set in Kn×1.

Definition

Let V be a subspace of Kn×1. An orthonormal basis for V is
a basis for V which is an orthonormal subset of V .

The G-S OP enables us to modify a given basis for a subspace
of Kn×1 to an orthonormal basis for that subspace.

Also, we can expand an orthonormal set in V to a possibly
larger orthonormal set in V as follows.
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Proposition

Let V be a subspace of Kn×1, and let u1, . . . ,uk be an
orthonormal set in V . Then there is an orthonormal basis for
V which contains u1, . . . ,uk .

Proof. If span{u1, . . . ,uk}=V , then there is nothing to prove.

Now suppose span{u1, . . . ,uk} 6= V . Let dimV = r . Since
the set {u1, . . . ,uk} 6= V is linearly independent, there are
yk+1, . . . , yr in V such that {u1, . . . ,uk , yk+1, . . . , yr} is a
basis for V . By the G-S OP, we can find uk+1, . . . ,ur in V
such that the set {u1, . . . ,uk ,uk+1, . . . ,ur} is orthonormal and
its span is equal to span{u1, . . . ,uk , yk+1, . . . , yr} = V .

Corollary

Every nonzero vector subspace V has an orthonormal basis.

Proof. If 0 6=x1 ∈ V , then extend {x1/‖x1‖} to an o. n. basis.
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Example
Let W be the subspace of K4×1 spanned by the vectors

x1 :=
[
1 1 0 1

]T
, x2 :=

[
1 −2 0 0

]T
and

x3 :=
[
1 0 −1 2

]T
.

Let us employ the G-S OP. Let y1 := x1 =
[
1 1 0 1

]T
,

y2 := x2 − Py1(x2) =
[
1 −2 0 0

]T
+

1

3

[
1 1 0 1

]T
=

1

3

[
4 −5 0 1

]T
and

y3 := x3 − Py1(x3)− Py2(x3)

=
[
1 0 −1 2

]T − 3

3

[
1 1 0 1

]T − 1

7

[
4 −5 0 1

]T
=

1

7

[
−4 −2 −7 6

]T
.

Note that the subset {x1, x2, x3} must be linearly independent
since y1, y2, y3 are nonzero.
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Further, let

u1 := y1/
√

3, u2 :=
√

3 y2/
√

14 and u3 :=
√

7 y3/
√

15.

Then {u1,u2,u3} is an orthonormal basis for the subspace W .

To extend {u1,u2,u3} to an orthonormal basis for V := K4×1,

we look for y4 :=
[
α1 α2 α3 α4

]T
which is orthogonal to

the set {x1, x2, x3}, that is,

α1 + α2 + α4 = 0, α1 − 2α2 = 0 and α1 − α3 + 2α4 = 0.

Letting α1 := 2, we obtain y4 :=
[
2 1 −4 −3

]T
. Then y4

is orthogonal to span{y1, y2, y3} = span{u1,u2,u3} as well.

Now let u4 := y4/‖y4‖ = y4/
√

30.

Then {u1,u2,u3,u4} is an orthonormal basis for K4×1 which
extends the orthonormal subset {u1,u2,u3} of K4×1.
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We point out an advantage of working with an orthonormal
basis. Suppose {x1, . . . , xn} is a basis of Kn×1. Then for
b ∈ Kn×1, there are unique α1, . . . , αn such that
b = α1x1 + · · ·+αnxn. Finding these coefficients α1, . . . , αn is

not always easy. In fact,
[
α1 · · · αn

]T
is the unique column

vector satisfying the linear system

A
[
α1 · · · αn

]T
= b, where A :=

[
x1 · · · xn

]
,

and we would have to find this vector either by the GEM or by
the Cramer Rule (involving n + 1 determinants of size n).

On the other hand, suppose {u1, . . . ,un} is an orthonormal
basis of Kn×1. If b ∈ Kn×1 and b = α1u1 + · · ·+ αnun, then
αj = 〈uj , b〉 for j = 1, . . . , n by the orthonormality, so that

b = 〈u1, b〉u1 + · · ·+ 〈un, b〉un.
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For instance, consider the ordered orthonormal basis
(u1,u2,u3,u4) of K4×1 which we have just constructed, where

u1 :=
[
1 1 0 1

]T
/
√

3,

u2 :=
[
4 −5 0 1

]T
/
√

42,

u3 :=
[
−4 −2 −7 6

]T
/
√

105,

u4 :=
[
2 1 −4 −3

]T
/
√

30.

Let b :=
[
1 1 1 1

]T ∈ K4×1.

Then there are unique α1, α2, α3, α4 ∈ K such that
b = α1u1 + α2u2 + α3u3 + α4u4. In fact,

α1 = 〈u1, b〉 = 3/
√

3 =
√

3,

α2 = 〈u2, b〉 = 0,

α3 = 〈u3, b〉 = −7/
√

105 = −
√

7/
√

15,

α4 = 〈u4, b〉 = −4/
√

30.
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Analogue for Row Vectors

We have defined an inner product as a function from
Kn×1 ×Kn×1 to K. We can also define a similar function from
K1×n ×K1×n to K as follows.

Consider row vectors x :=
[
x1 · · · xn

]
, y :=

[
y1 · · · yn

]
in K1×n. The inner product of x with y is defined by

〈x, y〉 := xyT = x1y1 + · · ·+ xnyn.

Also, we can introduce the concepts of orthogonality and
orthonormality of row vectors, and obtain a Gram-Schmidt
Orthogonalization Process for row vectors.
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