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Recall that we discussed the following in the last lecture.

@ Notion of a unitary matrix. Examples

e A, B € K™ are unitarily similar if B = U~*AU for some
unitary U € K"™*"

@ A € K" is unitarily diagonalizable if it is unitarily
similar to a diagonal matrix.

e A € K™ is unitarily diagonalizable <= K"*! has an
orthonormal basis of eigenvectors of A.

e Eigenvalues and eigenvectors of linear maps.

e Eigenvalues and eigenvectors of a linearmap T : V — V
are the same as the eigenvalues and eigenvectors of the
matrix ME(T) of T with respect to some ordered basis £
of V.

e If V is an n dimensional vector subspace over K = C and
if T:V — Vs a linear map, then T has an eigenvalue.
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Let K := C, and let V be a vector subspace of dimension n.
Let T : V — V be a linear map. Then there is an orthonormal
basis E for V such that ME(T) is upper triangular.

Proof. We use induction on the dimension n of V.

Let n = 1. Let u be a unit vector in V. Then

V = {au: a € C}. Hence there is A € C such that
T(u) = Au. Define E := (u). Then the 1 x 1 matrix
ME(T) = [)\] is clearly upper triangular.

Let n > 2 and assume that the proposition holds for all vector
subspaces of dimension n — 1. By the previous lemma, there
are a unit vector u; € V and A\; € C such that T(u;) = A\ju;.

We extend the orthonormal set {u;} in V' to an ordered
orthonormal basis E := (uy, X2, ...,X,) for V.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 16



Let W :=span{x,,...,X,}. Then W is a vector subspace of
dimension n — 1. Let x € W. Then T(x) € V and so we can
write T(x) = buy + w for unique b€ C and w € W.

Define S(x) := w. It is easy to see that S: W — W s linear.
By the induction hypothesis, there is an ordered orthonormal

basis F := (up, ...,u,) for W such that the (n — 1)x(n — 1)
matrix ME(S) is upper triangular.

Let ME(S) = [bi], where by € C for j,k=2,...,n and

by =0if2 <k <j<n. Then

n k
S(Uk) == Z bjkuj = Z bijj for k = 2, o, n.
Jj=2

=2
Define E := (uy,uy,...,u,). Sinceu; € Wt={u,,... u,}*
the set {uy,uy,...,u,} is orthonormal.
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Let us find ME(T). First, T(u;) = A\juy.

Next, let k € {2,...,n}. Then there are unique by, € C and
wy € W such that T(uk) = bixu; + wy. Hence

T(Uk) = blkul + wy = blkul —+ 5 Uk Z kaJ

Define byy := Ay and bjy := 0 for j = 2,...,n. Then
T(uy) = by1uy, and thus

T(uk):blkul+"'+bkkuk fork=1,...,n

It follows that ME(T) is the n x n upper triangular matrix
[bjx]- O

We are now ready to prove that every A € C"*" is similar to
an upper triangular matrix. In fact, we shall prove a stronger

result.
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Theorem (Schur)

Let A € C™". Then A is unitarily similar to an upper
triangular matrix.

Proof. Consider the linear transformation T : C"™*1 — C"*!
defined by Ta(x) := Ax. By an earlier proposition, there is an
ordered orthonormal basis E for C™! such that ME(T,) is
upper triangular.

Let B := ME(Ta). Then B is upper triangular, and by the
previous proposition, A is unitarily similar to B. O

The Schur Theorem is not true for real scalars. For example,

1 0
otherwise the diagonal entries of B would be the eigenvalues
of A, but we have seen that A has no eigenvalues.

0 —1}. - : .
A= is not similar to any upper triangular matrix B;
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Since the proof of the existence of a unitary matrix U and an
upper triangular matrix B satisfying B = U™AU is not
constructive, Schur’s theorem does not help in finding the
eigenvalues of A. However, some important information about
the eigenvalues of A can be gathered from the following
corollary of Schur's theorem.

Corollary

Let A€ C™", and let Aq,..., A\, be the eigenvalues of A
counted according to their algebraic multiplicities. Then

(i) trace A =37, A,
(i) det A =T];_; \;, and
(iii) p(A;) =0for j =1,...,n, whenever p(t) is a polynomial
satisfying p(A) = O.
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Proof of Corollary. Consider the characteristic polynomial of A:

det(A—tl) = (AM—1t)---(N\—1t)

n

= (—1)"t"+ (i >\j> (=t)" T4+ H)\J-.

j=1

Comparing the coefficient of t"~*, we obtain (i), while
comparing the constant coefficient, we obtain (ii).

(iii) Suppose p(t) is a polynomial such that p(A) = O. Since
B = (U'AU)* = U'A*U for all k € N,

we see that p(B) = U 'p(A)U = O. Now let j € {1,...,n}.
Then ); is the (j,j)th entry of B, and since B is upper
triangular, Af is the (j, j)th entry of B* for all k € N. It
follows that p(};) is the (j,j)th entry of p(B). It must be
equal to 0 because p(B) = O. O
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Examples
(1) Let A € C3*3 be such that A?> = 6A and trace A = 12.
Let us determine the eigenvalues of A.

Consider the polynomial p(t) = t> — 6t. Since p(A) = O, we
see that p(\) = A\ — 6\ = A\(\ — 6) = 0 for every eigenvalue
A of A. Since trace A = 12, the sum of the eigenvalues of A
(counting algebraic multiplicities) is equal to 12. Hence the
eigenvalues of A are 6,6,0, that is, 6 is an eigenvalue of A of
algebraic multiplicity 2, and 0 is an eigenvalue of A of
algebraic multiplicity 1.

(i) Let A:=[e; e3 --- e, e], whereey,..., e, are the
basic column vectors in C"*!.
Then Ae; = e,,...,Ae, 1 = e, and Ae, = e;. Hence
T T
A [Xl Xy ot Xp-1 Xn] = [Xn X1 X2 e Xn—l]
T
for [xi X -+ Xp1 x| €C™L
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The matrix A represents a cyclic shift to the right. It follows
that A" = 1. Let A\ be an eigenvalue of A. Then \" = 1.

00 O 0 0
1 0 O 0 0
01 0 0
0 0 1 0
Note that A := 0 0 0 1
00 0 1 0
0 0 0 0 1
Let w := e*"/". Then the nth roots of 1 are
Lw,w?,...,w" L Thus A € {1,w,w?, ..., w" 1t}
Conversely, we show that each 1,w,w?,...,w" !

O O O O

[«» JE

is an

eigenvalue of A by finding a corresponding eigenvector.
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-
Let x := [xl Xo 0 Xp1 Xn] € C™1. Then Ax = \x
means x; = AX>, X = AX3, ..., Xp_1 = AX, and x, = Axy.

For j=0,...,n—1, define
xj=[1 1w 1/0¥ - 1jwt-Di]T
Now 1/w("1 = ¥/ since w" = 1, and so
xj=[1 1w 1 - w2 o]
Hence Ax; = [/ 1 1/uw/ 1/w¥ - 1/w(”_2)f]T = wx;.

Thus x; is an eigenvector of A corresponding to the eigenvalue
W for j=0,1,...,n—1.

We note that since the columns of A form an orthonormal set
in C™1, the matrix A is unitary.
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Unitarily Diagonalizable Matrix

We have seen that if the scalars are complex numbers, then
every matrix can be unitarily ‘upper triangularized’. Now we
take up the question: ‘Which matrices can be unitarily
diagonalized?’. We saw that a matrix A € K"*" is unitarily
diagonalizable if and only if there is an orthonormal basis for
K™ consisting of eigenvectors of A. Let us investigate this
condition further.

Suppose A € K"*" is unitarily diagonalizable, and let
eigenvectors uy, ..., u, of A form an orthonormal basis for
K™ Let \,...,\, be the corresponding eigenvalues of A,
so that Au; = \u; for j=1,...,n. Let x € K™ Then

n n

x:Z(uj, xju; and Ax:z<uj, x)Au; = Z)\ uj, x

Jj=1 Jj=1
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The above representation of A x can be used for various
purposes. For this reason, we would like to find necessary
and/or sufficient conditions under which a square matrix can
be unitarily diagonalized. We introduce a new class of
matrices.

Definition

A matrix A € K™" js called normal if it commutes with its
adjoint, that is, A*A = A A*.

Examples (i) If A is self-adjoint (that is, A*=A), or skew
self-adjoint (that is, A* = —A), or unitary (that is,
A*A = 1= AA*), then A is normal.

.. . 1 -1 . o
(i) The matrix A := 1 1€ K2*2 is normal, but it is not
self-adjoint, or skew self-adjoint, or unitary. However, not

every matrix is normal, as the example A := Ll) ﬂ shows.
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Proposition

Let A € K"™". Then A is normal if and only if

(Ax, Ay) = (A*x, A*y) for all x,y € K™,

Proof. For x,y, (Ax, Ay) = (Ax)*Ay = x*A*Ay and

(A*x, A*y) = (A*x)*A*y = x*A A*y.

If A is normal, then clearly, (Ax, Ay) = (A*x, A*y) for all
x,y € K™, Conversely, suppose (Ax, Ay) = (A*x, A*y) for
all x,y € K™, Then letting x := e; and y := e, we see that
e;-"A*A e, = e;-"A A*e,, that is, the (j, k)th entries of A*A
and A A* are the same for all j,k =1,...,n. Hence

A*A = A A*, that is, A is normal. O

The above condition for normality of a matrix A says that the
lengths of the vectors Ax and A*x should be the same, and
the angle between Ax and Ay should be the same as the angle
between A*x and A*y for all x, y € K"*1.
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