MA 110 Linear Algebra and Differential Equations Lecture 16

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay http://www.math.iitb.ac.in/~srg/

Spring 2025

Recall that we discussed the following in the last lecture.

- Notion of a unitary matrix. Examples
- A, $B \in \mathbb{K}^{n \times n}$ are unitarily similar if $B = U^{-1}AU$ for some unitary $U \in \mathbb{K}^{n \times n}$
- A ∈ ℝ^{n×n} is unitarily diagonalizable if it is unitarily similar to a diagonal matrix.
- $\mathbf{A} \in \mathbb{K}^{n \times n}$ is unitarily diagonalizable $\iff \mathbb{K}^{n \times 1}$ has an orthonormal basis of eigenvectors of \mathbf{A} .
- Eigenvalues and eigenvectors of linear maps.
- Eigenvalues and eigenvectors of a linear map T : V → V are the same as the eigenvalues and eigenvectors of the matrix M^E_E(T) of T with respect to some ordered basis E of V.
- If V is an n dimensional vector subspace over $\mathbb{K} = \mathbb{C}$ and if $T: V \to V$ is a linear map, then T has an eigenvalue.

Theorem

Let $\mathbb{K} := \mathbb{C}$, and let V be a vector subspace of dimension n. Let $T : V \to V$ be a linear map. Then there is an orthonormal basis E for V such that $\mathbf{M}_{E}^{E}(T)$ is upper triangular.

Proof. We use induction on the dimension n of V.

Let n = 1. Let **u** be a unit vector in V. Then $V = \{\alpha \mathbf{u} : \alpha \in \mathbb{C}\}$. Hence there is $\lambda \in \mathbb{C}$ such that $T(\mathbf{u}) = \lambda \mathbf{u}$. Define $E := (\mathbf{u})$. Then the 1×1 matrix $\mathbf{M}_{E}^{E}(T) = [\lambda]$ is clearly upper triangular.

Let $n \ge 2$ and assume that the proposition holds for all vector subspaces of dimension n-1. By the previous lemma, there are a unit vector $\mathbf{u}_1 \in V$ and $\lambda_1 \in \mathbb{C}$ such that $T(\mathbf{u}_1) = \lambda_1 \mathbf{u}_1$.

We extend the orthonormal set $\{\mathbf{u}_1\}$ in V to an ordered orthonormal basis $E := (\mathbf{u}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ for V.

Let $W := \operatorname{span}\{\mathbf{x}_2, \dots, \mathbf{x}_n\}$. Then W is a vector subspace of dimension n-1. Let $\mathbf{x} \in W$. Then $T(\mathbf{x}) \in V$ and so we can write $T(\mathbf{x}) = b \mathbf{u}_1 + \mathbf{w}$ for unique $b \in \mathbb{C}$ and $\mathbf{w} \in W$.

Define $S(\mathbf{x}) := \mathbf{w}$. It is easy to see that $S : W \to W$ is linear. By the induction hypothesis, there is an ordered orthonormal basis $F := (\mathbf{u}_2, \dots, \mathbf{u}_n)$ for W such that the $(n-1) \times (n-1)$ matrix $\mathbf{M}_F^F(S)$ is upper triangular.

Let $\mathbf{M}_{F}^{F}(S) = [b_{jk}]$, where $b_{jk} \in \mathbb{C}$ for j, k = 2, ..., n and $b_{jk} = 0$ if $2 \le k < j \le n$. Then

$$S(\mathbf{u}_k) = \sum_{j=2}^n b_{jk} \mathbf{u}_j = \sum_{j=2}^k b_{jk} \mathbf{u}_j$$
 for $k = 2, \dots, n$.

Define $E := (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$. Since $\mathbf{u}_1 \in W^{\perp} = {\{\mathbf{u}_2, \dots, \mathbf{u}_n\}^{\perp}}$, the set ${\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}}$ is orthonormal.

Let us find $\mathbf{M}_{E}^{E}(T)$. First, $T(\mathbf{u}_{1}) = \lambda_{1}\mathbf{u}_{1}$.

Next, let $k \in \{2, ..., n\}$. Then there are unique $b_{1k} \in \mathbb{C}$ and $\mathbf{w}_k \in W$ such that $T(\mathbf{u}_k) = b_{1k}\mathbf{u}_1 + \mathbf{w}_k$. Hence

$$T(\mathbf{u}_k) = b_{1k}\mathbf{u}_1 + \mathbf{w}_k = b_{1k}\mathbf{u}_1 + S(\mathbf{u}_k) = \sum_{j=1}^k b_{jk}\mathbf{u}_j.$$

Define $b_{11} := \lambda_1$ and $b_{j1} := 0$ for j = 2, ..., n. Then $T(\mathbf{u}_1) = b_{11}\mathbf{u}_1$, and thus

$$T(\mathbf{u}_k) = b_{1k}\mathbf{u}_1 + \cdots + b_{kk}\mathbf{u}_k$$
 for $k = 1, \dots, n$.

It follows that $M_E^E(T)$ is the $n \times n$ upper triangular matrix $[b_{jk}]$.

We are now ready to prove that every $\mathbf{A} \in \mathbb{C}^{n \times n}$ is similar to an upper triangular matrix. In fact, we shall prove a stronger result.

Theorem (Schur)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then \mathbf{A} is unitarily similar to an upper triangular matrix.

Proof. Consider the linear transformation $T_{\mathbf{A}} : \mathbb{C}^{n \times 1} \to \mathbb{C}^{n \times 1}$ defined by $T_{\mathbf{A}}(\mathbf{x}) := \mathbf{A} \mathbf{x}$. By an earlier proposition, there is an ordered orthonormal basis E for $\mathbb{C}^{n \times 1}$ such that $\mathbf{M}_{E}^{E}(T_{\mathbf{A}})$ is upper triangular.

Let $\mathbf{B} := \mathbf{M}_{E}^{E}(T_{\mathbf{A}})$. Then **B** is upper triangular, and by the previous proposition, **A** is unitarily similar to **B**.

The Schur Theorem is not true for real scalars. For example, $\mathbf{A} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is not similar to any upper triangular matrix \mathbf{B} ; otherwise the diagonal entries of \mathbf{B} would be the eigenvalues of \mathbf{A} , but we have seen that \mathbf{A} has no eigenvalues. Since the proof of the existence of a unitary matrix ${\bf U}$ and an upper triangular matrix ${\bf B}$ satisfying ${\bf B}={\bf U}^{-1}{\bf A}{\bf U}$ is not constructive, Schur's theorem does not help in finding the eigenvalues of ${\bf A}$. However, some important information about the eigenvalues of ${\bf A}$ can be gathered from the following corollary of Schur's theorem.

Corollary

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of \mathbf{A} counted according to their algebraic multiplicities. Then

(i) trace
$$\mathbf{A} = \sum_{j=1}^{n} \lambda_j$$
,
(ii) det $\mathbf{A} = \prod_{j=1}^{n} \lambda_j$, and
(iii) $p(\lambda_j) = 0$ for $j = 1, ..., n$, whenever $p(t)$ is a polynomial satisfying $p(\mathbf{A}) = \mathbf{O}$.

Proof of Corollary. Consider the characteristic polynomial of A:

$$det(\mathbf{A} - t\mathbf{I}) = (\lambda_1 - t) \cdots (\lambda_n - t)$$

= $(-1)^n t^n + \left(\sum_{j=1}^n \lambda_j\right) (-t)^{n-1} + \cdots + \prod_{j=1}^n \lambda_j.$

Comparing the coefficient of t^{n-1} , we obtain (i), while comparing the constant coefficient, we obtain (ii).

(iii) Suppose p(t) is a polynomial such that $p(\mathbf{A}) = \mathbf{0}$. Since

$$\mathbf{B}^k = (\mathbf{U}^{-1}\mathbf{A}\mathbf{U})^k = \mathbf{U}^{-1}\mathbf{A}^k\mathbf{U}$$
 for all $k \in \mathbb{N}$,

we see that $p(\mathbf{B}) = \mathbf{U}^{-1}p(\mathbf{A})\mathbf{U} = \mathbf{O}$. Now let $j \in \{1, ..., n\}$. Then λ_j is the (j, j)th entry of \mathbf{B} , and since \mathbf{B} is upper triangular, λ_j^k is the (j, j)th entry of \mathbf{B}^k for all $k \in \mathbb{N}$. It follows that $p(\lambda_j)$ is the (j, j)th entry of $p(\mathbf{B})$. It must be equal to 0 because $p(\mathbf{B}) = \mathbf{O}$.

Examples

(1) Let $\mathbf{A} \in \mathbb{C}^{3 \times 3}$ be such that $\mathbf{A}^2 = 6\mathbf{A}$ and trace $\mathbf{A} = 12$. Let us determine the eigenvalues of \mathbf{A} .

Consider the polynomial $p(t) = t^2 - 6t$. Since $p(\mathbf{A}) = \mathbf{O}$, we see that $p(\lambda) = \lambda^2 - 6\lambda = \lambda(\lambda - 6) = 0$ for every eigenvalue λ of \mathbf{A} . Since trace $\mathbf{A} = 12$, the sum of the eigenvalues of \mathbf{A} (counting algebraic multiplicities) is equal to 12. Hence the eigenvalues of \mathbf{A} are 6, 6, 0, that is, 6 is an eigenvalue of \mathbf{A} of algebraic multiplicity 2, and 0 is an eigenvalue of \mathbf{A} of algebraic multiplicity 1.

(ii) Let $\mathbf{A} := \begin{bmatrix} \mathbf{e}_2 & \mathbf{e}_3 & \cdots & \mathbf{e}_n & \mathbf{e}_1 \end{bmatrix}$, where $\mathbf{e}_1, \dots, \mathbf{e}_n$ are the basic column vectors in $\mathbb{C}^{n \times 1}$. Then $\mathbf{A}\mathbf{e}_1 = \mathbf{e}_2, \dots, \mathbf{A}\mathbf{e}_{n-1} = \mathbf{e}_n$ and $\mathbf{A}\mathbf{e}_n = \mathbf{e}_1$. Hence $\mathbf{A} \begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}^\mathsf{T} = \begin{bmatrix} x_n & x_1 & x_2 & \cdots & x_{n-1} \end{bmatrix}^\mathsf{T}$ for $\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}^\mathsf{T} \in \mathbb{C}^{n \times 1}$. The matrix **A** represents a **cyclic shift to the right**. It follows that $\mathbf{A}^n = \mathbf{I}$. Let λ be an eigenvalue of **A**. Then $\lambda^n = 1$.

Note that
$$\mathbf{A} := \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \cdots & \cdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix}$$

Let $\omega := e^{2\pi i/n}$. Then the *n*th roots of 1 are $1, \omega, \omega^2, \ldots, \omega^{n-1}$. Thus $\lambda \in \{1, \omega, \omega^2, \ldots, \omega^{n-1}\}$. Conversely, we show that each $1, \omega, \omega^2, \ldots, \omega^{n-1}$ is an eigenvalue of **A** by finding a corresponding eigenvector.

Let
$$\mathbf{x} := \begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}^{\mathsf{T}} \in \mathbb{C}^{n \times 1}$$
. Then $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$
means $x_1 = \lambda x_2, x_2 = \lambda x_3, \dots, x_{n-1} = \lambda x_n$ and $x_n = \lambda x_1$.
For $j = 0, \dots, n-1$, define

$$\mathbf{x}_j := \begin{bmatrix} 1 & 1/\omega^j & 1/\omega^{2j} & \cdots & 1/\omega^{(n-1)j} \end{bmatrix}^\mathsf{T}$$

Now $1/\omega^{(n-1)j} = \omega^j$ since $\omega^n = 1$, and so

$$\mathbf{x}_j := \begin{bmatrix} 1 & 1/\omega^j & 1/\omega^{2j} & \cdots & 1/\omega^{(n-2)j} & \omega^j \end{bmatrix}^\mathsf{T}$$

Hence $\mathbf{A}\mathbf{x}_j = \begin{bmatrix} \omega^j & 1 & 1/\omega^j & 1/\omega^{2j} & \cdots & 1/\omega^{(n-2)j} \end{bmatrix}^{\mathsf{T}} = \omega^j \mathbf{x}_j$. Thus \mathbf{x}_j is an eigenvector of \mathbf{A} corresponding to the eigenvalue ω^j for $j = 0, 1, \dots, n-1$.

We note that since the columns of **A** form an orthonormal set in $\mathbb{C}^{n \times 1}$, the matrix **A** is unitary.

Unitarily Diagonalizable Matrix

We have seen that if the scalars are complex numbers, then every matrix can be unitarily 'upper triangularized'. Now we take up the question: 'Which matrices can be unitarily diagonalized?'. We saw that a matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is unitarily diagonalizable if and only if there is an orthonormal basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A} . Let us investigate this condition further.

Suppose $\mathbf{A} \in \mathbb{K}^{n \times n}$ is unitarily diagonalizable, and let eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$ of \mathbf{A} form an orthonormal basis for $\mathbb{K}^{n \times 1}$. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues of \mathbf{A} , so that $\mathbf{A}\mathbf{u}_j = \lambda_j \mathbf{u}_j$ for $j = 1, \ldots, n$. Let $\mathbf{x} \in \mathbb{K}^{n \times 1}$. Then

$$\mathbf{x} = \sum_{j=1}^{n} \langle \mathbf{u}_{j}, \, \mathbf{x} \rangle \mathbf{u}_{j} \text{ and } \mathbf{A}\mathbf{x} = \sum_{j=1}^{n} \langle \mathbf{u}_{j}, \, \mathbf{x} \rangle \mathbf{A}\mathbf{u}_{j} = \sum_{j=1}^{n} \lambda_{j} \langle \mathbf{u}_{j}, \, \mathbf{x} \rangle \mathbf{u}_{j}.$$

The above representation of $\mathbf{A} \mathbf{x}$ can be used for various purposes. For this reason, we would like to find necessary and/or sufficient conditions under which a square matrix can be unitarily diagonalized. We introduce a new class of matrices.

Definition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is called **normal** if it commutes with its adjoint, that is, $\mathbf{A}^*\mathbf{A} = \mathbf{A}\mathbf{A}^*$.

Examples (i) If **A** is self-adjoint (that is, $\mathbf{A}^* = \mathbf{A}$), or skew self-adjoint (that is, $\mathbf{A}^* = -\mathbf{A}$), or unitary (that is, $\mathbf{A}^*\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^*$), then **A** is normal. (ii) The matrix $\mathbf{A} := \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \in \mathbb{K}^{2\times 2}$ is normal, but it is not self-adjoint, or skew self-adjoint, or unitary. However, not every matrix is normal, as the example $\mathbf{A} := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ shows.

Proposition

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Then \mathbf{A} is normal if and only if

$$\langle \mathsf{A}\mathsf{x}, \, \mathsf{A}\mathsf{y}
angle = \langle \mathsf{A}^*\mathsf{x}, \, \mathsf{A}^*\mathsf{y}
angle \quad \textit{for all } \mathsf{x}, \mathsf{y} \in \mathbb{K}^{n imes 1}$$

Proof. For x, y, $\langle Ax, Ay \rangle = (Ax)^*Ay = x^*A^*Ay$ and $\langle A^*x, A^*y \rangle = (A^*x)^*A^*y = x^*AA^*y$.

If **A** is normal, then clearly, $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{A}^*\mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. Conversely, suppose $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{A}^*\mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. Then letting $\mathbf{x} := \mathbf{e}_j$ and $\mathbf{y} := \mathbf{e}_k$, we see that $\mathbf{e}_j^* \mathbf{A}^* \mathbf{A} \mathbf{e}_k = \mathbf{e}_j^* \mathbf{A} \mathbf{A}^* \mathbf{e}_k$, that is, the (j, k)th entries of $\mathbf{A}^* \mathbf{A}$ and $\mathbf{A} \mathbf{A}^*$ are the same for all $j, k = 1, \dots, n$. Hence $\mathbf{A}^* \mathbf{A} = \mathbf{A} \mathbf{A}^*$, that is, **A** is normal.

The above condition for normality of a matrix **A** says that the lengths of the vectors **Ax** and **A**^{*}**x** should be the same, and the angle between **Ax** and **Ay** should be the same as the angle between **A**^{*}**x** and **A**^{*}**y** for all **x**, **y** $\in \mathbb{K}^{n \times 1}$.