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Recall that we discussed the following in the last lecture.

Notion of a unitary matrix. Examples

A, B ∈ Kn×n are unitarily similar if B = U−1AU for some
unitary U ∈ Kn×n

A ∈ Kn×n is unitarily diagonalizable if it is unitarily
similar to a diagonal matrix.

A ∈ Kn×n is unitarily diagonalizable ⇐⇒ Kn×1 has an
orthonormal basis of eigenvectors of A.

Eigenvalues and eigenvectors of linear maps.

Eigenvalues and eigenvectors of a linear map T : V → V
are the same as the eigenvalues and eigenvectors of the
matrix ME

E (T ) of T with respect to some ordered basis E
of V .

If V is an n dimensional vector subspace over K = C and
if T : V → V is a linear map, then T has an eigenvalue.
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Theorem

Let K := C, and let V be a vector subspace of dimension n.
Let T : V → V be a linear map. Then there is an orthonormal
basis E for V such that ME

E (T ) is upper triangular.

Proof. We use induction on the dimension n of V .

Let n = 1. Let u be a unit vector in V . Then
V = {αu : α ∈ C}. Hence there is λ ∈ C such that
T (u) = λu. Define E := (u). Then the 1× 1 matrix
ME

E (T ) = [λ] is clearly upper triangular.

Let n ≥ 2 and assume that the proposition holds for all vector
subspaces of dimension n − 1. By the previous lemma, there
are a unit vector u1 ∈ V and λ1 ∈ C such that T (u1) = λ1u1.

We extend the orthonormal set {u1} in V to an ordered
orthonormal basis E := (u1, x2, . . . , xn) for V .
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Let W := span{x2, . . . , xn}. Then W is a vector subspace of
dimension n − 1. Let x ∈ W . Then T (x) ∈ V and so we can
write T (x) = b u1 + w for unique b ∈ C and w ∈ W .

Define S(x) := w. It is easy to see that S : W → W is linear.
By the induction hypothesis, there is an ordered orthonormal
basis F := (u2, . . . ,un) for W such that the (n − 1)×(n − 1)
matrix MF

F (S) is upper triangular.

Let MF
F (S) = [bjk ], where bjk ∈ C for j , k = 2, . . . , n and

bjk = 0 if 2 ≤ k < j ≤ n. Then

S(uk) =
n∑

j=2

bjkuj =
k∑

j=2

bjkuj for k = 2, . . . , n.

Define E := (u1,u2, . . . ,un). Since u1 ∈ W⊥={u2, . . . ,un}⊥,
the set {u1,u2, . . . ,un} is orthonormal.
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Let us find ME
E (T ). First, T (u1) = λ1u1.

Next, let k ∈ {2, . . . , n}. Then there are unique b1k ∈ C and
wk ∈ W such that T (uk) = b1ku1 + wk . Hence

T (uk) = b1ku1 + wk = b1ku1 + S(uk) =
k∑

j=1

bjkuj .

Define b11 := λ1 and bj1 := 0 for j = 2, . . . , n. Then
T (u1) = b11u1, and thus

T (uk) = b1ku1 + · · ·+ bkkuk for k = 1, . . . , n.

It follows that ME
E (T ) is the n × n upper triangular matrix

[bjk ].

We are now ready to prove that every A ∈ Cn×n is similar to
an upper triangular matrix. In fact, we shall prove a stronger
result.
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Theorem (Schur)

Let A ∈ Cn×n. Then A is unitarily similar to an upper
triangular matrix.

Proof. Consider the linear transformation TA : Cn×1 → Cn×1

defined by TA(x) := Ax. By an earlier proposition, there is an
ordered orthonormal basis E for Cn×1 such that ME

E (TA) is
upper triangular.

Let B := ME
E (TA). Then B is upper triangular, and by the

previous proposition, A is unitarily similar to B.

The Schur Theorem is not true for real scalars. For example,

A :=

[
0 −1
1 0

]
is not similar to any upper triangular matrix B;

otherwise the diagonal entries of B would be the eigenvalues
of A, but we have seen that A has no eigenvalues.
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Since the proof of the existence of a unitary matrix U and an
upper triangular matrix B satisfying B = U−1AU is not
constructive, Schur’s theorem does not help in finding the
eigenvalues of A. However, some important information about
the eigenvalues of A can be gathered from the following
corollary of Schur’s theorem.

Corollary

Let A ∈ Cn×n, and let λ1, . . . , λn be the eigenvalues of A
counted according to their algebraic multiplicities. Then

(i) traceA =
∑n

j=1 λj ,

(ii) detA =
∏n

j=1 λj , and

(iii) p(λj) = 0 for j = 1, . . . , n, whenever p(t) is a polynomial
satisfying p(A) = O.
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Proof of Corollary. Consider the characteristic polynomial of A:

det(A− tI) = (λ1 − t) · · · (λn − t)

= (−1)ntn +

(
n∑

j=1

λj

)
(−t)n−1 + · · ·+

n∏
j=1

λj .

Comparing the coefficient of tn−1, we obtain (i), while
comparing the constant coefficient, we obtain (ii).

(iii) Suppose p(t) is a polynomial such that p(A) = O. Since

Bk = (U−1AU)k = U−1AkU for all k ∈ N,

we see that p(B) = U−1p(A)U = O. Now let j ∈ {1, . . . , n}.
Then λj is the (j , j)th entry of B, and since B is upper
triangular, λkj is the (j , j)th entry of Bk for all k ∈ N. It
follows that p(λj) is the (j , j)th entry of p(B). It must be
equal to 0 because p(B) = O.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 16



Examples
(1) Let A ∈ C3×3 be such that A2 = 6A and traceA = 12.
Let us determine the eigenvalues of A.

Consider the polynomial p(t) = t2 − 6t. Since p(A) = O, we
see that p(λ) = λ2 − 6λ = λ(λ− 6) = 0 for every eigenvalue
λ of A. Since traceA = 12, the sum of the eigenvalues of A
(counting algebraic multiplicities) is equal to 12. Hence the
eigenvalues of A are 6, 6, 0, that is, 6 is an eigenvalue of A of
algebraic multiplicity 2, and 0 is an eigenvalue of A of
algebraic multiplicity 1.

(ii) Let A :=
[
e2 e3 · · · en e1

]
, where e1, . . . , en are the

basic column vectors in Cn×1.
Then Ae1 = e2, . . . ,Aen−1 = en and Aen = e1. Hence

A
[
x1 x2 · · · xn−1 xn

]T
=
[
xn x1 x2 · · · xn−1

]T
for
[
x1 x2 · · · xn−1 xn

]T ∈ Cn×1.
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The matrix A represents a cyclic shift to the right. It follows
that An = I. Let λ be an eigenvalue of A. Then λn = 1.

Note that A :=



0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0
0 1 0 0 · · · · · · 0
0 0 1 0 · · · · · · 0
0 0 0 1 · · · · · · 0
...

... · · · · · · · · · · · · ...
0 0 · · · 0 1 0 0
0 0 · · · 0 0 1 0


.

Let ω := e2πi/n. Then the nth roots of 1 are
1, ω, ω2, . . . , ωn−1. Thus λ ∈ {1, ω, ω2, . . . , ωn−1}.
Conversely, we show that each 1, ω, ω2, . . . , ωn−1 is an
eigenvalue of A by finding a corresponding eigenvector.
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Let x :=
[
x1 x2 · · · xn−1 xn

]T ∈ Cn×1. Then Ax = λ x
means x1 = λx2, x2 = λx3, . . . , xn−1 = λxn and xn = λx1.

For j = 0, . . . , n − 1, define

xj :=
[
1 1/ωj 1/ω2j · · · 1/ω(n−1)j]T .

Now 1/ω(n−1)j = ωj since ωn = 1, and so

xj :=
[
1 1/ωj 1/ω2j · · · 1/ω(n−2)j ωj

]T
.

Hence Axj =
[
ωj 1 1/ωj 1/ω2j · · · 1/ω(n−2)j]T = ωjxj .

Thus xj is an eigenvector of A corresponding to the eigenvalue
ωj for j = 0, 1, . . . , n − 1.

We note that since the columns of A form an orthonormal set
in Cn×1, the matrix A is unitary.
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Unitarily Diagonalizable Matrix

We have seen that if the scalars are complex numbers, then
every matrix can be unitarily ‘upper triangularized’. Now we
take up the question: ‘Which matrices can be unitarily
diagonalized?’. We saw that a matrix A ∈ Kn×n is unitarily
diagonalizable if and only if there is an orthonormal basis for
Kn×1 consisting of eigenvectors of A. Let us investigate this
condition further.

Suppose A ∈ Kn×n is unitarily diagonalizable, and let
eigenvectors u1, . . . ,un of A form an orthonormal basis for
Kn×1. Let λ1, . . . , λn be the corresponding eigenvalues of A,
so that Auj = λjuj for j = 1, . . . , n. Let x ∈ Kn×1. Then

x =
n∑

j=1

〈uj , x〉uj and Ax =
n∑

j=1

〈uj , x〉Auj =
n∑

j=1

λj〈uj , x〉uj .
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The above representation of Ax can be used for various
purposes. For this reason, we would like to find necessary
and/or sufficient conditions under which a square matrix can
be unitarily diagonalized. We introduce a new class of
matrices.

Definition

A matrix A ∈ Kn×n is called normal if it commutes with its
adjoint, that is, A∗A = AA∗.

Examples (i) If A is self-adjoint (that is, A∗=A), or skew
self-adjoint (that is, A∗ = −A), or unitary (that is,
A∗A = I = AA∗), then A is normal.

(ii) The matrix A :=

[
1 −1
1 1

]
∈ K2×2 is normal, but it is not

self-adjoint, or skew self-adjoint, or unitary. However, not

every matrix is normal, as the example A :=

[
1 1
0 1

]
shows.
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Proposition

Let A ∈ Kn×n. Then A is normal if and only if

〈Ax, Ay〉 = 〈A∗x, A∗y〉 for all x, y ∈ Kn×1.

Proof. For x, y, 〈Ax, Ay〉 = (Ax)∗Ay = x∗A∗Ay and
〈A∗x, A∗y〉 = (A∗x)∗A∗y = x∗AA∗y.

If A is normal, then clearly, 〈Ax, Ay〉 = 〈A∗x, A∗y〉 for all
x, y ∈ Kn×1. Conversely, suppose 〈Ax, Ay〉 = 〈A∗x, A∗y〉 for
all x, y ∈ Kn×1. Then letting x := ej and y := ek , we see that
e∗j A∗Aek = e∗j AA∗ek , that is, the (j , k)th entries of A∗A
and AA∗ are the same for all j , k = 1, . . . , n. Hence
A∗A = AA∗, that is, A is normal.

The above condition for normality of a matrix A says that the
lengths of the vectors Ax and A∗x should be the same, and
the angle between Ax and Ay should be the same as the angle
between A∗x and A∗y for all x, y ∈ Kn×1.
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