MA 110 Linear Algebra and Differential Equations Lecture 17

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay http://www.math.iitb.ac.in/~srg/

Spring 2025

Recall that we discussed the following in the last lecture.

- Schur's Theorem: Any A ∈ C^{n×n} is unitarily similar to an upper triangular matrix.
- Trace of A ∈ C^{n×n} as sum of eigevalues, and det A as product of eigenvalues. Also polynomial equations satisfied by A are satisfied by every eigenvalue of A. Examples.
- $\mathbf{A} \in \mathbb{K}^{n \times n}$ is a normal matrix if $\mathbf{A}^* \mathbf{A} = \mathbf{A} \mathbf{A}^*$.
- If A ∈ C^{n×n} is self-adjoint (A^{*} = A), or skew self-adjoint (A^{*} = −A), or unitary (A^{*} = A⁻¹), then A is normal. In particular, if A ∈ R^{n×n} is symmetric, skew-symmetric, or orthogonal, then A is normal. But if A is normal, then it need not have any of the above properties. Also, there exist n × n matrices over K that are not normal.

Proposition

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Then \mathbf{A} is normal if and only if

$$\langle \mathsf{A}\mathsf{x}, \, \mathsf{A}\mathsf{y} \rangle = \langle \mathsf{A}^*\mathsf{x}, \, \mathsf{A}^*\mathsf{y} \rangle \quad \textit{for all } \mathsf{x}, \mathsf{y} \in \mathbb{K}^{n imes 1}$$

Proof. For x, y, $\langle Ax, Ay \rangle = (Ax)^*Ay = x^*A^*Ay$ and $\langle A^*x, A^*y \rangle = (A^*x)^*A^*y = x^*AA^*y$.

If **A** is normal, then clearly, $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{A}^*\mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. Conversely, suppose $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{A}^*\mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. Then letting $\mathbf{x} := \mathbf{e}_j$ and $\mathbf{y} := \mathbf{e}_k$, we see that $\mathbf{e}_j^* \mathbf{A}^* \mathbf{A} \mathbf{e}_k = \mathbf{e}_j^* \mathbf{A} \mathbf{A}^* \mathbf{e}_k$, that is, the (j, k)th entries of $\mathbf{A}^* \mathbf{A}$ and $\mathbf{A} \mathbf{A}^*$ are the same for all $j, k = 1, \ldots, n$. Thus we see that $\mathbf{A}^* \mathbf{A} = \mathbf{A} \mathbf{A}^*$, that is, \mathbf{A} is normal.

The above condition for normality of a matrix **A** says that the lengths of the vectors **Ax** and **A**^{*}**x** should be the same, and the angle between **Ax** and **Ay** should be the same as the angle between **A**^{*}**x** and **A**^{*}**y** for all **x**, **y** $\in \mathbb{K}^{n \times 1}$.

Corollary

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$ be normal. Then $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{A}^*\mathbf{x}\|$ for all \mathbf{x} in $\mathbb{K}^{n \times 1}$. Let \mathbf{x} be an eigenvector of \mathbf{A} corresponding to an eigenvalue λ . Then \mathbf{x} itself is an eigenvector of \mathbf{A}^* corresponding to the eigenvalue $\overline{\lambda}$ of \mathbf{A}^* . Further, if \mathbf{y} is an eigenvector of \mathbf{A} corresponding to an eigenvalue $\mu \neq \lambda$, then \mathbf{y} is orthogonal to \mathbf{x} .

Proof. Let $\mathbf{x} \in \mathbb{K}^{n \times 1}$. Since **A** is normal,

$$\|\mathbf{A}\mathbf{x}\|^2 = \langle \mathbf{A}\mathbf{x}, \, \mathbf{A}\mathbf{x} \rangle = \langle \mathbf{A}^*\mathbf{x}, \, \mathbf{A}^*\mathbf{x} \rangle = \|\mathbf{A}^*\mathbf{x}\|^2 \quad \text{for all } \mathbf{x} \in \mathbb{K}^{n \times 1}.$$

Next, let **x** be an eigenvector of **A** corresponding to an eigenvalue λ . Then $\|\mathbf{A}^*\mathbf{x} - \overline{\lambda}\mathbf{x}\| = \|\mathbf{A}\mathbf{x} - \lambda\mathbf{x}\| = 0$. Hence **x** itself is an eigenvector \mathbf{A}^* corresponding to the eigenvalue $\overline{\lambda}$. Finally, let **y** be an eigenvector of **A** corresponding to an eigenvalue $\mu \neq \lambda$. Then

$$\mu \langle \mathbf{x}, \, \mathbf{y} \rangle = \langle \mathbf{x}, \, \mu \mathbf{y} \rangle = \langle \mathbf{x}, \, \mathbf{A} \mathbf{y} \rangle = \langle \mathbf{A}^* \mathbf{x}, \, \mathbf{y} \rangle = \langle \overline{\lambda} \mathbf{x}, \, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \, \mathbf{y} \rangle.$$

Since $\mu \neq \lambda$, we see that $\langle \mathbf{x}, \, \mathbf{y} \rangle = 0$, that is, $\mathbf{x} \perp \mathbf{y}$.

We now characterize a diagonal matrix in terms of its upper triangularity and normality.

Lemma

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonal if and only if it is upper triangular and normal.

Proof. Let $\mathbf{A} := \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then \mathbf{A} is upper triangular. Also, it is normal since $\mathbf{A}^*\mathbf{A} = \operatorname{diag}(|\lambda_1|^2, \ldots, |\lambda_n|^2) = \mathbf{A}\mathbf{A}^*$.

Conversely, suppose $\mathbf{A} := [a_{jk}]$ is upper triangular and normal. Let $\mathbf{B} := \mathbf{A}^* \mathbf{A} = [b_{jk}]$ and $\mathbf{C} := \mathbf{A}\mathbf{A}^* = [c_{jk}]$. Since \mathbf{A} is upper triangular, $a_{jk} = 0$ if j > k, and so for k = 1, ..., n,

$$b_{kk} = \sum_{\ell=1}^{n} \overline{a}_{\ell k} a_{\ell k} = \sum_{\ell=1}^{k} |a_{\ell k}|^2$$
 and $c_{kk} = \sum_{\ell=1}^{n} a_{k\ell} \overline{a}_{k\ell} = \sum_{\ell=k}^{n} |a_{k\ell}|^2$.

Since **A** is normal, we see that $b_{kk} = c_{kk}$ for k = 1, ..., n.

Let
$$k = 1$$
. Then
 $|a_{11}|^2 = b_{11} = c_{11} = |a_{11}|^2 + |a_{12}|^2 + \dots + |a_{1n}|^2$.
Hence $a_{12} = \dots = a_{1n} = 0$.
Next, let $k = 2$. Then
 $|a_{22}|^2 = |a_{12}|^2 + |a_{22}|^2 = b_{22} = c_{22} = |a_{22}|^2 + |a_{23}|^2 + \dots + |a_{2n}|^2$.
Hence $a_{23} = \dots = a_{2n} = 0$.

Proceeding in this manner, for k = n - 1, we obtain $|a_{(n-1)(n-1)}|^2 = |a_{1(n-1)}|^2 + \dots + |a_{(n-1)(n-1)}|^2 = b_{(n-1)(n-1)} = c_{(n-1)(n-1)} = |a_{(n-1)(n-1)}|^2 + |a_{(n-1)n}|^2.$ Hence $a_{(n-1)n} = 0$.

Thus $a_{jk} = 0$ if j < k, that is, **A** is lower triangular. Since **A** is given to be upper triangular, it is is in fact diagonal.

We are now ready to state and prove necessary conditions as well as sufficient conditions for diagonalizing a matrix unitarily.

Proposition (Spectral Theorem for Normal Matrices)

(i) If $\mathbf{A} \in \mathbb{K}^{n \times n}$ is unitarily diagonalizable, then \mathbf{A} is normal.

(ii) If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal, then \mathbf{A} is unitarily diagonalizable.

Proof.

(i) Let **U** be a unitary matrix and **D** be a diagonal matrix such that $\mathbf{D} = \mathbf{U}^* \mathbf{A} \mathbf{U}$. Then $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{U}^*$, and so $\mathbf{A}^* = \mathbf{U} \mathbf{D}^* \mathbf{U}^*$. Further, since **D** is always normal, $\mathbf{D}^* \mathbf{D} = \mathbf{D} \mathbf{D}^*$. Hence

$$\begin{aligned} \mathbf{A}^* \mathbf{A} &= (\mathbf{U}\mathbf{D}^*\mathbf{U}^*)(\mathbf{U}\mathbf{D}\mathbf{U}^*) = \mathbf{U}(\mathbf{D}^*\mathbf{D})\mathbf{U}^* \\ &= \mathbf{U}(\mathbf{D}\mathbf{D}^*)\mathbf{U}^* = (\mathbf{U}\mathbf{D}\mathbf{U}^*)(\mathbf{U}\mathbf{D}^*\mathbf{U}^*) \\ &= \mathbf{A}\mathbf{A}^*. \end{aligned}$$

Thus **A** is normal.

(ii) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. By Schur's theorem, there is a unitary matrix \mathbf{U} and an upper triangular matrix \mathbf{B} with $\mathbf{B} = \mathbf{U}^* \mathbf{A} \mathbf{U}$.

Suppose **A** is normal, that is, $\mathbf{A}^*\mathbf{A} = \mathbf{A}\mathbf{A}^*$. Then using $\mathbf{B} = \mathbf{U}^*\mathbf{A}\mathbf{U}$, we can readily check that $\mathbf{B}^*\mathbf{B} = \mathbf{B}\mathbf{B}^*$, that is, **B** is normal.

Since **B** is upper triangular and normal, **B** is diagonal by the previous lemma. Thus **A** is unitarily diagonalizable.

Remarks

(i) The unitary matrix ${\bf U}$ and the diagonal matrix ${\bf B}$ such that ${\bf A}={\bf U}{\bf B}{\bf U}^*$ are not unique. We shall give some examples later.

(ii) Part (ii) of the proposition is not true for real scalars, that is, even if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is normal, there may be no unitary $\mathbf{U} \in \mathbb{R}^{n \times n}$ and diagonal $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D} = \mathbf{U}^* \mathbf{A} \mathbf{U}$. For example, $\mathbf{A} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$ is normal, but it is not diagonalizable using real scalars since it has no real eigenvalue.

Just as we have proved that a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal if and only if it is unitarily diagonalizable, we prove a similar result for self-adjoint matrices. We will give a proof that avoids the use of Spectral Theorem for Normal Matrices.

Proposition (Spectral Theorem for Self-Adjoint Matrices)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then \mathbf{A} is self-adjoint if and only if \mathbf{A} is unitarily diagonalizable and all eigenvalues of \mathbf{A} are real.

Proof. Suppose **A** is unitarily diagonalizable and all eigenvalues of **A** are real. Let **U** be a unitary matrix and let **D** be a diagonal matrix such that $\mathbf{D} = \mathbf{U}^* \mathbf{A} \mathbf{U}$. Then the diagonal entries of **D** are the eigenvalues of **A**, and so they are real. Hence $\mathbf{D}^* = \mathbf{D}$. Consequently,

$$\mathbf{A}^* = (\mathbf{U}\mathbf{D}\mathbf{U}^*)^* = \mathbf{U}\mathbf{D}^*\mathbf{U}^* = \mathbf{U}\mathbf{D}\mathbf{U}^* = \mathbf{A}.$$

Thus **A** is self-adjoint.

Conversely, suppose **A** is self-adjoint. By Schur's theorem, there is a unitary matrix **U**, and also an upper triangular matrix **B** such that $\mathbf{B} = \mathbf{U}^* \mathbf{A} \mathbf{U}$. Then

$$\mathbf{B}^* = (\mathbf{U}^* \mathbf{A} \mathbf{U})^* = \mathbf{U}^* \mathbf{A}^* \mathbf{U} = \mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{B},$$

so that **B** is self-adjoint. Since **B** is upper triangular and self-adjoint, the previous lemma shows that **B** is in fact diagonal with all diagonal entries real. Thus **A** is unitarily diagonalizable. Also, all eigenvalues of **A** are real, since they are the diagonal entries of the matrix **B**.

Our short proof of the spectral theorem for self-adjoint matrices is based on Schur's theorem. This result can also be deduced from part (ii) of the spectral theorem for normal matrices since every self-adjoint matrix in normal, provided we independently show that every eigenvalue of a self-adjoint matrix is real. The latter statement can be easily proved.

Proposition

If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is self-adjoint, then every eigenvalue of \mathbf{A} is real.

Proof.

Let λ be an eigenvalue of a self-adjoint matrix ${\bf A},$ and let ${\bf x}$ be a corresponding unit eigenvector. Then

$$\lambda = \lambda \mathbf{x}^* \mathbf{x} = \mathbf{x}^* \mathbf{A} \mathbf{x} = \mathbf{x}^* \mathbf{A}^* \mathbf{x} = (\mathbf{A} \mathbf{x})^* \mathbf{x} = (\lambda \mathbf{x})^* \mathbf{x} = \overline{\lambda} \mathbf{x}^* \mathbf{x} = \overline{\lambda}.$$

Hence λ is real.

Finally, let us consider a real symmetric matrix \mathbf{A} , that is, $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$. We shall prove a spectral theorem for \mathbf{A} which involves only real scalars.

A unitary matrix with real entries is also called an **orthogonal matrix**. Thus $\mathbf{C} \in \mathbb{R}^{n \times n}$ is orthogonal if its columns form an orthonormal subset of $\mathbb{R}^{n \times 1}$. Clearly, an orthogonal matrix is invertible and its inverse is the same as its transpose.

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called **orthogonally diagonalizable** if there is an orthogonal matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$. We prove Jacobi's theorem.

Proposition (Spectral Theorem for Real Symmetric Matrices)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then \mathbf{A} is symmetric if and only if \mathbf{A} is orthogonally diagonalizable. In this case, \mathbf{A} has *n* real eigenvalues counted according to their algebraic multiplicities.

Proof.

Suppose **A** is orthogonally diagonalizable. Let $\mathbf{C} \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, and let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be a diagonal matrix such that $\mathbf{D} = \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C}$. Since $\mathbf{D}^{\mathsf{T}} = \mathbf{D}$,

$$\mathbf{A}^{\mathsf{T}} = (\mathbf{C}\mathbf{D}\mathbf{C}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{C}\mathbf{D}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}} = \mathbf{C}\mathbf{D}\mathbf{C}^{\mathsf{T}} = \mathbf{A}.$$

Thus **A** is symmetric.

Conversely, suppose **A** is symmetric. Since \mathbb{R} can be considered as a subset of \mathbb{C} , we treat **A** as a matrix with complex entries. Then $\mathbf{A}^* = \mathbf{A}$, that is, **A** is self-adjoint, and so all eigenvalues of **A** are real.

By the spectral theorem for self-adjoint matrices, there is a unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{C}^{n \times n}$ such that $\mathbf{D} = \mathbf{U}^{-1}\mathbf{A}\mathbf{U}$, that is, $\mathbf{A}\mathbf{U} = \mathbf{U}\mathbf{D}$. Since the diagonal entries of \mathbf{D} are the eigenvalues of \mathbf{A} , we see that $\mathbf{D} \in \mathbb{R}^{n \times n}$.

The *n* columns of the unitary matrix **U** form an orthonormal set in $\mathbb{C}^{n \times n}$, and each column is an eigenvector of **A** corresponding to an eigenvalue of **A**.

Let λ be an eigenvalue of **A**. Then $\lambda \in \mathbb{R}$. Using the Gauss Elimination Method, we may find the basic solutions of the homogeneous linear system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$. Their entries are real since all entries of **A** are real and $\lambda \in \mathbb{R}$. These solutions form a basis for the eigenspace of **A** corresponding to λ . Further, we can use the Gram-Schmidt Orthogonalization Process for these basic solutions to obtain an orthonormal basis for the eigenspace of **A** corresonding to λ . In this process, the entries of the basis vectors remain real.

We replace the *n* columns of the unitary matrix **U** by *n* eigenvectors of **A** which form an orthonormal set in $\mathbb{R}^{n \times n}$. Let $\mathbf{C} \in \mathbb{R}^{n \times n}$ denote the matrix with these columns arranged in the same order as the columns of **U**. Then $\mathbf{D} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$.

The spectral theorem says that given a normal matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ or a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, there is a unitary matrix \mathbf{U} and a diagonal matrix \mathbf{D} such that $\mathbf{D} = \mathbf{U}^{-1}\mathbf{A}\mathbf{U}$, that is, $\mathbf{A}\mathbf{U} = \mathbf{U}\mathbf{D}$. Let us write the matrix \mathbf{U} in terms of its n columns $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}$ and let $\mathbf{D} = \text{diag}(\lambda_1, \dots, \lambda_n)$.

Then the equation

$$\mathbf{A}\begin{bmatrix}\mathbf{u}_1 & \cdots & \mathbf{u}_n\end{bmatrix} = \begin{bmatrix}\mathbf{u}_1 & \cdots & \mathbf{u}_n\end{bmatrix}\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$$

means $\mathbf{A}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1, \dots, \mathbf{A}\mathbf{u}_n = \lambda_n \mathbf{u}_n$, so that $\mathbf{u}_1, \dots, \mathbf{u}_n$ are eigenvectors of \mathbf{A} corresponding to the eigenvalues $\lambda_1, \dots, \lambda_n$ respectively. We may list the eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ in some other order to form another unitary matrix and correspondingly change the ordering of the eigenvalues $\lambda_1, \dots, \lambda_n$ to form another diagonal matrix which will serve the same purpose.

Since the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **A** may not be distinct, we may pool together all eigenvectors among $\mathbf{u}_1, \ldots, \mathbf{u}_n$ corresponding to the same eigenvalue.

Also, since A is diagonalizable, the geometric multiplicity of any eigenvalue of A is equal to its algebraic multiplicity.

Thus if we know the eigenvalues of \mathbf{A} , then we may use the following procedure to form a unitary matrix \mathbf{U} whose *n* columns are eigenvectors of \mathbf{A} .

1. Let μ_1, \ldots, μ_k be the distinct eigenvalues of **A**. These are the distinct roots of the characteristic polynomial of **A**. Let the algebraic multiplicity of μ_j be m_j , so that $m_1 + \cdots + m_k = n$. Also, the geometric multiplicity g_j of μ_j is equal to m_j , and so $g_1 + \cdots + g_k = n$.

If in fact, **A** is self-adjoint, then each μ_j is real.

2. For each j = 1, ..., k, find a basis for the null space $\mathcal{N}(\mathbf{A} - \mu_j \mathbf{I})$ consisting of g_j elements by solving the homogeneous linear system $(\mathbf{A} - \mu_j \mathbf{I})\mathbf{x} = \mathbf{0}$ using the Gauss Elimination Method.

3. For each j = 1, ..., k, obtain an ordered orthonormal basis $(\mathbf{u}_{j,1}, ..., \mathbf{u}_{j,g_j})$ for $\mathcal{N}(\mathbf{A} - \mu_j \mathbf{I})$ using the Gram-Schmidt Orthonormalization Process.

4. Form an n×n matrix U as follows:

$$\mathbf{U} := \begin{bmatrix} \mathbf{u}_{11} & \dots & \mathbf{u}_{1g_1} & \mathbf{u}_{21} & \dots & \mathbf{u}_{2g_2} & \dots & \dots & \mathbf{u}_{k1} & \dots & \mathbf{u}_{kg_k} \end{bmatrix}$$

Now since **A** is a normal matrix, $\mathbf{u}_{ik} \perp \mathbf{u}_{j\ell}$ if $i \neq j$. Thus the *n* columns of **U** form an orthonormal set. Hence **U** is unitary. Form an $n \times n$ diagonal matrix **D** as follows:

$$\mathbf{D} := \operatorname{diag}(\lambda_{11}, \dots, \lambda_{1g_1}, \lambda_{21}, \dots, \lambda_{2g_2}, \dots, \dots, \lambda_{k1}, \dots, \lambda_{kg_k}),$$

where $\lambda_{11} = \dots = \lambda_{1g_1} = \mu_1, \dots, \lambda_{k1} = \dots = \lambda_{kg_k} = \mu_k.$
Then $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{D}$.

A similar procedure works for a real symmetric matrix **A**, and so we can find an orthogonal matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that $\mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C} = \mathbf{D}$. Example

Let
$$\mathbf{A} := \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$$
. Clearly, $\mathbf{A}^* = \mathbf{A}$. So \mathbf{A} is self-adjoint.

1. $p_{\mathbf{A}}(t) := \det(\mathbf{A} - t\mathbf{I}) = (3 - t)^2(3 + t)$. Hence $\mu_1 = 3$ with $m_1 = g_1 = 2$, and $\mu_2 = -3$ with $m_2 = g_2 = 1$.

2. (i) (A - 3I)x = 0, that is, $\begin{vmatrix} -2 & 2 & -2 \\ 2 & -2 & 2 \\ -2 & 2 & -2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix} \iff \begin{vmatrix} -2 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $\iff x_1 - x_2 + x_3 = 0$ by the Gauss Elimination Method. Hence $\mathbf{x}_{11} := \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{x}_{12} := \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$ form a basis for the null space $\mathcal{N}(\mathbf{A} - \mathbf{3I})$. (ii) Similarly, $\mathbf{x}_{21} := \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\mathsf{T}}$ forms a basis for the null space $\mathcal{N}(\mathbf{A} + 3\mathbf{I})$.

3. Gram-Schmidt Orthogonalization Process gives $\mathbf{u}_{11} := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{u}_{12} := \begin{bmatrix} -1/\sqrt{6} & 1/\sqrt{6} & 2/\sqrt{6} \end{bmatrix}^{\mathsf{T}}$, which form an orthonormal basis for $\mathcal{N}(\mathbf{A} - 3\mathbf{I})$.

Also, $\mathbf{u}_{21} := \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}^{\mathsf{T}}$ forms an orthonormal basis for $\mathcal{N}(\mathbf{A} + 3\mathbf{I})$.

4. Let
$$\mathbf{U} := \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

and $\mathbf{D} := \operatorname{diag}(3, 3, -3)$. Then $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{D}$.

We now show that the unitary matrix **U** and the diagonal matrix **D** satisfying $\mathbf{U}^*\mathbf{A}\mathbf{U} = \mathbf{D}$ we have found are not unique.

For example, let us interchange the order of the columns of \mathbf{U} and make a corresponding interchange in the diagonal entries of \mathbf{D} .

Thus
$$\mathbf{U} := egin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & -1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & 2/\sqrt{6} \end{bmatrix}$$

and $\mathbf{D} := \text{diag}(3, -3, 3)$ would also satisfy $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{D}$.

Further, we could have chosen $\mathbf{x}_{11} := \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$ and $\mathbf{x}_{12} := \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T$ as basis vectors for the null space $\mathcal{N}(\mathbf{A} - 3\mathbf{I})$, and orthonormalized them to obtain $\mathbf{u}_{11} := \begin{bmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}^T$ & $\mathbf{u}_{12} := \begin{bmatrix} -2/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix}^T$. Then $\mathbf{U} := \begin{bmatrix} 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$

and $\mathbf{D} := \text{diag}(3, 3, -3)$ would also satisfy $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{D}$.