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Recall that we discussed the following in the last lecture.

@ Schur's Theorem: Any A € C™" is unitarily similar to an
upper triangular matrix.

@ Trace of A € C"™" as sum of eigevalues, and det A as
product of eigenvalues. Also polynomial equations
satisfied by A are satisfied by every eigenvalue of A.
Examples.

@ A € K™" is a normal matrix if A*A = A A*.

o If A € C™" is self-adjoint (A*=A), or skew self-adjoint
(A* = —A), or unitary (A* = A~1), then A is normal. In
particular, if A € R"™ " is symmetric, skew-symmetric, or
orthogonal, then A is normal. But if A is normal, then it
need not have any of the above properties. Also, there
exist n x n matrices over K that are not normal.
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Proposition
Let A € K", Then A is normal if and only if

(Ax, Ay) = (A*x, A*y) for all x,y € K™,

Proof. For x,y, (Ax, Ay) = (Ax)*Ay = x*A*Ay and

(A*x, A*y) = (A*x)*A*y = x*A A*y.

If A is normal, then clearly, (Ax, Ay) = (A*x, A*y) for all
x,y € K™, Conversely, suppose (Ax, Ay) = (A*x, A*y) for
all x,y € K™, Then letting x := e; and y := e, we see that
e/A*Ae, = e AAe, that is, the (j, k)th entries of A*A
and A A* are the same for all j,k =1,...,n. Thus we see
that A*A = A A* that is, A is normal. m

The above condition for normality of a matrix A says that the
lengths of the vectors Ax and A*x should be the same, and
the angle between Ax and Ay should be the same as the angle
between A*x and A*y for all x, y € K",
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Corollary

Let A € K™ be normal. Then ||Ax| = ||[A*x]| for all x in
K™, Let x be an eigenvector of A corresponding to an
eigenvalue \. Then x itself is an eigenvector of A*
corresponding to the eigenvalue A of A*. Further, if y is an
eigenvector of A corresponding to an eigenvalue 1 # A, then y
is orthogonal to x.

Proof. Let x € K"*1. Since A is normal,
|Ax||*> = (Ax, Ax) = (A*x, A*x) = |[A*x||? for all x € K™

Next, let x be an eigenvector of A corresponding to an
eigenvalue \. Then ||A*x — Ax|| = ||Ax — Ax|| = 0. Hence x
itself is an eigenvector A* corresponding to the eigenvalue .
Finally, let y be an eigenvector of A corresponding to an
eigenvalue i # \. Then

uix, y) = (x, py) = (x, Ay) = (A", y) = (Ax, y) = A{x, y).
Since 1 # A, we see that (x, y) =0, thatis, x L y. ]
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We now characterize a diagonal matrix in terms of its upper
triangularity and normality.

A matrix A € K"*" is diagonal if and only if it is upper
triangular and normal.

Proof. Let A :=diag()\1,...,A,). Then A is upper triangular.
Also, it is normal since A*A = diag(|\1[%, ..., |\.?) = AA*,

Conversely, suppose A := [aj] is upper triangular and normal.
Let B := A*A = [by] and C := AA* = [ci]. Since A is

upper triangular, aj = 0if j > k, and so for k =1,...,n,
n k n n

= 2 - 2

b = E agkdek = E \aek| and ¢ = E ayedkr = E ’ake\ .
=1 =1 =1 =k
Since A is normal, we see that by = ¢ for k=1,...,n.
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Let k = 1. Then

|~311|2 =by =01 = |311|2 + ’312|2 + -+ |31n|2-
Hence’alzz--- :aln:O‘.

Next, let k = 2. Then

|aa|? = |a12|?+]a02]® = boy = c20 = |ana|*+]a2s|?+- - -+ 22|
Hence’ag3=--- :ag,,=O‘.

Proceeding in this manner, for k = n — 1, we obtain
|a(n-1)(n-1)|* =lar(n-1)? Foot |a(n-1)(n-1)[> = b(n-1)(n-1) =
Cn-1)(n—1) = |a(n—1)(n—1)|° + |a(n—1)n|"-

Hence | a(,—1), = 0.

Thus ajx =0 if j < k, that is, A is lower triangular. Since A is

given to be upper triangular, it is is in fact diagonal. O

We are now ready to state and prove necessary conditions as
well as sufficient conditions for diagonalizing a matrix unitarily.
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Proposition (Spectral Theorem for Normal Matrices)

(i) If A € K™ is unitarily diagonalizable, then A is normal.

(i) If A € C"™" is normal, then A is unitarily diagonalizable.

Proof.

(i) Let U be a unitary matrix and D be a diagonal matrix such
that D = U*AU. Then A = UDU*, and so A* = UD*U*.
Further, since D is always normal, D*D = DD*. Hence

A*A = (UD*U*)(UDU*)=U(D*D)U*
= U(DD*)U* = (UDU*)(UD*U%)
AA*,
Thus A is normal.

(i) Let A € C"™". By Schur's theorem, there is a unitary
matrix U and an upper triangular matrix B with B = U*AU.
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Suppose A is normal, that is, A*A = A A*. Then using
B = U*AU, we can readily check that B*B = BB*, that is,

B is normal.

Since B is upper triangular and normal, B is diagonal by the
previous lemma. Thus A is unitarily diagonalizable. O]

Remarks

(i) The unitary matrix U and the diagonal matrix B such that
A = UBU™ are not unique. We shall give some examples
later.

(i) Part (ii) of the proposition is not true for real scalars, that
is, even if A € R"*" is normal, there may be no unitary

U € R™" and diagonal D € R"*" such that D = U*AU. For
0 —1
1 0
diagonalizable using real scalars since it has no real eigenvalue.

example, A := € R?*? is normal, but it is not
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Just as we have proved that a matrix A € C"*" is normal if
and only if it is unitarily diagonalizable, we prove a similar
result for self-adjoint matrices. We will give a proof that
avoids the use of Spectral Theorem for Normal Matrices.

Proposition (Spectral Theorem for Self-Adjoint Matrices)

Let A € C™". Then A is self-adjoint if and only if A is
unitarily diagonalizable and all eigenvalues of A are real.

Proof. Suppose A is unitarily diagonalizable and all
eigenvalues of A are real. Let U be a unitary matrix and let D
be a diagonal matrix such that D = U*AU. Then the
diagonal entries of D are the eigenvalues of A, and so they are
real. Hence D* = D. Consequently,

A* = (UDU*)* = UD*U* = UDU* = A.
Thus A is self-adjoint.
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Conversely, suppose A is self-adjoint. By Schur's theorem,
there is a unitary matrix U, and also an upper triangular
matrix B such that B = U*AU. Then

B* = (U*AU)* = U*A*U = U*AU = B,

so that B is self-adjoint. Since B is upper triangular and
self-adjoint, the previous lemma shows that B is in fact
diagonal with all diagonal entries real. Thus A is unitarily
diagonalizable. Also, all eigenvalues of A are real, since they
are the diagonal entries of the matrix B. O

Our short proof of the spectral theorem for self-adjoint
matrices is based on Schur’s theorem. This result can also be
deduced from part (ii) of the spectral theorem for normal
matrices since every self-adjoint matrix in normal, provided we
independently show that every eigenvalue of a self-adjoint
matrix is real. The latter statement can be easily proved.
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Proposition

If A € C"™" is self-adjoint, then every eigenvalue of A is real.

Proof.
Let A be an eigenvalue of a self-adjoint matrix A, and let x be
a corresponding unit eigenvector. Then

A= Ax"x=x"Ax = x*A*x = (Ax)*x = ()\x)*x = Ax*x =\

Hence ) is real. ]

Finally, let us consider a real symmetric matrix A, that is,
A c R™" such that AT = A. We shall prove a spectral
theorem for A which involves only real scalars.

A unitary matrix with real entries is also called an orthogonal
matrix. Thus C € R™" is orthogonal if its columns form an
orthonormal subset of R™*!. Clearly, an orthogonal matrix is
invertible and its inverse is the same as its transpose.
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A matrix A € R™" is called orthogonally diagonalizable if
there is an orthogonal matrix C € R"*" and a diagonal matrix
D € R™" such that D = C"'AC. We prove Jacobi's theorem.

Proposition (Spectral Theorem for Real Symmetric Matrices)

Let A € R™". Then A is symmetric if and only if A is
orthogonally diagonalizable. In this case, A has n real
eigenvalues counted according to their algebraic multiplicities.

Proof.
Suppose A is orthogonally diagonalizable. Let C € R"*" be an

orthogonal matrix, and let D € R"*" be a diagonal matrix
such that D = CTAC. Since DT = D,

AT = (CDC)"=CcD'C"=CDC" =A.
Thus A is symmetric.
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Conversely, suppose A is symmetric. Since R can be
considered as a subset of C, we treat A as a matrix with
complex entries. Then A* = A, that is, A is self-adjoint, and
so all eigenvalues of A are real.

By the spectral theorem for self-adjoint matrices, there is a
unitary matrix U € C"™" and a diagonal matrix D € C™"
such that D = U"1AU, that is, AU = UD. Since the diagonal
entries of D are the eigenvalues of A, we see that D € R"*".

The n columns of the unitary matrix U form an orthonormal
set in C"*", and each column is an eigenvector of A
corresponding to an eigenvalue of A.

Let A be an eigenvalue of A. Then A\ € R. Using the Gauss
Elimination Method, we may find the basic solutions of the
homogeneous linear system (A — Al)x = 0. Their entries are
real since all entries of A are real and A € R. These solutions
form a basis for the eigenspace of A corresponding to .
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Further, we can use the Gram-Schmidt Orthogonalization
Process for these basic solutions to obtain an orthonormal
basis for the eigenspace of A corresonding to A. In this
process, the entries of the basis vectors remain real.

We replace the n columns of the unitary matrix U by n
eigenvectors of A which form an orthonormal set in R"*". Let
C € R™" denote the matrix with these columns arranged in
the same order as the columns of U. Then D = C"1AC. [0

The spectral theorem says that given a normal matrix

A € C"™" or a symmetric matrix A € R™ ", there is a unitary
matrix U and a diagonal matrix D such that D = U~'AU,
that is, AU = UD. Let us write the matrix U in terms of its n
columns U = [ul u,,] and let D = diag(\1, ..., \n).
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Then the equation
Alup -+ up)=[ug - uy|diag(Ar,..., \n)

means Au; = A\juq,...,Au, = \,u,, so that uy,...,u, are
eigenvectors of A corresponding to the eigenvalues A1, ..., A,
respectively. We may list the eigenvectors uy, ..., u, in some
other order to form another unitary matrix and correspondingly
change the ordering of the eigenvalues A1, ..., A\, to form
another diagonal matrix which will serve the same purpose.

Since the eigenvalues A1, ..., A, of A may not be distinct, we
may pool together all eigenvectors among uy, ..., u,
corresponding to the same eigenvalue.

Also, since A is diagonalizable, the geometric multiplicity of
any eigenvalue of A is equal to its algebraic multiplicity.
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Thus if we know the eigenvalues of A, then we may use the
following procedure to form a unitary matrix U whose n
columns are eigenvectors of A.

Let p1,..., ux be the distinct eigenvalues of A. These are
the distinct roots of the characteristic polynomial of A. Let
the algebraic multiplicity of ;1; be m;, so that

my + - -+ + my = n. Also,the geometric multiplicity g; of 1 is
equal to mj, and so g1 + -+ -+ gk = n.

If in fact, A is self-adjoint, then each p; is real.

For each j =1,..., k, find a basis for the null space

N (A — p;1) consisting of g; elements by solving the
homogeneous linear system (A — pjl)x = 0 using the Gauss
Elimination Method.

For each j = 1,..., k, obtain an ordered orthonormal basis
(Uj1,...,ujg) for N(A — p;l) using the Gram-Schmidt
Orthonormalization Process.
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Form an nxn matrix U as follows:

U= [ull <o Upg U1 ... Upg ... ... U ...ukgk}

Now since A is a normal matrix, uy L uj if i # j. Thus the n
columns of U form an orthonormal set. Hence U is unitary.

Form an nxn diagonal matrix D as follows:
D= diag()\ll, R 7)‘1g1a )\21, R 7)‘2g27 ey )\kla cey /\kgk)v

Where)\l]_:'..:)\lgl:[I"L]-?"’?)\kl:"‘:)\kgk:ll'tk'

Then [U*AU = D

A similar procedure works for a real symmetric matrix A, and
so we can find an orthogonal matrix C € R™" and a diagonal

matrix D € R"*" such that |CTAC = D |.
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Example

1 2 =2

Let A:==| 2 1 2 [. Clearly, A*=A. So A is self-adjoint.
-2 2 1

1L pa(t) :=det(A —t1) = (3 — t)?(3 + t). Hence y; =3

with m1 g1 = 2 and pp, = —3 with my = g = 1.

(i) (A —=3l)x =0, that is,

-2 2 =2||x 0 -2 2 2| |x 0
2 -2 2 x| =[0l<=|0 0 O X | =10
-2 2 =2||x3 0 0 0 0 (xs 0

<= x1 — x» + x3 = 0 by the Gauss Elimination Method.
Hence | x;; := [1 1 O}T and | Xjo = [—1 0 l}T form a
basis for the null space N'(A — 3I).

(ii) Similarly, |xp; := [1 —1 1]T forms a basis for the null
space NV (A + 3I).
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Gram-Schmidt Orthogonalization Process gives
up = [1/\/§ 1/\/§ O}T and

Upp = [—1/\/6 1/v/6 2/\/QT, which form an orthonormal
basis for /(A — 3I).

Also, uy; := [1/\/§ —1/\/§ 1/\/§]T forms an orthonormal
basis for N'(A + 3I).

1/vV2 —1/vV6 1/V3
4 Let U= [1/v2 1/vV6 -1/V/3
0 2/V/6  1/4/3

and D := diag(3,3, —3). Then U*AU = D.

We now show that the unitary matrix U and the diagonal
matrix D satisfying U*AU = D we have found are not unique.
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For example, let us interchange the order of the columns of U
and make a corresponding interchange in the diagonal entries

of D.
1/vV2 1/v/3 —1/6
Thus U := [1/v2 —1/v/3 1/V6
0 1/vV/3  2/V6
and D := diag(3, —3, 3) would also satisfy U*AU = D.

Further, we could have chosen x;; := [0 1 1}T and

xp=[-1 1 2}T as basis vectors for the null space
N(A —3l), and orthonormalized them to obtain uy;:=

0 1/v2 1/v2]" &up=[-2/v6 —1/v6 1/6] "
0 —2/v6 1/V3
Then U = 1/\/§ —1/\/6 —1/\/§
1/vV2 16 1/V3
and D := diag(3,3, —3) would also satisfy U*AU = D.
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