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Recall: In the last lecture, we proved the following theorem
and then discussed its applications to classification of conic
sections and quadric surfaces.

Theorem (Principal Axis Theorem)

Let Q be a real quadratic form and A ∈ Rn×n be the
symmetric matrix associated with Q. If C is an orthogonal
matrix such that the matrix D := CTAC is diagonal, then

Q(x) = QD(y), where y := CTx for all x ∈ Rn×1.

Clarification about a Degenerate Conic: As discussed earlier, a
conic section is the locus in R2 of an equation f (x , y) = 0,
where f (x , y) = a x2 + b y 2 + c xy + a′x + b′y + c ′, where
a, b, c , a′, b′, c ′ ∈ R and at least one among a, b, c is nonzero.
We call this degenerate if f (x , y) factors as a product of two
linear polynomials (with coefficients in C). This corresponds
to the locus in R2 being a pair of lines (including the case of
coincident lines), a single point, or the empty set.
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Equation Surface Eigenvalues of A

x2

a2
+

y2

b2
+

z2

c2
= 1 ellipsoid all three positive

x2

a2
+

y2

b2
− z

c
= 0 elliptic paraboloid two positive, one zero

x2

a2
+

y2

b2
− z2

c2
= 0 elliptic cone two positive, one negative

x2

a2
+

y2

b2
− z2

c2
= 1 1-sheeted hyperboloid two positive, one negative

x2

a2
− y2

b2
− z2

c2
= 1 2-sheeted hyperboloid one positive, two negative

x2

a2
− y2

b2
− z

c
= 0 hyperbolic paraboloid one positive, one negative,

one zero.

We also discussed the above classification of quadric surface
(leaving aside the degenrate cases).
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Example Consider the quadric surface given by

x2 + y 2 + z2 + 4xy + 4yz − 4zx − 27 = 0,

and the associated ternary quadratic form
Q(x , y , z) := x2 + y 2 + z2 + 4xy + 4yz − 4zx .

We have already transformed the associated symmetric matrix

A :=

 1 2 −2
2 1 2
−2 2 1

 to a diagonal form, and have obtained

Q(x , y , z) = QD(u, v ,w) = 3(u2 + v 2 − w 2) (with x1, x2, x3
and y1, y2, y3 in place of x , y , z and u, v ,w),
where D := diag(3, 3,−3) and
u = (x +y)/

√
2, v = (−x +y + 2z)/

√
6, w = (x−y +z)/

√
3.

Under this change of coordinates, the quadric surface reduces
to u2 + v 2 − w 2 = 9.
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This is an equation of a one-sheeted hyperboloid in the
uvw -space, as shown in the following figure, where the u-axis,
the v -axis and the w -axis are determined by the eigenvectors

u1 :=
[
1/
√

2 1/
√

2 0
]T

, u2 :=
[
−1/
√

6 1/
√

6 2/
√

6
]T

and u3 :=
[
1/
√

3 −1/
√

3 1/
√

3
]T

. (See Lecture 16.)
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Orthogonal Projection

Let K denote either R or C. Recall that in Lecture 13, we
have defined the (perpendicular) projection of x ∈ Kn×1 in the
direction of nonzero y ∈ Kn×1 as follows:

Py(x) :=
〈y, x〉
〈y, y〉 y.

In particular, if y is a unit vector, then Py(x) = 〈y, x〉y.

We noted that the vector Py(x) is a scalar multiple of the
vector y, and proved the important relation(

x− Py(x)
)
⊥ y.

As a consequence,

‖x− Py(x)‖2 = 〈x− Py(x), x− Py(x)〉
= 〈x, x− Py(x)〉
= ‖x‖2 − 〈x, Py(x)〉.
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More generally, let Y be a nonzero subspace of Kn×1. We
would like to find a (perpendicular) projection of x ∈ Kn×1 into
Y , that is, we want to find y ∈ Y such that (x− y) ∈ Y ⊥.
(This y is ‘the foot of the perpendicular’ from x into Y .)

If u1, . . . ,uk is an orthonormal basis for the subspace Y , then
a vector belongs to Y ⊥ if and only if it is orthogonal to each uj

for j = 1, . . . , k . As we saw while studying G-S OP, the vector

ỹ := x−Pu1(x)−· · ·−Puk (x) = x−〈u1, x〉u1−· · ·−〈uk , x〉uk

is orthogonal to each uj for j = 1, . . . , k , and so ỹ ∈ Y ⊥.

Since the vector y := 〈u1, x〉u1 + · · ·+ 〈uk , x〉uk belongs to
Y , it is a (perpendicular) projection of x in Y .

The following result shows that this is the only vector in Y
that works!
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Proposition (Projection Theorem)

Let Y be a subspace of Kn×1. Then for every x ∈ Kn×1, there
are unique y ∈ Y and ỹ ∈ Y ⊥ such that x = y + ỹ, that is,
Kn×1 = Y ⊕ Y ⊥. The map PY : Kn×1 → Kn×1 given by
PY (x) = y is linear and satisfies (PY )2 = PY .

In fact, if u1, . . . ,uk is an orthonormal basis for Y , then

PY (x) = 〈u1, x〉u1 + · · ·+ 〈uk , x〉uk .

Proof. If Y = {0}, then every x ∈ Y ⊥, and so x = 0 + x.

Suppose Y 6= {0}, and let u1, . . . ,uk be an orthonormal basis
for Y . For x ∈ Kn×1, define

PY (x) := 〈u1, x〉u1 + · · ·+ 〈uk , x〉uk .

Clearly, y := PY (x) ∈ Y . Define ỹ := x− PY (x). Then
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〈uj , ỹ〉 = 〈uj , x− PY (x)〉

= 〈uj , x〉 −
k∑

`=1

〈u`, x〉〈uj , u`〉

= 〈uj , x〉 − 〈uj , x〉 = 0

for j = 1, . . . , k by orthonormality. Hence ỹ ∈ Y ⊥. Thus
x = y + ỹ with y ∈ Y and ỹ ∈ Y ⊥. This proves existence.

To prove uniqueness, let z ∈ Y and z̃ ∈ Y ⊥ be such that
x = z + z̃. Then (y − z) ∈ Y and also y − z = (z̃− ỹ) ∈ Y ⊥,
so that (y − z) ∈ Y ∩ Y ⊥. Hence (y − z) ⊥ (y − z), and so
y − z = 0. Thus z = y, and in turn, z̃ = ỹ.

The map PY is linear since the inner product is linear in the
second variable. Also, PY (uj) = uj for all j = 1, . . . , k . Hence
PY (x) = x if and only if x ∈ Y . As a consequence,
P2
Y (x) = PY (PY (x)) = PY (x) for all x ∈ Kn×1.
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Let Y be a subspace of Kn×1. Then the linear map
PY : Kn×1 → Kn×1 whose existence and uniqueness is proved
in the above result is called the orthogonal projection map
of Kn×1 onto the subspace Y .

Given x ∈ Kn×1, we shall show that its orthogonal projection
PY (x) is the unique vector in Y which is closest to x.

Definition

Let E be a nonempty subset of Kn×1 and let x ∈ Kn×1.
A best approximation to x from E is an element y0 ∈ E
such that ‖x− y0‖ ≤ ‖x− y‖ for all y ∈ E.

Simple examples show that a best approximation to a vector x
from a nonempty subset E of Kn×1 may not exist, and if it
exists, it may not be unique. However, if E is in fact a
subspace of Kn×1, then the following noteworthy result holds.
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Proposition

Let Y be a subspace of Kn×1 and let x ∈ Kn×1. Then there is
a unique best approximation to x from Y , namely, PY (x).

Further, PY (x) is the unique element of Y such that
x− PY (x) is orthogonal to Y . Also, the square of the distance
from x to its best approximation from Y is

‖x− PY (x)‖2 = ‖x‖2 − 〈x, PY (x)〉.

Proof. We note that PY (x) ∈ Y and
(
x− PY (x)

)
∈ Y ⊥.

Let y ∈ Y . Then PY (x)− y also belongs to Y . Hence by the
Pythagorus theorem,

‖x− y‖2 =
∥∥(x− PY (x)

)
+
(
PY (x)− y

)∥∥2
= ‖x− PY (x)‖2 + ‖PY (x)− y‖2
≥ ‖x− PY (x)‖2,

where equality holds if and only if y = PY (x). This shows that
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PY (x) is the unique best approximation to x from Y .

Further, let y ∈ Y be such that (x− y) ∈ Y ⊥. Then
x = y + (x− y), and since Kn×1 = Y ⊕ Y ⊥, it follows that
y = PY (x).

Finally, since PY (x) ∈ Y and
(
x− PY (x)

)
∈ Y ⊥,

‖x− PY (x)‖2 = 〈x− PY (x), x− PY (x)〉
= 〈x, x− PY (x)〉
= ‖x‖2 − 〈x, PY (x)〉.

b

b

b

b

x

x− PY (x)

PY (x)
Y

1
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Applications to Approximate Solutions of Systems of Linear Equations

Consider the system of linear equations

Ax = b where A ∈ Km×n and b ∈ Km×1.

Clearly, if A =
[
c1 · · · cn

]
in terms of its n columns and if

x :=
[
x1 · · · xn

]T
, then Ax = x1c1 + · · ·+ xncn = b. Thus

the system Ax = b has a solution⇐⇒ b ∈ C(A).

Now what if b 6∈ C(A)? Then we can find an approximate
solution to the linear system Ax = b by finding the best
approximation to b from the subspace C(A) of Km×1. For
this, we first find an ordered orthonormal basis (u1, . . . ,uk) of
C(A), where k ≤ n. [This can be done using Gram-Schmidt
OP.] Then the best approximation to b from C(A) is

PC(A)(b) =
k∑

j=1

〈uj , b〉uj =
k∑

j=1

(u∗j b)uj .
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Example: Let A :=

1 1
1 0
0 1

 and b :=

 1
0
−5

. Then C(A) is

the span of the 2 column vectors
[
1 1 0

]T
and

[
1 0 1

]T
of A. Then u1 :=

[
1√
2

1√
2

0
]T

and u2 :=
[

1√
6
−1√
6

2√
6

]T
form

an orthonormal basis for C(A). Hence the best approximation
to b from C(A) is 〈u1, b〉u1 + 〈u2, b〉u2, which is

1

2

[
1 1 0

]T− 3

2

[
1 −1 2

]T
=
[
−1 2 −3

]T
.

= a (say).

The distance from b to its best approximation a from C(A) is

‖b− a‖ = ‖
[
2 −2 −2

]T ‖ = 2
√

3.

The square of this distance could also have been computed
directly using the above proposition as follows:

‖b‖2 − |〈u1, b〉|2 − |〈u2, b〉|2 = 26− 1

2
− 27

2
= 12,
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