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Least Squares Approximation

Suppose a large number of data points (a1, b1), . . . , (an, bn) in
R2 are given, and we want to find a straight line passing
through these points. If all these points are collinear, then we
may join any two of them by a straight line, which will work
for us. If, however, these points are not collinear (which is
most often the case), then we want to find a straight line
t = x1 + s x2 in the st-plane which is most suitable in the
following sense.
Consider the ‘error’ |x1 + ajx2 − bj | caused because of the
straight line t = x1 + s x2 not passing through the data point
(aj , bj) for j = 1, . . . , n. We collect these errors and attempt
to find x1, x2 ∈ R such that the least squares error( n∑

j=1

|x1 + ajx2 − bj |2
)1/2

.

is minimized. This is known as the least squares problem.
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To solve this problem, let

A =


1 a1
1 a2
...

...
1 an

 , x =

[
x1
x2

]
and b =


b1
b2
...
bn

 . Then Ax =


x1 + a1x2
x1 + a2x2

...
x1 + anx2

 .

The least squares problem is to find x ∈ R2×1 such that

‖Ax− b‖2 =
n∑

j=1

|x1 + ajx2 − bj |2

is minimised, that is, to find the best approximation to the
vector b from the column space C(A)={Ax : x ∈ R2×1} of A.
To solve this, methods discussed earlier can be applied. An
example is given in the tutorial problem 7.11 (i).
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Abstract Vector Spaces

Throughout the course so far, we have dealt with row vectors,
column vectors and matrices. We have introduced many
interesting concepts such as linear independence of vectors,
span of a set of vectors, a subspace of vectors, a basis for a
subspace, the dimension of a subspace, the nullity and the
rank of a matrix, linear transformations induced by matrices,
inner product of two vectors, orthogonality of vectors,
orthonormal basis for a subspace, orthogonal projection onto a
subspace, and so on.

Based on these concepts, we have proved some important
theorems like the Rank-Nullity theorem, the Fundamental
Theorem for Linear Systems, the Spectral Theorem, the
Projection Theorem.

Now we discuss these concepts in a more abstract setting.
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Abstract Vector Space

Definition Let K denote R or C as usual. A vector space
over K is a nonempty set V together with the operation of
addition (i.e., a map V × V → V given by (u, v) 7→ u + v)
and of scalar multiplication (i.e., a map K× V → V given
by (α, v) 7→ αv) satisfying the following properties.
I Closure axioms
1. u + v ∈ V for all u, v ∈ V .
2. α · v ∈ V for all α ∈ K and v ∈ V .
(We shall write αv instead of α · v ∈ V hence onward.)

II Axioms for addition
1. u + v = v + u for all u, v ∈ V . (commutativity)
2. u+(v+w)=(u+v)+w for all u, v ,w ∈ V . (associativity)
3. There is (unique) 0 ∈ V such that v + 0 = v for all v ∈ V .
4. For v ∈ V , there is (unique) u ∈ V such that v + u = 0.
(We shall write this element u as −v .)
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III Axioms for scalar multiplication
1. α(βv) = (αβ)v for all α, β ∈ K and v ∈ V .
2. α(u + v) = αu + αv for all α ∈ K and u, v ∈ V .
3. (α + β)v = αv + βv for all α, β ∈ K and v ∈ V .
4. 1v = v for all v ∈ V .

An element of a vector space is called a vector.

Examples: 1 Kn = Kn×1 is a vector space over K. More
generally, every vector subspace of Kn is a vector space over
K. Likewise for K1×n.

2 Km×n, the space of all m × n matrices with entries in K, is
a vector space over K with respect to the addition and scalar
multiplication of matrices.

3 The set K[x ] of all polynomials in the indeterminate x with
coefficients in K is a vector space over K with respect to the
usual addition and scalar multiplication of polynomials.

4 The set Pn of polynomials in K[x ] of degree ≤ n is a

vector space with addition and scalar multiplication as in 3 .
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5 Let a, b ∈ R with a < b. Then the space C [a, b] of all
continuous functions from [a, b] to R a vector space over R
with respect to pointwise addition and pointwise scalar
multiplication of functions.

6 Let a, b ∈ R with a < b. Then the space C 1[a, b] of all
continuously differentiable functions from [a, b] to R a vector
space over R with addition and scalar multiplication as in 5 .

7 The space c of all convergent sequences of real numbers is
a vector space over R with respect to pointwise addition and
pointwise scalar multiplication of sequences.
Exercise: Verify that the above spaces are indeed vector
spaces, i.e., all the axioms in the definition are satisfied.

Definition

Let V be a vector space (over K). A nonempty subset W of
V is called a subspace of V if v + w ∈ W for all v , w ∈ W
and αw ∈ W for all α ∈ K and w ∈ W.
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Definition

Let V be a vector space (over K), and let n ∈ N. Given
v1, . . . , vn ∈ V and α1, . . . , αn ∈ K, the element

α1v1 + · · ·+ αnvn
of V is called the linear combination of the vectors
v1, . . . , vn with coefficients α1, . . . , αn.

Let V be a vector space. If W is a subspace of V , then clearly
every linear combination of the elements of W belongs W .

Let W1.W2 be subspaces of V . Then it is easy to see that:

W1 ∩W2 is a subspace of V . In fact it is the largest
subspace of V which is contained in both W1 and W2.

W1 ∪W2 need not be a subspace of V .

W1 + W2 := {w1 + w2 : w1 ∈ W1 and w2 ∈ W2} is a
subspace of V . In fact it is the smallest subspace of V
containing both W1 and W2.
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The notions in Rn of span of a set of vectors, linear
dependence and independence of vectors, the dimension of a
subspace of vectors carry over to an abstract vector space
without any difficulty. Let V be a vector space (over K).

Definition

Let S ⊂ V . The set of all linear combinations of elements of
S is called the span of S, and we denote it by span S .

Definition

A subset S of V is called linearly dependent if there are
v1, . . . , vm in S and there are α1, . . . , αm ∈ K, not all zero,
satisfying

α1v1 + · · ·+ αmvm = 0.

It can be seen that S is linearly dependent ⇐⇒ either 0 ∈ S
or a vector in S is a linear combination of other vectors in S .
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Definition

A subset S of V is called linearly independent if it is not
linearly dependent, that is,

α1v1 + · · ·+ αmvm = 0 =⇒ α1 = · · · = αm = 0,

whenever v1, . . . , vm ∈ S and α1, . . . , αm ∈ K.

Clearly, S is linearly independent if and only if 0 6∈ S and no
elements of S is a linear combination of other elements of S .

The following crucial result was proved for the case
V := Rn×1. Exactly the same proof works in the general case.

Proposition

Let S be a subset of s elements and R be a set of r elements
of V . If S ⊂ spanR and s > r , then S is linearly dependent.
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Examples

1 . Let m, n ∈ N, and let V := Km×n be set of all m×n
matrices with entries in K with entry-wise addition and scalar
multiplication. For j = 1, . . . ,m and k = 1, . . . , n, let Ejk

denote the m×n matrix whose (j , k)th entry is equal to 1 and
all other entries are equal to zero. Then the set
S :=

{
Ejk : 1 ≤ j ≤ m, 1 ≤ k ≤, n

}
is linearly independent.

2 . Let V := c0 denote the set of all sequences in K which
converge to 0. For j ∈ N, let ej denote the element of S
whose j-th term is equal to 1 and all other terms are equal
to 0. Then the set S :=

{
ej : j ∈ N} is linearly independent.

Next, let S1 := S ∪ {e}, where the nth entry of the sequence e
is equal to 1/n for n ∈ N. Then the set S1 is also linearly
independent since e is not a (finite) linear combination of
elements of S .
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3 . Let V := K[x ] denote the set of all polynomials in the
indeterminate x with coefficients in K. Then the set
S :=

{
x j : j = 0, 1, 2, . . .} is linearly independent.

Next, let S1 := S ∪ {p}, where p ∈ K[x ]. Then the set S1 is
linearly dependent since p ∈ span S .

4 . Let V := C [−π, π]. For n ∈ N, let

un(t) := cos nt and vn(t) := sin nt for t ∈ [−π, π].

Then the set S := {u1, u2, . . .} ∪ {v1, v2, . . .} is linearly
independent. (Note that the zero element of this vector space
is the function having all its values on [−π, π] equal to 0.) To
prove this, use the idea that if α cos t + β sin t = 0, then by
differentiating, we also have −α sin t + β cos t = 0.

Next, let S1 := S ∪ {w}, where w(t) := t for t ∈ [−π, π].
Then the set S1 is also linearly independent, since
w(π) 6= w(−π), and so w 6∈ span S .
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Definition

A vector space V is said to be finite dimensional if there is a
finite subset S of V such that V = span S; otherwise the
vector space V is said to be infinite dimensional.

If a vector space V is infinite dimensional, then V is larger
than the span of any finite subset of V , and so V must
contain an infinite linearly independent subset. Conversely, if
V contains an infinite linearly independent subset, then V
must be infinite dimensional.

Examples: Let n,m ∈ N. The vector spaces Kn×1, K1×n and
Km×n are finite dimensional, and so is the vector space Pn of
all polynomials in the indeterminate x having degree less than
or equal to n. But the vector spaces K[x ], C [−π, π], c , and c0
are infinite dimensional.
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Definition

Any linearly independent subset of a finite dimensional vector
space V which spans V is called a basis for V .

Here is the most important result about finite dimensional
vector spaces. The proof is similar to that in the case of
subspaces of Kn.

Proposition

Let V be a finite dimensional vector space over K. Then the
following holds.

V has a basis.

Every set that spans V has a subset which is a basis of V .

Every linearly independent subset of V can be extended
to a basis of V .

Any two bases of V have the same cardinality, called the
dimension of V and denoted by dimV .
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