MA 110 Linear Algebra and Differential Equations Lecture 20

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay http://www.math.iitb.ac.in/~srg/

Spring 2025

Recall: We discussed the following.

- The notion of (abstract) vector space over \mathbb{K} .
- Examples: $\mathbb{K}^{n\times 1}$, $\mathbb{K}^{1\times n}$, $\mathbb{K}^{m\times n}$, $\mathbb{K}[x]$, \mathcal{P}_n , C[a, b], $C^1[a, b]$, c, c_0
- Subspace of a vector space
- Linear combinations
- Span of a subset of a vector space
- Linear dependence and linear independence
- Crucial Result: Let S be a subset of s elements and R be a set of r elements of V. If S ⊂ span R and s > r, then S is linearly dependent.
- Notion of a finite dimensional vector space
- Basis and dimension

Definition

Any linearly independent subset of a finite dimensional vector space V which spans V is called a **basis** for V.

Here is the most important result about finite dimensional vector spaces. The proof is similar to that in the case of subspaces of \mathbb{K}^n .

Proposition

Let V be a finite dimensional vector space over \mathbb{K} . Then the following holds.

- V has a basis.
- Every set that spans V has a subset which is a basis of V.
- Every linearly independent subset of V can be extended to a basis of V.
- Any two bases of V have the same cardinality, called the **dimension** of V and denoted by dim V.

Definition

Let V and W be vector spaces over \mathbb{K} . A linear transformation or a linear map from V to W is a function $T : V \to W$ which 'preserves' the operations of addition and scalar multiplication, that is, for all $u, v \in V$ and $\alpha \in \mathbb{K}$,

$$T(u + v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$.

It is clear that if $T : V \to W$ is linear, then T(0) = 0. Also, T 'preserves' linear combinations of elements of V:

$$T(\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k) = \alpha_1 T(\mathbf{v}_1) + \cdots + \alpha_k T(\mathbf{v}_k)$$

for all $k \in \mathbb{N}$, $v_1, \ldots, v_k \in V$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$.

Remark: Linear transformations $T : V \to V$ on a vector space V into itself are sometimes called **linear operators** on V.

Examples

1. Let **A** be an $m \times n$ matrix with entries in \mathbb{K} . Then the map $T : \mathbb{K}^{n \times 1} \to \mathbb{K}^{m \times 1}$ defined by $T(\mathbf{x}) := \mathbf{A} \mathbf{x}$ is linear. Similarly, the map $T' : \mathbb{K}^{1 \times m} \to \mathbb{K}^{1 \times n}$ defined by $T'(\mathbf{y}) := \mathbf{y}\mathbf{A}$ is linear. More generally, the map

 $T: \mathbb{K}^{n \times p} \to \mathbb{K}^{m \times p}$ defined by $T(\mathbf{X}) := \mathbf{A} \mathbf{X}$

is linear, and the map

 $T': \mathbb{K}^{p \times m} \to \mathbb{K}^{p \times n}$ defined by $T'(\mathbf{Y}) := \mathbf{Y}\mathbf{A}$

is linear.

T: K^{m×n} → K^{n×m} defined by T(A) := A^T is linear.
 The map T: K^{n×n} → K defined by T(A) := trace A is linear. But A → det A does not define a linear map.
 The map T: K[X] → K defined by T(p(X)) = p(0) is linear.

5. Let $V := c_0$, the set of all sequences in \mathbb{K} which converge to 0. Then the map $T : V \to V$ defined by

$$T(x_1, x_2, \ldots) := (0, x_1, x_2, \ldots)$$

is linear, and so is the map $T': V \to V$ defined by

$$T'(x_1, x_2, \ldots) := (x_2, x_3, \ldots).$$

Note that $T' \circ T$ is the identity map on V, but $T' \circ T$ is not the identity map on V. The map T is called the **right shift operator** and T' is called the **left shift operator** on V.

6. Let $V := C^1([a, b])$, the set of all real-valued continuously differentiable functions, and let W := C([a, b]), the set of all real-valued continuous functions on [a, b]. Then the map $T' : V \to W$ defined by T'(f) = f' is linear. Also, the map $T : W \to V$ defined by $T(f)(x) := \int_a^x f(t)dt$ for $x \in [a, b]$, is linear. [Question. What are $T' \circ T$ and $T' \circ T$?]

Let V and W be vector spaces over \mathbb{K} , and let $T : V \to W$ be a linear map. Two important subspaces associated with T are

(i) $\mathcal{N}(T) := \{ v \in V : T(v) = 0 \}$, the **null space** of *T*, which is a subspace of *V*,

(ii) $\mathcal{I}(T) := \{T(v) : v \in V\}$, the **image space** of *T*, which is a subspace of *W*.

Suppose V is finite dimensional, and let dim V = n. Since $\mathcal{N}(T)$ is a subspace of V, it is finite dimensional and dim $\mathcal{N}(T) \leq n$

Let v_1, \ldots, v_n be a basis for V. If $v \in V$, then there are $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ such that $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$, so that $T(v) = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n)$. This shows that $\mathcal{I}(T) = \operatorname{span}\{T(v_1), \ldots, T(v_n)\}$. Hence $\mathcal{I}(T)$ is also finite dimensional and dim $\mathcal{I}(T) \leq n$.

Definition

The dimension of $\mathcal{N}(T)$ is called the **nullity** of the linear map *T*, and the dimension of $\mathcal{I}(T)$ is called the **rank** of *T*.

The Rank-Nullity Theorem for a matrix **A** that we proved earlier is a special case of the following result.

Proposition (Rank-Nullity Theorem for Linear Maps)

Let V and W be vector spaces over \mathbb{K} , and let $T: V \to W$ be a linear map. Suppose dim $V = n \in \mathbb{N}$. Then

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = n.$

Proof (Sketch): Let s := nullity(T) and let $\{u_1, \ldots, u_s\}$ be a basis of $\mathcal{N}(T)$. Extend the linearly independent set $\{u_1, \ldots, u_s\}$ to a basis $\{u_1, \ldots, u_s, u_{s+1}, \ldots, u_n\}$ of V. Check that the set $\{T(u_{s+1}), \ldots, T(u_n)\}$ is a basis of $\mathcal{I}(T)$.

Corollary

Suppose V and W be finite dimensional vector spaces, and $T: V \rightarrow W$ is a linear map. Let dim V = n and dim W = m. Then

$$T$$
 is one-one \iff rank $(T) = n$.

In particular, if T is one-one, then $n \leq m$. If m = n, then

$$T$$
 is one-one $\iff T$ is onto

Proof. The first assertion follows from the Rank-Nullity Theorem since T is one-one $\iff \mathcal{N}(T) = \{0\}$, that is, nullity(T) = 0. In particular, if T is one-one, then $n = \operatorname{rank}(T) = \dim \mathcal{I}(T) \le \dim W = m$. Finally, if m = n, then the last assertion follows from the first assertion, since $\operatorname{rank}(T) = m \iff T$ is onto. As another application of the Rank-Nullity Theorem, we find an interesting relation between dimensions of finite dimensional subspaces of a vector space.

Proposition

Let W_1 and W_2 be finite dimensional subspaces of a vector space V. Then

 $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$

Proof. Let $W_1 \times W_2 := \{(w_1, w_2) : w_1 \in W_1 \text{ and } w_2 \in W_2\}$. This is a vector space (w.r.t. componentwise addition and scalar multiplication) and dim $(W_1 \times W_2) = \dim W_1 + \dim W_2$. Define $T : W_1 \times W_2 \rightarrow W_1 + W_2$ by $T(w_1, w_2) := w_1 - w_2$. Then T is linear, $\mathcal{N}(T) = \{(w, w) : w \in W_1 \cap W_2\}$ and $\mathcal{I}(T) = W_1 + W_2$. Hence by the Rank-Nullity Theorem,

 $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim(W_1 \times W_2). \quad \Box$

Matrix of a Linear Transformation

Suppose V, W are vector spaces over \mathbb{K} and $E = (v_1, \ldots, v_n)$, $F = (w_1, \ldots, w_m)$ are their ordered bases, then

linear map $T: V \to W \iff \text{matrix } \mathbf{M}_F^E(T) = A = [a_{jk}]$

where $A = [a_{jk}]$ is the $m \times n$ matrix determined by

$$T(v_k) = \sum_{j=1}^m a_{jk} w_j$$
 for $k = 1, \ldots, n_k$

Example: If $I_V : V \to V$ is the identity map, then $\mathbf{M}_E^E(I_V) = \mathbf{I}$.

Basic Property: If U is another vector space, $D = (u_1, \ldots, u_p)$ an ordered basis of U, and **S** : $U \rightarrow V$ a linear map, then

$$\mathbf{M}_{F}^{D}(T \circ S) = \mathbf{M}_{F}^{E}(T)\mathbf{M}_{E}^{D}(S).$$

Simple Exercise: If a linear map $T: V \to W$ is invertible, then $T^{-1}: W \to V$ is also a linear map.

The above example and the basic property implies that

 $T: V \to W$ is invertible $\iff \mathbf{M}_{F}^{E}(T)$ is invertible

Moreover

$$\mathbf{M}_{F}^{E}(T)^{-1}=\mathbf{M}_{E}^{F}(T^{-1}).$$

Effect of Change of Basis: We can also use this and the basic property to relate $\mathbf{A} := \mathbf{M}_{F}^{E}(T)$ with $\mathbf{A}' := \mathbf{M}_{F'}^{E'}(T)$, where E', F' are some other ordered bases of V, W, as follows.

 $\mathsf{M}_{F'}^{E'}(T) = \mathsf{M}_{F'}^{F}(I_W) \mathsf{M}_{F}^{E}(T) \mathsf{M}_{E}^{E'}(I_V),$

i.e., $\mathbf{A}' = \mathbf{Q}\mathbf{A}\mathbf{P}$, where $\mathbf{Q} = \mathbf{M}_{F'}^{E}(I_{W})$ and $\mathbf{P} = \mathbf{M}_{E}^{E'}(I_{V})$ are invertible matrices of sizes $m \times m$ and $n \times n$, respectively. Important Special Case: W = V and F = E and F' = E'. In this case, $\mathbf{Q} = \mathbf{M}_{F'}^{E}(I_{V}) = \mathbf{M}_{F}^{E'}(I_{V})^{-1} = \mathbf{P}^{-1}$ and thus

 $\mathbf{A}' = \mathbf{M}_{E'}^{E'}(T) = \mathbf{M}_{E'}^{E}(I_V)\mathbf{M}_{E}^{E}(T)\mathbf{M}_{E}^{E'}(I_V) = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}.$

In other words, \mathbf{A}' is similar to \mathbf{A} .

Remark: The correspondence between an $m \times n$ matrix and a linear map from an n dimensional vector space V to an m dimensional vector space W allows us to obtain two versions of the same result such as the Rank-Nullity Theorem: a version using matrices, and another one using abstract vector spaces. Any one version can be derived from the other.

Example: For $n \in \mathbb{N}$, let \mathcal{P}_n denote the vector space of all polynomials of degree less than or equal to n. Define $T : \mathcal{P}_n \to \mathcal{P}_{n-1}$ by T(p(x)) = p'(x), the derivative of p(x). Let $E := (1, x, \dots, x^n)$ and $F := (1, x, \dots, x^{n-1})$ be the ordered bases of \mathcal{P}_n and \mathcal{P}_{n-1} respectively. Then the $n \times (n+1)$ matrix of T with respect to these bases is

$$\mathbf{M}_{F}^{E}(T) := \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & n \end{bmatrix}$$

Prof. S. R. Ghorpade, IIT Bombay

Linear Algebra: Lecture 20

Eigenvalue Problems for Linear Operators

Definition

Let V be a vector space over \mathbb{K} , and $T : V \to V$ a linear operator. A scalar $\lambda \in \mathbb{K}$ is called an eigenvalue of T if there is a nonzero $v \in V$ such that $T(v) = \lambda v$, and then v is called an eigenvector or an eigenfunction of T corresponding to λ , and the subspace $\mathcal{N}(T - \lambda I)$ is called the eigenspace of T. The dimension of this eignspace if called the geometric multiplicity of λ as an eigenvalue of T

Example: Let V denote the vector space of all real-valued infinitely differentiable functions on \mathbb{R} . Define T(f) = f' for $f \in V$. Then T is a linear operator on V. Given $\lambda \in \mathbb{R}$, consider $f_{\lambda}(t) := e^{\lambda t}$ for $t \in \mathbb{R}$. Then $f_{\lambda} \in V$, $f_{\lambda} \neq 0$ and $T(f_{\lambda}) = \lambda f_{\lambda}$. Thus every $\lambda \in \mathbb{R}$ is an eigenvalue of T with f_{λ} as a corresponding eigenfunction. In fact, any eigenfunction of T corresponding to λ is a scalar multiple of f_{λ} . We now consider a vector space V of finite dimension n and a linear operator $T: V \to V$. Fixing an an ordered basis $E = (v_1, \ldots, v_n)$ of V, we can associate to T an $n \times n$ matrix $\mathbf{A} := \mathbf{M}_E^E(T)$. Observe that if $\lambda \in \mathbb{K}$ and $v \in V$, then

$$T(\mathbf{v}) = \lambda \mathbf{v} \iff A\mathbf{x} = \lambda \mathbf{x},$$

where $\mathbf{x} = [x_1, \dots, x_n]^T$ with $x_1, \dots, x_n \in \mathbb{K}$ determined by writing $\mathbf{v} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$. Thus, we see that

 λ is an eigenvalue of $T \iff \lambda$ is an eigenvalue of A.

With this in view, we define the **characteristic polynomial** of T to be the characteristic polynomials of **A**. The **algebraic multiplicity** of an eigenvalue λ of T is defined to be the algebraic multiplicity of λ as an eigenvalue of **A**. Further, the linear operator T is said to be **diagonalizable** if the matrix **A** is diagonalizable. The above definitions do not depend on the choice of the ordered basis E for V because if F is any other ordered basis of V, then $\mathbf{B} := \mathbf{M}_F^F(T)$ is similar to **A**.

Inner Product Spaces

Let V be a vector space over K. An **inner product** on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ satisfying the following properties. For $u, v, w \in V$ and $\alpha, \beta \in \mathbb{K}$,

1.
$$\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$$
 and $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \iff \mathbf{v} = 0$, (positive definite)
2. $\langle u, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \alpha \langle u, \mathbf{v} \rangle + \beta \langle u, \mathbf{w} \rangle$, (linear in 2nd variable)
3. $\langle \mathbf{v}, u \rangle = \overline{\langle u, \mathbf{v} \rangle}$. (conjugate symmetric)

From the above properties, conjugate linearity in the 1st variable follows: $\langle \alpha u + \beta v, w \rangle = \overline{\alpha} \langle u, w \rangle + \overline{\beta} \langle v, w \rangle$. If $u, v \in V$ and $\langle u, v \rangle = 0$, then we say that u and v are **orthogonal**, and we write $u \perp v$.

For $v \in V$, we define the **norm** of v by $||v|| := \langle v, v \rangle^{1/2}$. If $v \in V$ and ||v|| = 1, then we say that v is a **unit vector** or a **unit function**. The set $\{v \in V : ||v|| \le 1\}$ is called the **unit ball** of V.

Definition

A vector space V over \mathbb{K} with a prescribed inner product on it is called an **inner product space**.

Examples

1. We have already studied the primary example, namely $V := \mathbb{K}^{n \times 1}$ with the **usual inner product** $\langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^* \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. There are other inner products on $\mathbb{K}^{n \times 1}$. For example, let w_1, \ldots, w_n be positive real numbers, and define

$$\langle \mathbf{x}, \, \mathbf{y}
angle_{w} := w_1 \overline{x}_1 y_1 + \dots + w_n \overline{x}_n y_n \quad ext{for } \mathbf{x}, \mathbf{y} \in \mathbb{K}^{n imes 1}$$

Then this is an inner product on $V = \mathbb{K}^{n \times 1}$. On the other hand, the function on $\mathbb{R}^{4 \times 1} \times \mathbb{R}^{4 \times 1}$ defined by

$$\langle \mathbf{x},\,\mathbf{y}
angle_M:=x_1y_1+x_2y_2+x_3y_3-x_4y_4\quad ext{for }\mathbf{x},\mathbf{y}\in\mathbb{R}^{4 imes 1}$$

is not an inner product on $\mathbb{R}^{4 \times 1}$. Note that for $\mathbf{x} \in \mathbb{R}^{4 \times 1}$, $\langle \mathbf{x}, \mathbf{x} \rangle_M = x_1^2 + x_2^2 + x_3^2 - x_4^2$, and this can be negative.

2. Let $\mathbb{K} = \mathbb{R}$ and let V := C([a, b]), the vector space of all continuous real valued functions on [a, b]. Define

$$\langle f, g \rangle := \int_a^b f(t)g(t)dt \text{ for } f, g \in V.$$

It is easy to check that this is an inner product on V. We shall call this inner product the **usual inner product** on C([a, b]).

In this case, the norm of
$$f \in V$$
 is $||f|| := \left(\int_a^b |f(t)|^2 dt\right)^{1/2}$.

This example gives a continuous analogue of the usual inner product on $\mathbb{K}^{n \times 1}$.

There are other inner products on V. For example, let $w : [a, b] \rightarrow \mathbb{R}$ be positive function, and define

$$\langle f, g
angle_w := \int_a^b w(t) f(t) g(t) dt \quad ext{for } f, g \in V.$$

Then this is also an inner product on V.

Projection in the direction of a nonzero vector

Suppose V is any inner product space over \mathbb{K} with a prescribed inner product given by $\langle \cdot, \cdot \rangle$.

Let w be a nonzero element of V. As earlier, define

$$P_w(v) := rac{\langle w, v
angle}{\langle w, w
angle} w ext{ for } v \in V.$$

It is called the (perpendicular) **projection** of v in the direction of w. It is easy to see that $P_w : V \to V$ is a linear map and its image space is one dimensional. It is also clear from the definition that $P_w(w) = w$. This implies that

$$(P_w)^2 := P_w \circ P_w = P_w.$$

Note that $P_w(v)$ is a scalar multiple of w for every $v \in V$.

Two important properties of the projection of a vector in the direction of another (nonzero) vector are as follows.

Proposition

Let
$$w \in V$$
 be nonzero. Then for every $v \in V$,
(i) $(v - P_w(v)) \perp w$ and (ii) $||P_w(v)|| \le ||v||$.

Proof. Let $v \in V$. For (i), we note that

$$\langle w, v - P_w(v) \rangle = \langle w, v \rangle - \langle w, P_w(v) \rangle = \langle w, v \rangle - \frac{\langle w, v \rangle}{\langle w, w \rangle} \langle w, w \rangle = 0.$$

For (ii), write $v = P_w(v) + u$, and note that $\langle u, P_w(v) \rangle = 0$ by (i). Hence

$$\|v\|^2 = \langle P_w(v) + u, P_w(v) + u \rangle = \|P_w(v)\|^2 + \|u\|^2,$$

Therefore, $||v||^2 \ge ||P_w(v)||^2$, which yields (ii).

The following inequalities were proved earlier for vectors in $\mathbb{K}^{n \times 1}$. They hold in any inner product space.

Theorem

Let $\langle \cdot, \cdot \rangle$ be an inner product on a vector space V, and let $v, w \in V$. Then (i) (Schwarz Inequality) $|\langle v, w \rangle| \le ||v|| ||w||$.

(ii) (Triangle Inequality) $||v + w|| \le ||v|| + ||w||$.

Proof. (i) Let w = 0. Then $\langle v, 0 \rangle = \langle v, 0+0 \rangle = 2 \langle v, 0 \rangle$ implies $\langle v, w \rangle = 0$. Since ||w|| = 0, we obtain (i) if w = 0. Now suppose $w \neq 0$. Then by (ii) of the previous proposition,

$$\left\|\frac{\langle w, v\rangle}{\langle w, w\rangle}w\right\| = \|P_w(v)\| \le \|v\|,$$

that is, $|\langle w, v \rangle| ||w|| \le ||v|| \langle w, w \rangle = ||v|| ||w||^2$. Hence $|\langle v, w \rangle| \le ||v|| ||w||$ in this case as well.

(ii) Since $\langle v, w \rangle + \langle w, v \rangle = 2 \, \Re \, \langle v, w \rangle$, we see that

$$\begin{aligned} \|v + w\|^2 &= \langle v + w, v + w \rangle = \|v\|^2 + \|w\|^2 + 2 \Re \langle v, w \rangle \\ &\leq \|v\|^2 + \|w\|^2 + 2 |\langle v, w \rangle| \\ &\leq \|v\|^2 + \|w\|^2 + 2 \|v\|\|w\| \text{ (by (i) above)} \\ &= (\|v\| + \|w\|)^2. \end{aligned}$$

Thus $||v + w|| \le ||v|| + ||w||$.

As a consequence of the above theorem, we see that the norm function $\|\cdot\|: V \to \mathbb{K}$ on an inner product space V satisfies the following three basic properties:

(i)
$$\|v\| \ge 0$$
 for all $v \in V$ and $\|v\| = 0 \iff v = 0$,
(ii) $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbb{K}$ and $v \in V$,
(iii) $\|v + w\| \le \|v\| + \|w\|$ for all $v, w \in V$.

Orthogonal and Orthonormal Sets

Let V be an inner product space. Let E be a subset of V. Define

$$E^{\perp} := \{ w \in V : w \perp v \text{ for all } v \in E \}.$$

It is easy to see that E^{\perp} is a subspace of V. We call E^{\perp} the **orthogonal complement** of E in V.

The set *E* is said to be **orthogonal** if any two (distinct) elements of *E* are orthogonal (to each other), that is, $v \perp w$ for all v, w in *E* with $v \neq w$. An orthogonal set whose elements are unit vectors is called an **orthonormal set**.

If *E* is orthogonal and does not contain 0, then it is easily seen that *E* is linearly independent. For example, consider $V := C([-\pi, \pi])$ with the usual inner product and let $E := \{\cos nt : n \in \mathbb{N}\} \cup \{\sin nt : n \in \mathbb{N}\}$. Check that *E* is orthogonal and $0 \notin E$. Hence, *E* is linearly independent.

Gram-Schmidt Orthogonalization Process

If we are given a sequence of linearly independent elements of V, then we can construct an orthogonal subset of V not containing 0, retaining the span of the elements so constructed at every step by the Gram-Schmidt Orthogonalization Process (G-S OP), just as discussed earlier.

Let (v_n) be a sequence of linearly independent elements in V. Define $w_1 := v_1$, and for $j \in \mathbb{N}$, define

$$\begin{array}{lll} \textit{w}_{j+1} & := & \textit{v}_{j+1} - \textit{P}_{\textit{w}_1}(\textit{v}_{j+1}) - \cdots - \textit{P}_{\textit{w}_j}(\textit{v}_{j+1}) \\ & = & \textit{v}_{j+1} - \frac{\langle \textit{w}_1, \textit{v}_{j+1} \rangle}{\langle \textit{w}_1, \textit{w}_1 \rangle} \textit{w}_1 - \cdots - \frac{\langle \textit{w}_j, \textit{v}_{j+1} \rangle}{\langle \textit{w}_j, \textit{w}_j \rangle} \textit{w}_j. \end{array}$$

Then span $\{w_1, \ldots, w_{j+1}\}$ = span $\{v_1, \ldots, v_{j+1}\}$, and the set $\{w_1, \ldots, w_{j+1}\}$ is orthogonal.

Now let $u_j := w_j / ||w_j||$ for $j \in \mathbb{N}$, then $(u_1, u_2, ...)$ is an ordered orthonormal set such that for each $j \in \mathbb{N}$,

$$span\{v_1,\ldots,v_j\}=span\{w_1,\ldots,w_j\}=span\{u_1,\ldots,u_j\}.$$

Example

Let V = C([-1, 1]) with the usual inner product defined by

$$\langle f, g \rangle := \int_{-1}^{1} f(t)g(t)dt \text{ for } f, g \in V.$$

For j = 0, 1, 2, ..., consider the polynomial function $p_j(t) := t^j, t \in [-1, 1]$. Let us orthogonalize the set $\{p_0, p_1, p_2, p_3\}$. Define $q_0 := p_0$, and

$$q_1 := p_1 - rac{\langle q_0, p_1
angle}{\langle q_0, q_0
angle} q_0 = p_1 - \left(rac{1}{2} \int_{-1}^1 t \, dt\right) p_0 = p_1.$$

Next, define

$$egin{array}{rcl} q_2 & \coloneqq & p_2 - rac{\langle q_0, \ p_2
angle}{\langle q_0, \ q_0
angle} q_0 - rac{\langle q_1, \ p_2
angle}{\langle q_1, \ q_1
angle} q_1 \ & = & p_2 - \left(rac{1}{2} \int_{-1}^1 t^2 dt
ight) q_0 - \left(rac{3}{2} \int_{-1}^1 t^3 dt
ight) q_1 \ & = & p_2 - rac{1}{3} p_0, \end{array}$$

and similarly,

$$egin{array}{rcl} q_3 & \coloneqq & p_3 - rac{\langle q_0, \, p_3
angle}{\langle q_0, \, q_0
angle} q_0 - rac{\langle q_1, \, p_3
angle}{\langle q_1, \, q_1
angle} q_1 - rac{\langle q_2, \, p_3
angle}{\langle q_2, \, q_2
angle} q_2 \ & = & p_3 - rac{3}{5} p_1. \end{array}$$

Observe that $||q_0|| = \sqrt{2}$, $||q_1|| = \sqrt{2}/\sqrt{3}$, $||q_2|| = 2\sqrt{2}/3\sqrt{5}$ and $||q_3|| = 2\sqrt{2}/5\sqrt{7}$. Hence if we let

$$u_j = rac{q_j}{\|q_j\}} \quad ext{for } j = 0, 1, 2, 3,$$

then we obtain the following orthonormal subset of V having the same span as span $\{p_0, p_1, p_2, p_3\}$, namely, the space of all real-valued polynomial functions of degree at most 3:

$$egin{aligned} &u_0(t):=rac{\sqrt{2}}{2}, \quad u_1(t):=rac{\sqrt{6}}{2}\,t, \ &u_2(t):=rac{\sqrt{10}}{4}\,(3t^2-1), \quad u_3(t):=rac{\sqrt{14}}{4}\,(5t^3-3t). \end{aligned}$$

In a similar manner, we can, in fact, obtain an infinite ordered orthornormal set $(u_0, u_1, ...)$ of polynomials (in t) by applying G-S OP to $(p_0, p_1, ...)$ The sequence of orthonormal polynomials thus obtained is known as the sequence of **Legendre polynomials**. It is of much use in many contexts.

Definition

Let V be a finite dimensional inner product space. An orthonormal basis for V is a basis for V which is an orthonormal subset of V.

We have proved the following results for subspaces of $\mathbb{K}^{n \times 1}$. Their proofs remain valid for any inner product space.

If u_1, \ldots, u_k is an orthonormal set in V, then we can extend it to an orthonormal basis. As a consequence, every nonzero vector subspace V has an orthonormal basis.

The G-S OP enables us to improve the quality of a given basis for V by orthonormalizing it. For instance, if $\{u_1, \ldots, u_n\}$ is an orthonormal basis for V, and $v \in V$, then it is extremely easy to write v as a linear combination of u_1, \ldots, u_n ; in fact

$$\mathbf{v} = \langle u_1, \mathbf{v} \rangle u_1 + \cdots + \langle u_n, \mathbf{v} \rangle u_n.$$

Orthogonal Projections

Let W be a subspace of a finite dimensional inner product space V. The **Orthogonal Projection Theorem** says that for every $v \in V$, there are unique $w \in W$ and $\tilde{w} \in W^{\perp}$ such that $v = w + \tilde{w}$, that is, $V = W \oplus W^{\perp}$. The map $P_W : V \to V$ given by $P_W(v) = w$ is linear and satisfies $(P_W)^2 = P_W$. It is called the **orthogonal projection map** of V onto the subspace W.

In fact, if u_1, \ldots, u_k is an orthonormal basis for W, then

$$P_W(v) = \langle u_1, v \rangle u_1 + \dots + \langle u_k, v \rangle u_k \quad \text{for} \quad v \in V.$$

Given $v \in V$, its orthogonal projection $P_W(v)$ is the **unique** best approximation to v from W.

Further, $P_W(v)$ is the unique element of W such that $v - P_W(v)$ is orthogonal to W.

Now suppose V is an inner product space of dimension n. Fix an ordered orthonormal basis E of V. For a linear operator $T: V \to V$, let $\mathbf{A} = M_E^E(T)$ denote the matrix of T with respect to E. Then the linear map $T^*: V \to V$ whose matrix with respect to E is A^* is called the **adjoint** of T. The linear operator T^* is independent of the choice of an ordered orthonormal basis E, and it satisfies

 $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$ for all $u, v \in V$.

Define T to be Hermitian if $T = T^*$, and skew-Hermitian if $T = -T^*$. Thus, T is Hermitian if

 $\langle T(u), v \rangle = \langle u, T(v) \rangle$ for all $u, v \in V$,

and is skew-Hermitian if

 $\langle T(u), v \rangle = -\langle u, T(v) \rangle$ for all $u, v \in V$,

Define T to be **unitary** if $T \circ T^*$ and $T^* \circ T$ are both identity maps on V. And define T to be **normal** if $T \circ T^* = T^* \circ T$. Note that T is unitary if and only if

 $\langle T(u), T(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$,

One can prove the spectral theorem for a normal operator on a finite dimensional inner product space V just as before. Moreover, one can also prove spectral theorems for self-adjoint operators on V just as before.

Remark The notion of adjoint of a linear operator can be generalized to the setting of certain infinite dimensional inner product spaces, and one also has analogous spectral theorems for normal operators in this more general set-up. These are quire useful in mathematics and physics, and they may be studied in some advanced courses.

THE END