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Recall: We discussed the following.

The notion of (abstract) vector space over K.

Examples: Kn×1, K1×n, Km×n, K[x ], Pn, C [a, b],
C 1[a, b], c , c0

Subspace of a vector space

Linear combinations

Span of a subset of a vector space

Linear dependence and linear independence

Crucial Result: Let S be a subset of s elements and R be
a set of r elements of V . If S ⊂ spanR and s > r , then
S is linearly dependent.

Notion of a finite dimensional vector space

Basis and dimension
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Definition

Any linearly independent subset of a finite dimensional vector
space V which spans V is called a basis for V .

Here is the most important result about finite dimensional
vector spaces. The proof is similar to that in the case of
subspaces of Kn.

Proposition

Let V be a finite dimensional vector space over K. Then the
following holds.

V has a basis.

Every set that spans V has a subset which is a basis of V .

Every linearly independent subset of V can be extended
to a basis of V .

Any two bases of V have the same cardinality, called the
dimension of V and denoted by dimV .
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Linear Transformations

Definition

Let V and W be vector spaces over K. A linear
transformation or a linear map from V to W is a function
T : V → W which ‘preserves’ the operations of addition and
scalar multiplication, that is, for all u, v ∈ V and α ∈ K,

T (u + v) = T (u) + T (v) and T (α v) = αT (v).

It is clear that if T : V → W is linear, then T (0) = 0. Also,
T ‘preserves’ linear combinations of elements of V :

T (α1v1 + · · ·+ αkvk) = α1T (v1) + · · ·+ αkT (vk)

for all k ∈ N, v1, . . . , vk ∈ V and α1, . . . , αk ∈ K.

Remark: Linear transformations T : V → V on a vector space
V into itself are sometimes called linear operators on V .
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Examples

1 . Let A be an m × n matrix with entries in K. Then the
map T : Kn×1 → Km×1 defined by T (x) := Ax is linear.
Similarly, the map T ′ : K1×m → K1×n defined by T ′(y) := yA
is linear. More generally, the map

T : Kn×p → Km×p defined by T (X) := AX

is linear, and the map

T ′ : Kp×m → Kp×n defined by T ′(Y) := YA

is linear.

2 . T : Km×n → Kn×m defined by T (A) := AT is linear.

3 . The map T : Kn×n → K defined by T (A) := traceA is
linear. But A 7−→ detA does not define a linear map.

4 . The map T : K[X ]→ K defined by T (p(X )) = p(0) is
linear.
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5 . Let V := c0, the set of all sequences in K which converge
to 0. Then the map T : V → V defined by

T (x1, x2, . . .) := (0, x1, x2, . . .)

is linear, and so is the map T ′ : V → V defined by

T ′(x1, x2, . . .) :=(x2, x3, . . .).

Note that T ′◦T is the identity map on V , but T ′◦T is not
the identity map on V . The map T is called the right shift
operator and T ′ is called the left shift operator on V .

6 . Let V := C 1([a, b]), the set of all real-valued continuously
differentiable functions, and let W := C ([a, b]), the set of all
real-valued continuous functions on [a, b]. Then the map
T ′ : V → W defined by T ′(f ) = f ′ is linear. Also, the map

T : W → V defined by T (f )(x) :=

∫ x

a

f (t)dt for x ∈ [a, b],

is linear. [Question. What are T ′◦T and T ′◦T?]
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Let V and W be vector spaces over K, and let T : V → W be
a linear map. Two important subspaces associated with T are

(i) N (T ) := {v ∈ V : T (v) = 0}, the null space of T , which
is a subspace of V ,

(ii) I(T ) := {T (v) : v ∈ V }, the image space of T , which
is a subspace of W .

Suppose V is finite dimensional, and let dimV = n. Since
N (T ) is a subspace of V , it is finite dimensional and
dimN (T ) ≤ n

Let v1, . . . , vn be a basis for V . If v ∈ V , then there are
α1, . . . , αn ∈ K such that v = α1v1 + · · ·+ αnvn, so that
T (v) = α1T (v1) + · · ·+ αnT (vn). This shows that
I(T ) = span{T (v1), . . . ,T (vn)}. Hence I(T ) is also finite
dimensional and dim I(T ) ≤ n.
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Definition

The dimension of N (T ) is called the nullity of the linear map
T , and the dimension of I(T ) is called the rank of T .

The Rank-Nullity Theorem for a matrix A that we proved
earlier is a special case of the following result.

Proposition (Rank-Nullity Theorem for Linear Maps)

Let V and W be vector spaces over K, and let T : V → W
be a linear map. Suppose dimV = n ∈ N. Then

rank(T ) + nullity(T ) = n.

Proof (Sketch): Let s := nullity(T ) and let {u1, . . . , us} be a
basis of N (T ). Extend the linearly independent set
{u1, . . . , us} to a basis {u1, . . . , us , us+1, . . . , un} of V . Check
that the set {T (us+1), . . . ,T (un)} is a basis of I(T ).
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Corollary

Suppose V and W be finite dimensional vector spaces, and
T : V → W is a linear map. Let dimV = n and
dimW = m.Then

T is one-one ⇐⇒ rank(T ) = n.

In particular, if T is one-one, then n ≤ m. If m = n, then

T is one-one ⇐⇒ T is onto

Proof. The first assertion follows from the Rank-Nullity
Theorem since T is one-one ⇐⇒ N (T ) = {0}, that is,
nullity(T ) = 0. In particular, if T is one-one, then
n = rank(T ) = dim I(T ) ≤ dimW = m. Finally, if m = n,
then the last assertion follows from the first assertion, since
rank(T ) = m ⇐⇒ T is onto.
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As another application of the Rank-Nullity Theorem, we find
an interesting relation between dimensions of finite
dimensional subspaces of a vector space.

Proposition

Let W1 and W2 be finite dimensional subspaces of a vector
space V . Then

dimW1 + dimW2 = dim(W1 ∩W2) + dim(W1 + W2).

Proof. Let W1 ×W2 := {(w1,w2) : w1 ∈ W1 and w2 ∈ W2}.
This is a vector space (w.r.t. componentwise addition and
scalar multiplication) and dim(W1 ×W2) = dimW1 + dimW2.
Define T : W1 ×W2 → W1 + W2 by T (w1,w2) := w1 − w2.
Then T is linear, N (T )={(w ,w) : w ∈ W1 ∩W2} and
I(T )=W1 + W2. Hence by the Rank-Nullity Theorem,

dim(W1 + W2) + dim(W1 ∩W2) = dim(W1 ×W2).
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Matrix of a Linear Transformation

Suppose V ,W are vector spaces over K and E = (v1, . . . , vn),
F = (w1, . . . ,wm) are their ordered bases, then

linear map T : V → W  matrix ME
F (T ) = A = [ajk ]

where A = [ajk ] is the m × n matrix determined by

T (vk) =
m∑
j=1

ajkwj for k = 1, . . . , n.

Example: If IV : V → V is the identity map, then ME
E (IV ) = I.

Basic Property: If U is another vector space, D = (u1, . . . , up)
an ordered basis of U , and S : U → V a linear map, then

MD
F (T ◦ S) = ME

F (T )MD
E (S).

Simple Exercise: If a linear map T : V → W is invertible, then
T−1 : W → V is also a linear map.
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The above example and the basic property implies that

T : V → W is invertible ⇐⇒ME
F (T ) is invertible

Moreover
ME

F (T )−1 = MF
E (T−1).

Effect of Change of Basis: We can also use this and the basic
property to relate A := ME

F (T ) with A′ := ME ′

F ′(T ), where
E ′,F ′ are some other ordered bases of V ,W , as follows.

ME ′

F ′(T ) = MF
F ′(IW )ME

F (T )ME ′

E (IV ),

i.e., A′ = QAP, where Q = MF
F ′(IW ) and P = ME ′

E (IV ) are
invertible matrices of sizes m ×m and n × n, respectively.

Important Special Case: W = V and F = E and F ′ = E ′.
In this case, Q = ME

E ′(IV ) = ME ′

E (IV )−1 = P−1 and thus

A′ = ME ′

E ′(T ) = ME
E ′(IV )ME

E (T )ME ′

E (IV ) = P−1AP.

In other words, A′ is similar to A.
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Remark: The correspondence between an m×n matrix and a
linear map from an n dimensional vector space V to an m
dimensional vector space W allows us to obtain two versions
of the same result such as the Rank-Nullity Theorem: a
version using matrices, and another one using abstract vector
spaces. Any one version can be derived from the other.

Example: For n ∈ N, let Pn denote the vector space of all
polynomials of degree less than or equal to n. Define
T : Pn → Pn−1 by T (p(x)) = p′(x), the derivative of p(x).
Let E := (1, x , . . . , xn) and F := (1, x , . . . , xn−1) be the
ordered bases of Pn and Pn−1 respectively. Then the
n × (n + 1) matrix of T with respect to these bases is

ME
F (T ) :=


0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · n

 .
Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 20



Eigenvalue Problems for Linear Operators

Definition

Let V be a vector space over K, and T : V → V a linear
operator. A scalar λ ∈ K is called an eigenvalue of T if
there is a nonzero v ∈ V such that T (v) = λv , and then v is
called an eigenvector or an eigenfunction of T
corresponding to λ, and the subspace N (T − λI ) is called the
eigenspace of T . The dimension of this eignspace if called
the geometric multiplicity of λ as an eigenvalue of T

Example: Let V denote the vector space of all real-valued
infinitely differentiable functions on R. Define T (f ) = f ′ for
f ∈ V . Then T is a linear operator on V . Given λ ∈ R,
consider fλ(t) := eλt for t ∈ R. Then fλ ∈ V , fλ 6= 0 and
T (fλ) = λ fλ. Thus every λ ∈ R is an eigenvalue of T with fλ
as a corresponding eigenfunction. In fact, any eigenfunction of
T corresponding to λ is a scalar multiple of fλ.
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We now consider a vector space V of finite dimension n and a
linear operator T : V → V . Fixing an an ordered basis
E = (v1, . . . , vn) of V , we can associate to T an n × n matrix
A := ME

E (T ). Observe that if λ ∈ K and v ∈ V , then

T (v) = λv ⇐⇒ Ax = λx,

where x = [x1, . . . , xn]T with x1, . . . , xn ∈ K determined by
writing v = x1v1 + · · ·+ xnvn. Thus, we see that

λ is an eigenvalue of T ⇐⇒ λ is an eigenvalue of A.

With this in view, we define the characteristic polynomial of
T to be the characteristic polynomials of A. The algebraic
multiplicity of an eigenvalue λ of T is defined to be the
algebraic multiplicity of λ as an eigenvalue of A. Further, the
linear operator T is said to be diagonalizable if the matrix A
is diagonalizable. The above definitions do not depend on the
choice of the ordered basis E for V because if F is any other
ordered basis of V , then B := MF

F (T ) is similar to A.
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Inner Product Spaces

Let V be a vector space over K. An inner product on V is a
function 〈· , ·〉 : V×V → K satisfying the following properties.
For u, v ,w ∈ V and α, β ∈ K,

1. 〈v , v〉 ≥ 0 and 〈v , v〉 = 0 ⇐⇒ v = 0, (positive definite)

2. 〈u, αv + βw〉=α〈u, v〉+β〈u, w〉, (linear in 2nd variable)

3. 〈v , u〉 = 〈u, v〉. (conjugate symmetric)

From the above properties, conjugate linearity in the 1st
variable follows: 〈αu + βv , w〉 = α〈u, w〉+ β〈v , w〉.
If u, v ∈ V and 〈u, v〉 = 0, then we say that u and v are
orthogonal, and we write u ⊥ v .

For v ∈ V , we define the norm of v by ‖v‖ := 〈v , v〉1/2.
If v ∈ V and ‖v‖ = 1, then we say that v is a unit vector or
a unit function. The set {v ∈ V : ‖v‖ ≤ 1} is called the
unit ball of V .
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Definition

A vector space V over K with a prescribed inner product on it
is called an inner product space.

Examples
1 . We have already studied the primary example, namely
V := Kn×1 with the usual inner product 〈x, y〉 := x∗y for
x, y ∈ Kn×1. There are other inner products on Kn×1. For
example, let w1, . . . ,wn be positive real numbers, and define

〈x, y〉w := w1x1y1 + · · ·+ wnxnyn for x, y ∈ Kn×1.

Then this is an inner product on V = Kn×1. On the other
hand, the function on R4×1 × R4×1 defined by

〈x, y〉M := x1y1 + x2y2 + x3y3 − x4y4 for x, y ∈ R4×1

is not an inner product on R4×1. Note that for x ∈ R4×1,
〈x, x〉M = x21 + x22 + x23 − x24 , and this can be negative.
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2 . Let K = R and let V := C ([a, b]), the vector space of all
continuous real valued functions on [a, b]. Define

〈f , g〉 :=

∫ b

a

f (t)g(t)dt for f , g ∈ V .

It is easy to check that this is an inner product on V . We shall
call this inner product the usual inner product on C ([a, b]).

In this case, the norm of f ∈ V is ‖f ‖ :=
(∫ b

a
|f (t)|2dt

)1/2
.

This example gives a continuous analogue of the usual inner
product on Kn×1.

There are other inner products on V . For example, let
w : [a, b]→ R be positive function, and define

〈f , g〉w :=

∫ b

a

w(t)f (t)g(t)dt for f , g ∈ V .

Then this is also an inner product on V .
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Projection in the direction of a nonzero vector

Suppose V is any inner product space over K with a
prescribed inner product given by 〈· , ·〉.
Let w be a nonzero element of V . As earlier, define

Pw (v) :=
〈w , v〉
〈w , w〉

w for v ∈ V .

It is called the (perpendicular) projection of v in the
direction of w . It is easy to see that Pw : V → V is a linear
map and its image space is one dimensional. It is also clear
from the definition that Pw (w) = w . This implies that

(Pw )2 := Pw ◦ Pw = Pw .

Note that Pw (v) is a scalar multiple of w for every v ∈ V .

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 20



Two important properties of the projection of a vector in the
direction of another (nonzero) vector are as follows.

Proposition

Let w ∈ V be nonzero. Then for every v ∈ V ,

(i)
(
v − Pw (v)

)
⊥ w and (ii) ‖Pw (v)‖ ≤ ‖v‖.

Proof. Let v ∈ V . For (i), we note that

〈w , v − Pw (v)〉=〈w , v〉−〈w , Pw (v)〉=〈w , v〉− 〈w , v〉
〈w , w〉

〈w , w〉=0.

For (ii), write v = Pw (v) + u, and note that 〈u, Pw (v)〉 = 0
by (i). Hence

‖v‖2 = 〈Pw (v) + u, Pw (v) + u〉 = ‖Pw (v)‖2 + ‖u‖2,

Therefore, ‖v‖2 ≥ ‖Pw (v)‖2, which yields (ii).
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The following inequalities were proved earlier for vectors in
Kn×1. They hold in any inner product space.

Theorem

Let 〈· , ·〉 be an inner product on a vector space V , and let
v ,w ∈ V . Then
(i) (Schwarz Inequality) |〈v , w〉| ≤ ‖v‖‖w‖.
(ii) (Triangle Inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Proof. (i) Let w = 0. Then 〈v , 0〉 = 〈v , 0 + 0〉 = 2〈v , 0〉
implies 〈v , w〉 = 0. Since ‖w‖ = 0, we obtain (i) if w = 0.

Now suppose w 6= 0. Then by (ii) of the previous proposition,∥∥∥∥ 〈w , v〉〈w , w〉
w

∥∥∥∥ = ‖Pw (v)‖ ≤ ‖v‖,

that is, |〈w , v〉|‖w‖ ≤ ‖v‖〈w , w〉 = ‖v‖‖w‖2. Hence
|〈v , w〉| ≤ ‖v‖‖w‖ in this case as well.
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(ii) Since 〈v , w〉+ 〈w , v〉 = 2R 〈v , w〉, we see that

‖v + w‖2 = 〈v + w , v + w〉 = ‖v‖2 + ‖w‖2 + 2R 〈v , w〉
≤ ‖v‖2 + ‖w‖2 + 2 |〈v , w〉|
≤ ‖v‖2 + ‖w‖2 + 2 ‖v‖‖w‖ (by (i) above)

= (‖v‖+ ‖w‖)2.

Thus ‖v + w‖ ≤ ‖v‖+ ‖w‖.

As a consequence of the above theorem, we see that the norm
function ‖ · ‖ : V → K on an inner product space V satisfies
the following three basic properties:

(i) ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 ⇐⇒ v = 0,

(ii) ‖αv‖ = |α|‖v‖ for all α ∈ K and v ∈ V ,

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v ,w ∈ V .

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 20



Orthogonal and Orthonormal Sets

Let V be an inner product space. Let E be a subset of V .
Define

E⊥ := {w ∈ V : w ⊥ v for all v ∈ E}.

It is easy to see that E⊥ is a subspace of V . We call E⊥ the
orthogonal complement of E in V .

The set E is said to be orthogonal if any two (distinct)
elements of E are orthogonal (to each other), that is, v ⊥ w
for all v ,w in E with v 6= w . An orthogonal set whose
elements are unit vectors is called an orthonormal set.

If E is orthogonal and does not contain 0, then it is easily seen
that E is linearly independent. For example, consider
V := C ([−π, π]) with the usual inner product and let
E := {cos nt : n ∈ N} ∪ {sin nt : n ∈ N}. Check that E is
orthogonal and 0 6∈ E . Hence, E is linearly independent.

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 20



Gram-Schmidt Orthogonalization Process

If we are given a sequence of linearly independent elements of
V , then we can construct an orthogonal subset of V not
containing 0, retaining the span of the elements so
constructed at every step by the Gram-Schmidt
Orthogonalization Process (G-S OP), just as discussed earlier.

Let (vn) be a sequence of linearly independent elements in V .

Define w1 := v1, and for j ∈ N, define

wj+1 := vj+1 − Pw1(vj+1)− · · · − Pwj
(vj+1)

= vj+1 −
〈w1, vj+1〉
〈w1, w1〉

w1 − · · · −
〈wj , vj+1〉
〈wj , wj〉

wj .

Then span{w1, . . . ,wj+1} = span{v1, . . . , vj+1}, and the set
{w1, . . . ,wj+1} is orthogonal.
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Now let uj := wj/‖wj‖ for j ∈ N, then (u1, u2, . . .) is an
ordered orthonormal set such that for each j ∈ N,

span{v1, . . . , vj} = span{w1, . . . ,wj} = span{u1, . . . , uj}.

Example
Let V = C ([−1, 1]) with the usual inner product defined by

〈f , g〉 :=

∫ 1

−1
f (t)g(t)dt for f , g ∈ V .

For j = 0, 1, 2, . . ., consider the polynomial function
pj(t) := t j , t ∈ [−1, 1]. Let us orthogonalize the set
{p0, p1, p2, p3}. Define q0 := p0, and

q1 := p1 −
〈q0, p1〉
〈q0, q0〉

q0 = p1 −
(

1

2

∫ 1

−1
t dt

)
p0 = p1.
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Next, define

q2 := p2 −
〈q0, p2〉
〈q0, q0〉

q0 −
〈q1, p2〉
〈q1, q1〉

q1

= p2 −
(

1

2

∫ 1

−1
t2dt

)
q0 −

(
3

2

∫ 1

−1
t3dt

)
q1

= p2 −
1

3
p0,

and similarly,

q3 := p3 −
〈q0, p3〉
〈q0, q0〉

q0 −
〈q1, p3〉
〈q1, q1〉

q1 −
〈q2, p3〉
〈q2, q2〉

q2

= p3 −
3

5
p1.

Observe that ‖q0‖ =
√

2, ‖q1‖ =
√

2/
√

3, ‖q2‖ = 2
√

2/3
√

5
and ‖q3‖ = 2

√
2/5
√

7.
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Hence if we let

uj =
qj
‖qj}

for j = 0, 1, 2, 3,

then we obtain the following orthonormal subset of V having
the same span as span{p0, p1, p2, p3}, namely, the space of all
real-valued polynomial functions of degree at most 3:

u0(t) :=

√
2

2
, u1(t) :=

√
6

2
t,

u2(t) :=

√
10

4
(3t2 − 1), u3(t) :=

√
14

4
(5t3 − 3t).

In a similar manner, we can, in fact, obtain an infinite ordered
orthornormal set (u0, u1, . . . ) of polynomials (in t) by applying
G-S OP to (p0, p1, . . . ) The sequence of orthonormal
polynomials thus obtained is known as the sequence of
Legendre polynomials. It is of much use in many contexts.
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Definition

Let V be a finite dimensional inner product space. An
orthonormal basis for V is a basis for V which is an
orthonormal subset of V .

We have proved the following results for subspaces of Kn×1.
Their proofs remain valid for any inner product space.

If u1, . . . , uk is an orthonormal set in V , then we can extend it
to an orthonormal basis. As a consequence, every nonzero
vector subspace V has an orthonormal basis.

The G-S OP enables us to improve the quality of a given basis
for V by orthonormalizing it. For instance, if {u1, . . . , un} is
an orthonormal basis for V , and v ∈ V , then it is extremely
easy to write v as a linear combination of u1, . . . , un; in fact

v = 〈u1, v〉u1 + · · ·+ 〈un, v〉un.
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Orthogonal Projections

Let W be a subspace of a finite dimensional inner product
space V . The Orthogonal Projection Theorem says that
for every v ∈ V , there are unique w ∈ W and w̃ ∈ W⊥ such
that v = w + w̃ , that is, V = W ⊕W⊥. The map
PW : V → V given by PW (v) = w is linear and satisfies
(PW )2 = PW . It is called the orthogonal projection map of
V onto the subspace W .

In fact, if u1, . . . , uk is an orthonormal basis for W , then

PW (v) = 〈u1, v〉u1 + · · ·+ 〈uk , v〉uk for v ∈ V .

Given v ∈ V , its orthogonal projection PW (v) is the unique
best approximation to v from W .

Further, PW (v) is the unique element of W such that
v − PW (v) is orthogonal to W .
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Now suppose V is an inner product space of dimension n. Fix
an ordered orthonormal basis E of V . For a linear operator
T : V → V , let A = ME

E (T ) denote the matrix of T with
respect to E . Then the linear map T∗ : V → V whose matrix
with respect to E is A∗ is called the adjoint of T . The linear
operator T ∗ is independent of the choice of an ordered
orthonormal basis E , and it satisfies

〈T (u), v〉 = 〈u, T∗(v)〉 for all u, v ∈ V .

Define T to be Hermitian if T = T∗, and skew-Hermitian
if T = −T∗. Thus, T is Hermitian if

〈T (u), v〉 = 〈u, T (v)〉 for all u, v ∈ V ,

and is skew-Hermitian if

〈T (u), v〉 = −〈u, T (v)〉 for all u, v ∈ V ,
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Define T to be unitary if T ◦T∗ and T∗ ◦T are both identity
maps on V . And define T to be normal if T ◦ T∗ = T∗ ◦ T .

Note that T is unitary if and only if

〈T (u), T (v)〉 = 〈u, v〉 for all u, v ∈ V ,

One can prove the spectral theorem for a normal operator on a
finite dimensional inner product space V just as before.
Moreover, one can also prove spectral theorems for self-adjoint
operators on V just as before.

Remark The notion of adjoint of a linear operator can be
generalized to the setting of certain infinite dimensional inner
product spaces, and one also has analogous spectral theorems
for normal operators in this more general set-up. These are
quire useful in mathematics and physics, and they may be
studied in some advanced courses.
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THE END

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 20


