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Recall: A square matrix A ∈ Rn×n is said to be invertible if
there is B ∈ Rn×n such that

AB = I = BA,

and in this case, B is called an inverse of A.

We have seen examples of square matrices that are invertible
and also those that are not invertible. Further we noted that:

If a square matrix A ∈ Rn×n is invertible, then it has a
unique inverse, and it is denoted by A−1

If a square matrix A ∈ Rn×n is invertible, then so is its
transpose AT and in this case,

(AT)−1 = (A−1)T.
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We have also related the invertibility of a square matrix A to
the solutions of the homogeneous system Ax = 0 by proving:

Proposition

Let A ∈ Rn×n. Then A is invertible if and only if the linear
system Ax = 0 has only the zero solution.

This gave a 50% reduction in the condition for invertibility:

Corollary

Let A ∈ Rn×n. If there is B ∈ Rn×n such that either BA = I
or AB = I, then A is invertible, and A−1 = B.

And we also established the following useful property:

Proposition

Let A,B ∈ Rn×n. Then AB is invertible if and only if both A
and B are invertible,. In this case, (AB)−1 = B−1A−1.
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Row Canonical Form (RCF)

As we have seen, a matrix A may not have a unique REF.
However, a special REF of A turns out to be unique.

An m × n matrix A is said to be in a row canonical form
(RCF) or a reduced row echelon form (RREF) if
(i) it is in a row echelon form (REF),
(ii) all pivots are equal to 1 and
(iii) in each pivotal column, all entries above the pivot are
(also) equal to 0.

For example, the matrix

A :=


0 1 ∗ 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 ∗
0 0 0 0 0 0


is in a RCF, where ∗ denotes any real number.
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Note: If A is in REF, then in each pivotal column, all entries
below the pivot are 0. If A is in fact in RCF and has r nonzero
rows, then the r × r submatrix formed by the first r rows and
the r pivotal columns is the r × r identity matrix I.

Suppose an m× n matrix A is in RCF and has r nonzero rows.
If r = n, then it has n pivotal columns, that is, all its columns

are pivotal, and so A = I if m = n, and A =

 I

O

 if m > n,

where I is the n × n identity matrix and O is the (m − n)× n
zero matrix.

To transform an m × n matrix to a RCF, we first transform it
to a REF by elementary row operations of type I and II. Then
we multiply a row containing a pivot p by 1/p (which is an
elementary row operation of type III), and then we add a
suitable nonzero multiple of this row to each preceding row.

Every matrix has a unique RCF. (Proof by induction on n)
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Example
1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 16

EROs−−−−→


1 3 −2 0 2 0

0 0 −1 −2 0 −3

0 0 0 0 0 6
0 0 0 0 0 0

 ,
which is in REF,

EROs−−−−→


1 3 0 4 2 6

0 0 1 2 0 3

0 0 0 0 0 6
0 0 0 0 0 0

EROs−−−−→


1 3 0 4 2 0

0 0 1 2 0 0

0 0 0 0 0 1
0 0 0 0 0 0

,

which is in RCF.
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Recall: A square matrix A is invertible if and only if the
homogeneous linear system Ax = 0 has only the zero solution.

Proposition

An n×n matrix is invertible if and only if it can be transformed
to the n×n identity matrix by EROs.

Proof. Suppose A ∈ Rn×n is invertible. Using EROs, transform
A to a matrix A′ ∈ Rn×n such that A′ is in a RCF. Since A is
invertible, the linear system Ax = 0 has only the zero solution.
Hence A′ has n nonzero rows, and so each of the n columns of
A′ is pivotal. Also, the number of rows of A is equal to the
number of its columns, that is, m = n. Therefore A′ = I.

Conversely, suppose A ∈ Rn×n can be transformed to the n×n
identity matrix I by EROs. Since Ix = 0 =⇒ x = 0 for
x ∈ Rn×1, we see that the linear system Ax = 0 has only the
zero solution. Hence A is invertible.
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Remark.
Suppose an n × n square matrix A is invertible. In order to
solve the linear system Ax = b for a given b ∈ Rn×1, we may
transform the augmented matrix [A|b] to [I | c] by EROs. Now
Ax = b ⇐⇒ Ix = c for x ∈ Rn×1. Hence Ac = b. Thus c is
the unique solution of Ax = b. This observation is the basis of
an important method to find the inverse of a square matrix.

Gauss-Jordan Method for Finding the Inverse of a Matrix

Let A ∈ Rn×n be an invertible matrix. Consider the basic
column vectors e1, . . . , en ∈ Rn×1. Then

[
e1 · · · en

]
= I.

Let x1, . . . , xn be the unique elements of Rn×1 be such that
Ax1 = e1, . . . ,Axn = en, and define X :=

[
x1 · · · xn

]
. Then

AX = A
[
x1 · · · xn

]
=
[
Ax1 · · · Axn

]
=
[
e1 · · · en

]
= I.

By an earlier result, it follows that X = A−1.
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Hence to find A−1, we may solve the n linear systems
Ax1 = e1, . . . ,Axn = en simultaneously by considering the
n × 2n augmented matrix

[A|e1 · · · en] = [A | I]
and transform A to its RCF, namely to I, by EROs. Thus if
[A | I] is transformed to [I |X], then X is the inverse of A.

Remark To carry out the above process, we need not know
beforehand that the matrix A is invertible. This follows by
noting that A can be transformed to the identity matrix by
EROs if and only if A is invertible. Hence the process itself
reveals whether A is invertible or not.

Example

Let

A :=

−1 1 2
3 −1 1
−1 3 4

 .
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We use EROs to transform [A | I] to [I |X], where X ∈ R3×3.−1 1 2
∣∣ 1 0 0

3 −1 1
∣∣ 0 1 0

−1 3 4
∣∣ 0 0 1

→
−1 1 2

∣∣ 1 0 0
0 2 7

∣∣ 3 1 0
0 2 2

∣∣ −1 0 1

→
 −1 1 2

∣∣ 1 0 0

0 2 7
∣∣ 3 1 0

0 0 −5
∣∣ −4 −1 1

→
1 −1 −2

∣∣ −1 0 0
0 1 3.5

∣∣ 1.5 0.5 0
0 0 1

∣∣ 0.8 0.2 −0.2



−→

1 −1 0
∣∣ 0.6 0.4 −0.4

0 1 0
∣∣ −1.3 −0.2 0.7

0 0 1
∣∣ 0.8 0.2 −0.2


−→

1 0 0
∣∣ −0.7 0.2 0.3

0 1 0
∣∣ −1.3 −0.2 0.7

0 0 1
∣∣ 0.8 0.2 −0.2

 = [I |X].
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Thus A is invertible and

A−1 = X =
1

10

 −7 2 3
−13 −2 7

8 2 −2

 .
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Linear Dependence

Let n ∈ N. We shall work entirely with row vectors in R1×n (of
length n), or entirely with column vectors in Rn×1(of length
n), both of which will be referred to as ‘vectors’.

We have already considered a linear combination

α1a1 + · · ·+ αmam

of vectors a1, . . . , am, where α1, . . . , αm are scalars.

A set S of vectors is called linearly dependent if there is
m ∈ N, there are (distinct) vectors a1, . . . , am in S and there
are scalars α1, . . . , αm, not all zero, such that

α1a1 + · · ·+ αmam = 0.

It can be seen that S is linearly dependent ⇐⇒ either 0 ∈ S
or a vector in S is a linear combination of other vectors in S .

Prof. S. R. Ghorpade, IIT Bombay Linear Algebra: Lecture 04



Examples

(i) Let S :=
{[

1 2
]T
,
[
2 1

]T
,
[
1 −1

]T} ⊂ R2×1. Then

the set S is linearly dependent since[
2
1

]
=

[
1
2

]
+

[
1
−1

]
. Clearly,

[
1
2

]
−
[

2
1

]
+

[
1
−1

]
=

[
0
0

]
.

(ii) Let
S :=

{[
1 2 3

]
,
[
2 3 1

]
,
[
3 1 2

]
,
[
0 −3 3

]}
⊂ R1×3.

Then the set S is linearly dependent since[
0 −3 3

]
=
[
1 2 3

]
− 2

[
2 3 1

]
+
[
3 1 2

]
. Clearly,[

1 2 3
]
−2
[
2 3 1

]
+
[
3 1 2

]
−
[
0 −3 3

]
=
[
0 0 0

]
.

In (i) above, S is a set of 3 vectors in R2×1, and in (ii) above,
S is a set of 4 vectors in R1×3. These examples illustrate an
important phenomenon to which we now turn. First we prove
the following crucial result.
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Proposition

Let S be a set of s vectors, each of which is a linear
combination of elements of a (fixed) set of r vectors. If s > r ,
then the set S is linearly dependent.

Proof. Let S := {x1, . . . , xs}, and suppose each vector in S is
a linear combination of elements of the set {y1, . . . , yr} of r
vectors and s > r . Then

xj =
r∑

k=1

ajkyk for j = 1, . . . , s, where ajk ∈ R.

Let A := [ajk ] ∈ Rs×r . Then AT ∈ Rr×s . Since r < s, the
linear system ATx = 0 has a nonzero solution, that is, there
are α1, . . . , αs , not all zero, such that

AT

α1
...
αs

 =

a11 · · · as1
...

...
...

a1r · · · asr


α1

...
αs

 =

0
...
0

 ∈ Rr×1,
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that is,
∑s

j=1 ajkαj = 0 for k = 1, . . . , r . It follows that

s∑
j=1

αjxj =
s∑

j=1

αj

( r∑
k=1

ajkyk

)
=

r∑
k=1

( s∑
j=1

ajkαj

)
yk = 0.

Since not all α1, . . . , αn are zero, S is linearly dependent.

Corollary

Let n ∈ N and S be a set of vectors of length n. If S has more
than n elements, then S is linearly dependent.

Proof. If S is a set of column vectors of length n, then each
element of S is a linear combination of the n column vectors
e1, . . . , en. Similarly, if S is a set of row vectors of length n,
then each element of S is a linear combination of the n row
vectors eT1 , . . . , e

T
n . Hence the desired result follows from the

crucial result we just proved.
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