MA 110 Linear Algebra and Differential Equations Lecture 08

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay http://www.math.iitb.ac.in/~srg/

Spring 2025

Review of last lecture

We have discussed the following important notions.

- Rank of a matrix
- Vector subspaces (of $\mathbb{R}^{n \times 1}$).
- Basis of a subspace
- Dimension of a subspace
- Span of a subset of a vector subspace.
- Null space and the column space of a matrix.

And we proved several important results such as:

- Characterizations of a basis of a vector subspace
- Rank-Nullity Theorem
- Fundamental Theorem for Linear Systems:

We also saw how a basis of the row space $\mathcal{R}(\mathbf{A})$ and a basis of the column space $\mathcal{C}(\mathbf{A})$ of a matrix \mathbf{A} can be found by looking at a row echelon form of \mathbf{A} .

Determinants

You already know formulas for determinants of $1\times1,\,2\times2$ and 3×3 matrices. Let us recall them.

det
$$\begin{bmatrix} a_1 \end{bmatrix} = a_1$$
, det $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$ and
det $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - a_3 c_2) + c_1 (a_2 b_3 - a_3 b_2),$

which is also equal to
$$a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1).$$

We shall presently give formulas for the determinant of an $n \times n$ matrix, that is, of a matrix of size n, where $n \in \mathbb{N}$, and we shall explore their use in matrix theory.

Let
$$n \in \mathbb{N}$$
 and let $\mathbf{A} := \begin{bmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{j1} & \cdots & a_{jk} & \cdots & a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nk} & \cdots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}.$

The determinant of **A** is a real number defined inductively as follows. For n := 1, define det $\mathbf{A} := a_{11}$. Let $n \ge 2$, and suppose we have defined the determinant of any $(n-1)\times(n-1)$ matrix. For $j, k = 1, \ldots, n$, let \mathbf{A}_{jk} denote the submatrix of **A** obtained by deleting the *j*th row and the *k*th column of **A**, and let $M_{jk} := \det \mathbf{A}_{jk}$, called the (j, k)th **minor** of **A**. Define

$$\det \mathbf{A} := a_{11}M_{11} - a_{12}M_{12} + \dots + (-1)^{1+k}a_{1k}M_{1k} + \dots + (-1)^{1+n}a_{1n}M_{1n}.$$

This is also known as the **expansion for the determinant of A in terms of the first row of A**. An immediate consequence of our definition is the following.

Proposition

If **A** is lower triangular, then the determinant of **A** is the product of its diagonal entries.

Proof. det
$$\mathbf{A} = a_{11}M_{11}$$
 since $a_{12} = \cdots = a_{1n} = 0$, etc.

Next, it can be proved by induction on the size n of a matrix that det **A** is equal to the following expansions in terms of the *j*th row of **A**, and also in terms of the *k*th column of **A**:

$$\det \mathbf{A} = \sum_{k=1}^{n} (-1)^{j+k} a_{jk} M_{jk} \text{ for each } j \in \{1, \dots, n\}$$
$$\det \mathbf{A} = \sum_{j=1}^{n} (-1)^{j+k} a_{jk} M_{jk} \text{ for each } k \in \{1, \dots, n\}$$

(For a proof, see Kreyszig, Appendix 4, page A81.) Note: The signs $(-1)^{j+k}$ follow a zigzag pattern.

Proposition

Let **A** be a square matrix. Then det $\mathbf{A}^{\mathsf{T}} = \det \mathbf{A}$.

Proof. This is obvious if n = 1. Let now $n \ge 2$, and assume this property for all $(n-1)\times(n-1)$ matrices. Note that $(\mathbf{A}^{\mathsf{T}})_{jk} = (\mathbf{A}_{kj})^{\mathsf{T}}$ for all j, k = 1, ..., n, that is, the submatrix obtained by deleting the *j*th row and the *k*th column of \mathbf{A}^{T} is the same as the transpose of the submatrix obtained by deleting the *k*th row and the *j*th column of \mathbf{A} . (For example,

$$\mathbf{A} := \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \implies \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix},$$

so that $(\mathbf{A}^{\mathsf{T}})_{21} = \begin{bmatrix} a_{21} & a_{31} \\ a_{23} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}^{\mathsf{T}} = (\mathbf{A}_{12})^{\mathsf{T}}.$

Let $\mathbf{A} := [a_{jk}]$ and $\mathbf{A}^{\mathsf{T}} := [a'_{jk}]$. Then $a'_{jk} = a_{kj}$ and $M'_{jk} := \det(\mathbf{A}^{\mathsf{T}})_{jk} = \det(\mathbf{A}_{kj})^{\mathsf{T}} = \det \mathbf{A}_{kj} = M_{kj}$ by the inductive hypothesis for j, k = 1, ..., n. Expanding det \mathbf{A}^{T} in terms of its first row, and det \mathbf{A} in terms of its first column,

det
$$\mathbf{A}^{\mathsf{T}} = a'_{11}M'_{11} - a'_{12}M'_{12} + \dots + (-1)^{1+n}a'_{1n}M'_{1n}$$

 $= a_{11}M_{11} - a_{21}M_{21} + \dots + (-1)^{n+1}a_{n1}M_{n1}$
 $= \det \mathbf{A}. \square$

Corollary

1

If **A** is upper triangular, then the determinant of **A** is the product of its diagonal entries.

Proof. Let **A** be upper triangular. Then \mathbf{A}^{T} is lower triangular and has the same diagonal entries as those of **A**.

Let us write
$$\mathbf{A} := \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}$$
 in terms of its *n* columns.

Crucial Properties of the **determinant function** $\mathbf{A} \mapsto \det \mathbf{A}$ from $\mathbb{R}^{n \times n}$ to \mathbb{R} :

1. [Multilinearity] If $k \in \{1, ..., n\}$ and $\mathbf{c}_k = \alpha \, \mathbf{c}'_k + \beta \, \mathbf{c}''_k$ for some $\alpha, \beta \in \mathbb{R}$ and column vectors $\mathbf{c}'_k, \, \mathbf{c}''_k \in \mathbb{R}^{n \times 1}$, then det $\mathbf{A} = \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \alpha \, \mathbf{c}'_k + \beta \, \mathbf{c}''_k & \cdots & \mathbf{c}_n \end{bmatrix}$ is equal to $\alpha \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}'_k & \cdots & \mathbf{c}_n \end{bmatrix} + \beta \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}''_k & \cdots & \mathbf{c}_n \end{bmatrix}$.

This is proved by expanding det **A** in terms of its *k*th column. Note that the multilinearity implies that det(α **A**) = α^n det **A**.

2. [Alternating Property] Suppose $n \ge 2$. If $\mathbf{c}_k = \mathbf{c}_{\ell}$ for some $k \ne \ell$, then det $\mathbf{A} = 0$, that is, if 2 columns of a matrix are identical, then its determinant is 0. This is clear for n = 2, and for $n \ge 3$, this is proved using induction on n, by expanding det \mathbf{A} in terms of a column \mathbf{c}_p of \mathbf{A} , where $p \ne k$ and $p \ne \ell$.

3. [Normalization Property] det I = 1, that is, the determinant of the identity matrix is equal to 1. This is obvious.

Prof. S. R. Ghorpade, IIT Bombay Linea

Proposition

Let **A** be a square matrix.

(i) If two columns of **A** are interchanged, then det **A** gets multiplied by -1.

(ii) Addition of a multiple of a column to another column of ${\bf A}$ does not alter det ${\bf A}.$

(iii) Multiplication of a column of **A** by a scalar α results in the multiplication of det **A** by α .

Proof: Let $\mathbf{A} := [\mathbf{c}_1 \cdots \mathbf{c}_k \cdots \mathbf{c}_\ell \cdots \mathbf{c}_n]$, where $k \neq \ell$. (i) Define $\alpha := \det[\mathbf{c}_1 \cdots (\mathbf{c}_k + \mathbf{c}_\ell) \cdots (\mathbf{c}_k + \mathbf{c}_\ell) \cdots \mathbf{c}_n]$. Then $\alpha = 0$ since the matrix has two identical columns.

On the other hand,
$$\alpha = \beta + \gamma$$
, where
 $\beta := \det \begin{bmatrix} \mathbf{c}_1 & \cdots & (\mathbf{c}_k + \mathbf{c}_\ell) & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}$ and
 $\gamma := \det \begin{bmatrix} \mathbf{c}_1 & \cdots & (\mathbf{c}_k + \mathbf{c}_\ell) & \cdots & \mathbf{c}_\ell & \cdots & \mathbf{c}_n \end{bmatrix}$.

In turn, $\beta := \beta_1 + \beta_2$ and $\gamma = \gamma_1 + \gamma_2$, where

$$\begin{array}{rcl} \beta_1 &=& \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}, \\ \beta_2 &=& \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_\ell & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}, \\ \gamma_1 &=& \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_\ell & \cdots & \mathbf{c}_n \end{bmatrix}, \\ \gamma_2 &=& \det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_\ell & \cdots & \mathbf{c}_\ell & \cdots & \mathbf{c}_n \end{bmatrix}.$$

But $\beta_1 = 0 = \gamma_2$ since two columns are identical. Since $0 = \alpha = \beta + \gamma = \beta_2 + \gamma_1$, we see that $\gamma_1 = -\beta_2$, that is, det $\begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}$ is equal to $-\det \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_\ell & \cdots & \mathbf{c}_n \end{bmatrix}$, as desired.

(ii) Suppose α times the ℓ th column of **A** is added to the *k*th column of **A**. Then det $[\mathbf{c}_1 \cdots (\mathbf{c}_k + \alpha \mathbf{c}_\ell) \cdots \mathbf{c}_\ell \cdots \mathbf{c}_n]$ is equal to det $\mathbf{A} + \alpha \det [\mathbf{c}_1 \cdots \mathbf{c}_\ell \cdots \mathbf{c}_\ell \cdots \mathbf{c}_n] = \det \mathbf{A}$. (iii) Suppose the *k*th column of **A** is multiplied by α . Then det $[\mathbf{c}_1 \cdots \alpha \mathbf{c}_k \cdots \mathbf{c}_n] = \alpha \det [\mathbf{c}_1 \cdots \mathbf{c}_k \cdots \mathbf{c}_n] = \alpha \det \mathbf{A}$.

Corollary

Let **A** be a square matrix.

(i) If two rows of ${\bf A}$ are interchanged, then det ${\bf A}$ gets multiplied by -1.

(ii) Addition of a multiple of a row to another row of **A** does not alter det **A**.

(iii) Multiplication of a row of **A** by a scalar α results in the multiplication of det **A** by α .

Proof. Since the columns of \mathbf{A}^{T} are the rows of \mathbf{A} , and since det $\mathbf{A} = \det \mathbf{A}^{\mathsf{T}}$, these results follow from the previous proposition.

The above corollary can be used to find det \mathbf{A} as follows. Transform \mathbf{A} to \mathbf{A}' by EROs of type I and type II, where \mathbf{A}' is in REF, keeping track of the number of row interchanges. Now \mathbf{A}' is an upper triangular matrix. Let p be the number of row interchanges, and let a'_{11}, \ldots, a'_{nn} be the diagonal entries of \mathbf{A}' . Then det $\mathbf{A} = (-1)^p \det \mathbf{A}' = (-1)^p a'_{11} \cdots a'_{nn}$.

Example

Let
$$\mathbf{A} := \begin{bmatrix} 0 & 2 & 0 & -1 \\ 1 & 2 & 1 & -1 \\ 0 & 0 & 3 & 2 \\ 1 & -2 & 1 & -2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 3 & 2 \\ 1 & -2 & 1 & -2 \end{bmatrix}$$

 $\xrightarrow{R_4 - R_1} \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 3 & 2 \\ 0 & -4 & 0 & -1 \end{bmatrix} \xrightarrow{R_4 + 2R_2} \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -3 \end{bmatrix} = \mathbf{A}'.$

Since there is only one row interchange while transforming **A** to **A**', since **A**' is in REF, and since det $\mathbf{A}' = 1 \cdot 2 \cdot 3 \cdot (-3) = -18$, we see that det $\mathbf{A} = (-1)(-18) = 18$.

We give a criterion for the invertibility of a square matrix in terms of its determinant.

Proposition

A square matrix **A** is invertible if and only if det $\mathbf{A} \neq \mathbf{0}$.

Proof. Suppose **A** is invertible. We have seen that **A** can be transformed to its RCF, namely to **I**, by EROs. Suppose this process involves p row interchanges (that is, EROs of type I) and multiplications of rows by the nonzero scalars $\alpha_1, \ldots, \alpha_q$ (that is, EROs of type III). Then

$$\det(\mathbf{A}) = (-1)^p (\alpha_1 \cdots \alpha_q)^{-1} \det \mathbf{I} = (-1)^p (\alpha_1 \cdots \alpha_q)^{-1} \neq \mathbf{0}.$$

Conversely, suppose **A** is not invertible. Then the column rank of **A** is less than the number of columns of **A**. Hence one of its columns is a linear combination of the other columns. WLOG, we suppose that it is the first column, that is, $\mathbf{c}_1 = \alpha_2 \mathbf{c}_2 + \cdots + \alpha_k \mathbf{c}_k + \cdots + \alpha_n \mathbf{c}_n$, where $\alpha_2, \ldots, \alpha_n \in \mathbb{R}$. By the first two crucial properties of the determinant function,

$$\det \mathbf{A} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_2 \mathbf{c}_2 + \cdots + \alpha_k \mathbf{c}_k + \cdots + \alpha_n \mathbf{c}_n & \mathbf{c}_2 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}$$
$$= \alpha_2 \begin{bmatrix} \mathbf{c}_2 & \mathbf{c}_2 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix} + \cdots$$
$$\alpha_k \begin{bmatrix} \mathbf{c}_k & \mathbf{c}_2 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix} + \cdots$$
$$\alpha_n \begin{bmatrix} \mathbf{c}_n & \mathbf{c}_2 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix}$$
$$= 0 + \cdots + 0 + \cdots + 0 = 0.$$

Remark We have given several criteria for the invertibility of an $n \times n$ matrix **A**. We list them below.

(i) The linear system Ax = 0 has 0 as the only solution. (ii) There is a matrix B such that BA = I or AB = I. (iii) The RCF of A is I. (iv) rank A = n. (v) nullity(A) = 0, (vi) det $A \neq 0$.