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Review of last lecture

We have discussed the following important notions.

Rank of a matrix

Vector subspaces (of Rn×1).

Basis of a subspace

Dimension of a subspace

Span of a subset of a vector subspace.

Null space and the column space of a matrix.

And we proved several important results such as:

Characterizations of a basis of a vector subspace

Rank-Nullity Theorem

Fundamental Theorem for Linear Systems:

We also saw how a basis of the row space R(A) and a basis of
the column space C(A) of a matrix A can be found by looking
at a row echelon form of A.
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Determinants

You already know formulas for determinants of 1× 1, 2× 2
and 3× 3 matrices. Let us recall them.

det
[
a1
]

= a1, det

[
a1 b1
a2 b2

]
= a1b2 − a2b1 and

det

a1 b1 c1
a2 b2 c2
a3 b3 c3

=a1(b2c3−b3c2)−b1(a2c3−a3c2)+c1(a2b3−a3b2),

which is also equal to
a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1).

We shall presently give formulas for the determinant of an
n × n matrix, that is, of a matrix of size n, where n ∈ N, and
we shall explore their use in matrix theory.
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Let n ∈ N and let A :=


a11 · · · a1k · · · a1n

...
...

...
aj1 · · · ajk · · · ajn
...

...
...

an1 · · · ank · · · ann

 ∈ Rn×n.

The determinant of A is a real number defined inductively as
follows. For n := 1, define det A := a11. Let n ≥ 2, and
suppose we have defined the determinant of any
(n − 1)×(n − 1) matrix. For j , k = 1, . . . , n, let Ajk denote
the submatrix of A obtained by deleting the jth row and the
kth column of A, and let Mjk := det Ajk , called the (j , k)th
minor of A. Define

det A :=a11M11−a12M12+· · ·+(−1)1+ka1kM1k+· · ·+(−1)1+na1nM1n.

This is also known as the expansion for the determinant of
A in terms of the first row of A.
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An immediate consequence of our definition is the following.

Proposition

If A is lower triangular, then the determinant of A is the
product of its diagonal entries.

Proof. det A = a11M11 since a12 = · · · = a1n = 0, etc.

Next, it can be proved by induction on the size n of a matrix
that det A is equal to the following expansions in terms of the
jth row of A, and also in terms of the kth column of A:

det A =
n∑

k=1

(−1)j+kajkMjk for each j ∈ {1, . . . , n}

det A =
n∑

j=1

(−1)j+kajkMjk for each k ∈ {1, . . . , n}

(For a proof, see Kreyszig, Appendix 4, page A81.)

Note: The signs (−1)j+k follow a zigzag pattern.
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Proposition

Let A be a square matrix. Then det AT = det A.

Proof. This is obvious if n = 1. Let now n ≥ 2, and assume
this property for all (n − 1)×(n − 1) matrices. Note that
(AT)jk = (Akj)

T for all j , k = 1, . . . , n, that is, the submatrix
obtained by deleting the jth row and the kth column of AT is
the same as the transpose of the submatrix obtained by
deleting the kth row and the jth column of A. (For example,

A :=

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =⇒ AT =

 a11 a21 a31
a12 a22 a32
a13 a23 a33

 ,
so that (AT)21 =

[
a21 a31
a23 a33

]
=

[
a21 a23
a31 a33

]T
= (A12)T.)
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Let A := [ajk ] and AT := [a′jk ]. Then a′jk = akj and

M ′jk := det(AT)jk = det(Akj)
T = det Akj = Mkj by the

inductive hypothesis for j , k = 1, . . . , n. Expanding det AT in
terms of its first row, and det A in terms of its first column,

det AT = a′11M
′
11 − a′12M

′
12 + · · ·+ (−1)1+na′1nM

′
1n

= a11M11 − a21M21 + · · ·+ (−1)n+1an1Mn1

= det A.

Corollary

If A is upper triangular, then the determinant of A is the
product of its diagonal entries.

Proof. Let A be upper triangular. Then AT is lower triangular
and has the same diagonal entries as those of A.

Let us write A :=
[
c1 · · · ck · · · cn

]
in terms of its n

columns.
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Crucial Properties of the determinant function A 7−→ det A
from Rn×n to R:

1. [Multilinearity] If k ∈ {1, . . . , n} and ck = α c′k + β c′′k for

some α, β ∈ R and column vectors c′k , c′′k ∈ Rn×1, then
det A = det

[
c1 · · · α c′k + β c′′k · · · cn

]
is equal to

α det
[
c1 · · · c′k · · · cn

]
+ β det

[
c1 · · · c′′k · · · cn

]
.

This is proved by expanding det A in terms of its kth column.
Note that the multilinearity implies that det(αA) = αn det A.

2. [Alternating Property] Suppose n ≥ 2. If ck = c` for some
k 6= `, then det A = 0, that is, if 2 columns of a matrix are
identical, then its determinant is 0. This is clear for n = 2, and
for n ≥ 3, this is proved using induction on n, by expanding
det A in terms of a column cp of A, where p 6= k and p 6= `.

3. [Normalization Property] det I = 1 , that is, the
determinant of the identity matrix is equal to 1.
This is obvious.
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Proposition

Let A be a square matrix.

(i) If two columns of A are interchanged, then det A gets
multiplied by −1.

(ii) Addition of a multiple of a column to another column of A
does not alter det A.

(iii) Multiplication of a column of A by a scalar α results in
the multiplication of det A by α.

Proof: Let A :=
[
c1 · · · ck · · · c` · · · cn

]
, where k 6= `.

(i) Define α :=det
[
c1 · · · (ck + c`) · · · (ck + c`) · · · cn

]
.

Then α = 0 since the matrix has two identical columns.

On the other hand, α = β + γ, where
β := det

[
c1 · · · (ck + c`) · · · ck · · · cn

]
and

γ := det
[
c1 · · · (ck + c`) · · · c` · · · cn

]
.
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In turn, β := β1 + β2 and γ = γ1 + γ2, where

β1 = det
[
c1 · · · ck · · · ck · · · cn

]
,

β2 = det
[
c1 · · · c` · · · ck · · · cn

]
,

γ1 = det
[
c1 · · · ck · · · c` · · · cn

]
,

γ2 = det
[
c1 · · · c` · · · c` · · · cn

]
.

But β1 = 0 = γ2 since two columns are identical. Since
0 = α = β + γ = β2 + γ1, we see that γ1 = −β2, that is,
det
[
c1 · · · ck · · · c` · · · cn

]
is equal to

− det
[
c1 · · · c` · · · ck · · · cn

]
, as desired.

(ii) Suppose α times the `th column of A is added to the kth
column of A. Then det

[
c1 · · · (ck + α c`) · · · c` · · · cn

]
is

equal to det A + α det
[
c1 · · · c` · · · c` · · · cn

]
= det A.

(iii) Suppose the kth column of A is multiplied by α. Then
det
[
c1 · · · α ck · · · cn

]
=α det

[
c1 · · · ck · · · cn

]
=α det A.
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Corollary

Let A be a square matrix.

(i) If two rows of A are interchanged, then det A gets
multiplied by −1.

(ii) Addition of a multiple of a row to another row of A does
not alter det A.

(iii) Multiplication of a row of A by a scalar α results in the
multiplication of det A by α.

Proof. Since the columns of AT are the rows of A, and since
det A = det AT, these results follow from the previous
proposition.

The above corollary can be used to find det A as follows.
Transform A to A′ by EROs of type I and type II, where A′ is
in REF, keeping track of the number of row interchanges.
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Now A′ is an upper triangular matrix. Let p be the number of
row interchanges, and let a′11, . . . , a

′
nn be the diagonal entries

of A′. Then det A = (−1)p det A′ = (−1)pa′11 · · · a′nn.

Example

Let A :=


0 2 0 −1
1 2 1 −1
0 0 3 2
1 −2 1 −2

 R1←→R2−−−−−→


1 2 1 −1
0 2 0 −1
0 0 3 2
1 −2 1 −2


R4−R1−−−→


1 2 1 −1
0 2 0 −1
0 0 3 2
0 −4 0 −1

 R4+2R2−−−−→


1 2 1 −1
0 2 0 −1
0 0 3 2
0 0 0 −3

 = A′.

Since there is only one row interchange while transforming A
to A′, since A′ is in REF, and since
det A′ = 1 · 2 · 3 · (−3) = −18, we see that
det A = (−1)(−18) = 18.
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We give a criterion for the invertibility of a square matrix in
terms of its determinant.

Proposition

A square matrix A is invertible if and only if det A 6= 0.

Proof. Suppose A is invertible. We have seen that A can be
transformed to its RCF, namely to I, by EROs. Suppose this
process involves p row interchanges (that is, EROs of type I)
and multiplications of rows by the nonzero scalars α1, . . . , αq

(that is, EROs of type III). Then

det(A) = (−1)p(α1 · · ·αq)−1 det I = (−1)p(α1 · · ·αq)−1 6= 0.

Conversely, suppose A is not invertible. Then the column rank
of A is less than the number of columns of A. Hence one of
its columns is a linear combination of the other columns.
WLOG, we suppose that it is the first column, that is,
c1 = α2c2 + · · ·+ αkck + · · ·+ αncn, where α2, . . . , αn ∈ R.
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By the first two crucial properties of the determinant function,

det A =
[
c1 c2 · · · ck · · · cn

]
=

[
α2c2 +· · ·+ αkck +· · ·+ αncn c2 · · · ck · · · cn

]
= α2

[
c2 c2 · · · ck · · · cn

]
+ · · ·

αk

[
ck c2 · · · ck · · · cn

]
+ · · ·

αn

[
cn c2 · · · ck · · · cn

]
= 0 + · · ·+ 0 + · · ·+ 0 = 0.

Remark We have given several criteria for the invertibility of
an n×n matrix A. We list them below.

(i) The linear system Ax = 0 has 0 as the only solution.
(ii) There is a matrix B such that BA = I or AB = I.
(iii) The RCF of A is I.
(iv) rank A = n.
(v) nullity(A) = 0,
(vi) det A 6= 0.
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