

# MA106 Tutorial Solutions

Linear Algebra (Indian Institute of Technology Bombay)



Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university Downloaded by Manish (mani.7805.singh@gmail.com) Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai 400076, India

MA 106 : Linear Algebra

Spring 2021

Instructors

Sudhir R. Ghorpade | Dipendra Prasad

Tutorial Solutions Booklet By Gyandev Gupta



## Contents

| 1 | Tutorial 1 (on Lectures 1 and 2)       | 1  |
|---|----------------------------------------|----|
| 2 | Tutorial 2 (on Lectures 3, 4 and 5)    | 5  |
| 3 | Tutorial 3 (on Lectures 6 and 7)       | 8  |
| 4 | Tutorial 4 (on Lectures 8, 9 and 10)   | 13 |
| 5 | Tutorial 5 (on Lectures 11, 12 and 13) | 16 |
| 6 | Tutorial 6 (on Lectures 14, 15 and 16) | 19 |
| 7 | Tutorial 7 (on Lectures 17, 18 and 19) | 21 |
| 8 | Tutorial 8 (on Lectures 20 and 21)     | 26 |

#### 1 Tutorial 1 (on Lectures 1 and 2)

# 1.1 Let **A** be a square matrix. Show that there is a symmetric matrix **B** and there is a skew-symmetric matrix **C** such that $\mathbf{A} = \mathbf{B} + \mathbf{C}$ . Are **B** and **C** unique?

Given **B** should be symmetric and **C** should be skew-symmetric such that  $\overline{\mathbf{A} = \mathbf{B} + \mathbf{C}}$ . Take transpose on both sides of this equation. This gives us  $\mathbf{A}^{T} = \mathbf{B}^{T} + \mathbf{C}^{T} \Rightarrow \overline{\mathbf{A}^{T} = \mathbf{B} - \mathbf{C}}$ . Solve these two boxed equations simultaneously to get  $\mathbf{B} = \frac{\mathbf{A} + \mathbf{A}^{T}}{2}$  and  $\mathbf{C} = \frac{\mathbf{A} - \mathbf{A}^{T}}{2}$ . Thus we have  $\mathbf{A} = \mathbf{B} + \mathbf{C}$  and clearly, **B** is symmetric and **C** is skew-symmetric. **By our solution**, **B and C must be unique** 

1.2 Let  $\mathbf{A} := \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$  and  $\mathbf{B} := \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ . Write (i) the second row of  $\mathbf{AB}$  as a linear combination

of the rows of  $\mathbf{B}$  and (ii) the second column of  $\mathbf{AB}$  as a linear combination of the columns of  $\mathbf{A}$ .

(i) **AB** is a  $3 \times 3$  matrix. The elements of the second row of **AB** are given by the expression:  $AB_{2,j} = \sum_{k=1}^{2} A_{2,k}B_{k,j}$ . Thus, the second row can be written as the linear combination of rows of B as follows:

 $3\begin{bmatrix}1 & 2 & 3\end{bmatrix} + 4\begin{bmatrix}4 & 5 & 6\end{bmatrix}$ 

(ii) Similarly, the second column of AB can be written as as the linear combination of columns of A as follows:

$$2\begin{bmatrix}1\\3\\5\end{bmatrix}+5\begin{bmatrix}2\\4\\6\end{bmatrix}$$

1.3 Let  $\mathbf{A} := \begin{bmatrix} 1 & 1 & 1 & 0 \\ -3 & -17 & 1 & 2 \\ 4 & -24 & 8 & -5 \\ 0 & -7 & 2 & 2 \end{bmatrix}$ . Assuming that  $\mathbf{A}$  is invertible, find the last column and the last row of  $\mathbf{A}^{-1}$ .

 $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_{4}, \text{ Thus we have the following system of equations to get the last column of } \mathbf{A}^{-1}:$   $\begin{bmatrix} 1 & 1 & 1 & 0 \\ -3 & -17 & 1 & 2 \\ 4 & -24 & 8 & -5 \\ 0 & -7 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ Solve this to get the last column of } \mathbf{A}^{-1}$ We get:  $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T = \begin{bmatrix} 2.75 & -0.5 & -2.25 & 1 \end{bmatrix}^T$ Do a similar process to get the last row. Since we already know  $x_4$  now we'll have to solve a

Do a similar process to get the last row. Since we already know  $x_4$ , now we'll have to solve a system of only 3 equations and 3 unknowns. Last Row of  $\mathbf{A}^{-1} = \begin{bmatrix} -1.5 & -0.5 & 0 & 1 \end{bmatrix}$ 



1.4 Show that the product of two upper triangular matrices is upper triangular. Is this true for lower triangular matrices?

Assume **A** and **B** are two upper triangular matrices. For these upper triangular matrices,  $A_{ij}$  and  $B_{ij} = 0$  for i > j. We have to show that  $AB_{ij} = 0$  for i > j also holds true. We have  $AB_{ij} = A_i^T B_j$  where  $A_i^T$  is the i<sup>th</sup> row of A and  $B_j^T$  is the j<sup>th</sup> column of B.

Thus, 
$$AB_{i,j} = A_i^T B_j = \sum_{k=1}^n A_{ik} B_{kj}$$
$$= \sum_{k=1}^j A_{ik} B_{kj} + \sum_{k=j+1}^n A_{ik} B_{kj}$$

Now given A, B are upper triangular. So  $A_{ij} = 0, B_{ij} = 0$  for i > j. Here we are only checking  $AB_{ij}$  for i > j, so we get  $\sum_{k=1}^{j} A_{ik}B_{kj} = 0$  since  $A_{ik}$  is zero in the summation.  $\sum_{k=j+1}^{n} A_{ik}B_{kj} = 0$  since  $B_{kj}$  is zero in the summation.

Similarly we can show that product of two lower triangular matrix is also lower triangular but there we would consider i < j in our analysis.

1.5 The trace of a square matrix is the sum of its diagonal entries. Show that trace  $(\mathbf{A}+\mathbf{B}) = \text{trace} (\mathbf{A}) + \text{trace} (\mathbf{B})$  and trace  $(\mathbf{A}\mathbf{B}) = \text{trace} (\mathbf{B}\mathbf{A})$  for  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ .

Part (a) is trivial.

$$trace(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$
$$trace(BA) = \sum_{i=1}^{n} (BA)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} B_{ik} A_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} A_{ki} B_{ik}$$

We have just switched the order of summation as the two summations are over independent axes. Thus we see that trace(AB) = trace(BA) as the two expressions are equivalent

1.6 Find all solutions of the linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , where (i)  $\mathbf{A} := \begin{vmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{vmatrix}$ ,  $\mathbf{b} :=$ 

$$\begin{bmatrix} 0 & -1 & 6 & 6 \end{bmatrix}^{\mathsf{T}},$$
  
(ii)  $\mathbf{A} := \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}, \mathbf{b} := \begin{bmatrix} 5 & -2 & 9 \end{bmatrix}^{\mathsf{T}},$   
(iii)  $\mathbf{A} := \begin{bmatrix} 0 & 2 & -2 & 1 \\ 2 & -8 & 14 & -5 \\ 1 & 3 & 0 & 1 \end{bmatrix}$  and  $\mathbf{b} := \begin{bmatrix} 2 & 2 & 8 \end{bmatrix}^{\mathsf{T}}$ 

by reducing **A** to a row echelon form.

(i) We perform the row operations to the augmented matrix  $R_4 := R_4 - 2R_1$  $R_2 := R_2 - 2R_1$  $\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 6 \\ 0 & 0 & 4 & 8 & 0 & 18 & 6 \end{bmatrix}$  $R_3 := R_3 + 5R_2$  $\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 8 & 0 & 18 & 6 \end{bmatrix}$ Swap  $R_3$  and  $R_4$  $R_3 = R_3 + 4R_2$ 

The last row of the augmented matrix is inconsistent. So the system has no solution.

(ii) Performing row operations on the augmented matrix,

| 2            | 1  | 1 | 5  |
|--------------|----|---|----|
| 4            | -6 | 0 | -2 |
| $\lfloor -2$ | 7  | 2 | 9  |



| $R_2 := R_2 - 2R_1$ | $\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ -2 & 7 & 2 & 9 \end{bmatrix}$                |
|---------------------|-----------------------------------------------------------------------------------------------------|
| $R_3 := R_3 + R_1$  | $\begin{bmatrix} 2 & 1 & 1 &   & 5 \\ 0 & -8 & -2 &   & -12 \\ 0 & 8 & 3 &   & 14 \end{bmatrix}$    |
| $R_3 := R_3 + R_2$  | $\left[\begin{array}{ccc c} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{array}\right]$ |

So we get  $x_3 = 2$ . Back-substituting in  $8x_2 + 2x_3 = 12$  we get  $x_2 = 1$  and back-substituting in  $2x_1 + x_2 + x_3 = 5$ , we get  $x_1 = 1$ . The solution is;  $\mathbf{x} := \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^{\mathsf{T}}$ 

(iii) Here the augmented matrix is

| 0   | 2  | -2 | 1  | 2 |
|-----|----|----|----|---|
| 2   | -8 | 14 | -5 | 2 |
| [ 1 | 3  | 0  | 1  | 8 |

Performing the following operations, we get; Swap  $R_1$  and  $R_3$ 

|                          | $\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$  |
|--------------------------|-------------------------------------------------------------|
| $R_2 := R_2 - 2R_1$      | $\left[\begin{array}{rrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |
| Then $R_3 := 7R_3 + R_2$ | $\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$  |

Since the last row is 0, there are infinitely many solutions.

2 Tutorial 2 (on Lectures 3, 4 and 5)

| Row1 Pivot1 = 1<br>Swap $R_2$ and $R_3$ |                                                                                             |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------|--|
| o ar                                    | $\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                  |  |
| $R_2 := R_2 - R_1$                      | $\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                  |  |
|                                         |                                                                                             |  |
| $Row2 Pivot2 = -1$ $R_2 := R_2/(-1)$    |                                                                                             |  |
|                                         | $\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$                             |  |
|                                         |                                                                                             |  |
| $R_1 := R_1 - 2R_2$                     | F 1 0 2 1 ]                                                                                 |  |
|                                         | $\begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$          |  |
| Row3 Pivot $3=1$                        |                                                                                             |  |
| $R_1 := R_1 - 3R_3$                     | $\left[\begin{array}{rrrrr}1 & 0 & 0 & 2\\0 & 1 & -1 & 1\\0 & 0 & 1 & -1\end{array}\right]$ |  |
| $R_2 := R_2 + R_3$                      | Г 1 0 0 2 <b>Т</b>                                                                          |  |
|                                         |                                                                                             |  |

2.2 Let  $\mathbf{A} := \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ . Find  $\mathbf{A}^{-1}$  by Gauss-Jordan method.

2.3 An  $m \times m$  matrix **E** is called an **elementary matrix** if it is obtained from the identity matrix **I** by an elementary row operation. Write down all elementary matrices.

(i) Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$ . If an elementary row operation transforms  $\mathbf{A}$  to  $\mathbf{A}'$ , then show that  $\mathbf{A}' = \mathbf{E}\mathbf{A}$ , where  $\mathbf{E}$  is the corresponding elementary matrix.

This document is available on 5 Studocu

(ii) Show that every elementary matrix is invertible, and find its inverse.

(iii) Show that a square matrix  $\mathbf{A}$  is invertible if and only if it is a product of finitely many elementary matrices.

Part i

Each row operation is represented by  ${\bf E_i}$  matrices. Let's take  ${\bf E_1}, {\bf E_2}, .... {\bf E_k}$  be elementary row transformation matrix such that  ${\bf E}={\bf E_1}{\bf E_2}....{\bf E_k}{\bf I}$  so we get

$$\mathbf{A}' = \mathbf{E_1}\mathbf{E_2}....\mathbf{E_k}\mathbf{A}$$

Finally

$$\mathbf{A}' = \mathbf{E}\mathbf{A}$$

Part ii

Earlier we got to know that  $\mathbf{E} = \mathbf{E}_1 \mathbf{E}_2 \dots \mathbf{E}_k \mathbf{I}$ , here we can see that  $E_i$  are elementary matrices which are invertible and hence the product of all such  $\mathbf{E}_i$  are invertible. We can get the inverse by

$$\begin{split} \mathbf{E}^{-1} &= (\mathbf{E_1}\mathbf{E_2}....\mathbf{E_k})^{-1} \\ \mathbf{E}^{-1} &= \mathbf{E_k}^{-1}\mathbf{E_{k-1}}^{-1}....\mathbf{E_1}^{-1} \end{split}$$

Think how can you prove part3 on the basis of first part and second part Part iii

A square matrix A is invertible if and only if you can row reduce A to an identity matrix I Let's take the forward case so we have been given matrix is invertible .So on performing k row operations we obtain I

$$\begin{split} \mathbf{E_1}\mathbf{E_2}....\mathbf{E_k}\mathbf{A} &= \mathbf{I}\\ \mathbf{A} &= \mathbf{E_k^{-1}}\mathbf{E_{k-1}^{-1}}....\mathbf{E_1^{-1}} \end{split}$$

Hence its proved

2.4 Let S and T be subsets of  $\mathbb{R}^{n \times 1}$  such that  $S \subset T$ . Show that if S is linearly dependent then so is T, and if T is linearly independent then so is S. Does the converse hold?

Let  $S = [v_1, v_2, ... v_s]$ . Since  $S \subset T$  let  $T = [v_1, v_2, ... v_s, u_1, u_2, ... u_t]$ . Now suppose if S is **Linearly dependant** then  $\exists \alpha_1, \alpha_2...\alpha_s$  such that  $\alpha_1 v_1 + \alpha_2 v_2... + \alpha_s v_s = 0$  and not all  $\alpha_i$  are zero. Now let  $\beta_1 v_1 + \beta_2 v_2 + ... + \beta_s v_s + \beta_{s+1} u_1 + \beta_{s+2} u_2 + ... \beta_{s+t} u_t = 0$ . Put  $\beta_{s+i} = 0$  where  $i \ge 1$  and  $\beta_i = \alpha_i$  for  $i \le s$ . So this tuple value of  $\beta$  isnt zero hence T is **Linearly dependant**.

If T is Linearly independent then the only solution for  $\beta_1 v_1 + \beta_2 v_2 + ... + \beta_s v_s + \beta_{s+1} u_1 + \beta_{s+2} u_2 + ... + \beta_{s+t} u_t = 0$  is  $\beta_i = 0$ . Suppose if S is **Linearly dependent** then it means  $\exists \alpha_1, \alpha_2...\alpha_s$  such that  $\alpha_1 v_1 + \alpha_2 v_2... + \alpha_s v_s = 0$ . Sp put  $\beta_i = \alpha_i$  for  $i \leq s$  and  $\beta_{s+i} = 0$ . This tuple satisfies the above equation yet  $\beta \neq 0$ . So this contradicts that T is Linearly independent. Hence S is **Linearly independent** 

2.5 Are the following sets linearly independent?

(i) {
$$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$$
,  $\begin{bmatrix} 3 & 5 & 2 \end{bmatrix}$ ,  $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ }  $\subset \mathbb{R}^{1 \times 3}$ ,  
(ii) { $\begin{bmatrix} 1 & 9 & 9 & 8 \end{bmatrix}$ ,  $\begin{bmatrix} 2 & 0 & 0 & 3 \end{bmatrix}$ ,  $\begin{bmatrix} 2 & 0 & 0 & 8 \end{bmatrix}$ }  $\subset \mathbb{R}^{1 \times 4}$ ,  
(iii) { $\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$ ,  $\begin{bmatrix} 3 & -5 & 2 \end{bmatrix}^{\mathsf{T}}$ ,  $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^{\mathsf{T}}$ }  $\subset \mathbb{R}^{3 \times 1}$ .

2.6 Given a set of s linearly independent row vectors  $\{\mathbf{a}_1, \ldots, \mathbf{a}_i, \ldots, \mathbf{a}_j, \ldots, \mathbf{a}_s\}$  in  $\mathbb{R}^{1 \times n}$  and  $\alpha \in \mathbb{R}$ , show that the set  $\{\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_i + \alpha \mathbf{a}_j, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_j, \ldots, \mathbf{a}_s\}$  is linearly independent.

 $\begin{array}{l} c_1a_1+c_2a_2+\ldots c_ia_i+\ldots c_ja_j\ldots+c_sa_s=0.\\ \text{Since these vectors are linearly independant, } \forall_k\ c_k=0.\\ \text{Now consider } \beta_1a_1+\beta_2a_2+\ldots\beta_i(a_i+\alpha a_j)+\ldots\beta_ja_j\ldots+\beta_sa_s=0.\\ \text{So } \beta_1a_1+\beta_2a_2+\ldots\beta_ia_i+\ldots(\beta_j+\beta_i\alpha)a_j\ldots+\beta_sa_s=0.\\ \text{So } \beta_1=\beta_2=\ldots\beta i\ldots=\beta_s=0, \beta_j+\alpha\beta_i=0.\\ \text{Hence } \forall_k\beta_k=0. \text{ So this set of vectors is also linearly independant.} \end{array}$ 

2.7 Find the ranks of the following matrices.

(i) 
$$\begin{bmatrix} 8 & -4 \\ -2 & 1 \\ 6 & -3 \end{bmatrix}$$
, (ii)  $\begin{bmatrix} 0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5 \end{bmatrix}$ .

2.8 Are the following subsets of  $\mathbb{R}^{3\times 1}$  subspaces?

(i) 
$$\{ \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathsf{T}} : x_1, x_2, x_3 \in \mathbb{R}, x_1 + x_2 + x_3 = 0 \},$$
  
(ii)  $\{ \begin{bmatrix} x_1 + x_2 + x_3 & x_2 + x_3 & x_3 \end{bmatrix}^{\mathsf{T}} : x_1, x_2, x_3 \in \mathbb{R} \},$   
(iii)  $\{ \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathsf{T}} : x_1, x_2, x_3 \in \mathbb{R}, x_1 x_2 x_3 = 0 \}$   
(:...)  $\{ \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathsf{T}} : x_1, x_2, x_3 \in \mathbb{R}, x_1 x_2 x_3 = 0 \}$ 

(iv)  $\{ [x_1 \ x_2 \ x_3]^+ : x_1, x_2, x_3 \in \mathbb{R}, |x_1|, |x_2|, |x_3| \le 1 \}.$ 

If so, find a basis for each, and also its dimension.

2.9 Describe all subspaces of  $\mathbb{R}$ ,  $\mathbb{R}^{2\times 1}$ ,  $\mathbb{R}^{3\times 1}$  and  $\mathbb{R}^{4\times 1}$ . Can you visualise them geometrically?



## 3 Tutorial 3 (on Lectures 6 and 7)

- 3.1 Let V be a subspace of  $\mathbb{R}^{n \times 1}$  with dim V = r, and let S be a finite subset of V such that span S = V. Suppose S has s elements. Show that (i)  $s \ge r$ , (ii) if s = r, then S is a basis for V, (iii) if s > r, then S contains basis for V.
- 3.2 Let  $\mathbf{A}' \in \mathbb{R}^{m \times n}$  be in a REF. Show that the pivotal columns of  $\mathbf{A}'$  form a basis for the column space  $\mathcal{C}(\mathbf{A}')$ .
- 3.3 Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$ . The set  $\mathcal{R}(\mathbf{A})$  consisting of all linear combinations of the rows of  $\mathbf{A}$  is called the **row space** of  $\mathbf{A}$ . Show that  $\mathcal{R}(\mathbf{A})$  is a subspace of  $\mathbb{R}^{1 \times n}$ . If  $\mathbf{A}'$  is obtained from  $\mathbf{A}$  by EROs, then prove that  $\mathcal{R}(\mathbf{A}') = \mathcal{R}(\mathbf{A})$ . Further, show that the dimension of  $\mathcal{R}(\mathbf{A})$  is equal to the rank of  $\mathbf{A}$ .
- 3.4 Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and  $\mathbf{B} \in \mathbb{R}^{n \times p}$ . Show that rank  $\mathbf{AB} \leq \min\{\operatorname{rank} \mathbf{A}, \operatorname{rank} \mathbf{B}\}$ .

3.5 Let  $\mathbf{A} := \begin{bmatrix} 0 & 0 & 0 & -2 & 1 \\ 0 & 2 & -2 & 14 & -1 \\ 0 & 2 & 3 & 13 & 1 \end{bmatrix}$ . Find the rank and the nullity of  $\mathbf{A}$ . What is the dimension of the

solution space of the homogeneous equation  $\mathbf{A}\mathbf{x} = \mathbf{0}$ ? If  $\mathbf{b} := \begin{bmatrix} 2 & 2 & 3 \end{bmatrix}^{\mathsf{T}}$ , find the general solution of  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .

3.6 Prove that det  $\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b)$ , where  $a, b, c \in \mathbb{R}$ . Also, prove an analogous

formula for a determinant of order n, known as the Vandermonde determinant.

$$\det \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$$

Use  $det(A) = det(A^T)$  and perform  $R_k = R_k - R_1 \forall k=2$  to 3

$$\det \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix} = \det \begin{bmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{bmatrix} = (b - a)(c - a)(c - b)$$

Part 2 To prove general result use induction for n=2 we have

$$\det \left[ \begin{array}{cc} 1 & 1\\ a_1 & a_2 \end{array} \right] = (a_2 - a_1)$$

Now assume it to be true for n-1 order matrix and if we are able to prove n order matrix from the n-1 order matrix we are done

$$\det \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & \dots & 1 \\ a_1 & a_2 & a_3 & \dots & \dots & a_n \\ \vdots & \vdots & \vdots & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \dots & \dots & a_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$
$$det(A) = det(A^T)$$
$$det \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & \dots & a_n^{n-1} \\ 1 & a_2 & a_2^2 & \dots & \dots & a_n^{n-1} \\ 1 & a_n & a_n^2 & \dots & \dots & a_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$
$$R_k = R_k - R_1 \forall k = 2 \text{ to n}$$
$$det \begin{bmatrix} 1 & a_1 & a_1^2 & a_1^2 & \dots & \dots & a_n^{n-1} \\ 0 & a_2 - a_1 & a_2^2 - a_1^2 & \dots & \dots & a_n^{n-1} - a_n^{n-1} \\ 0 & a_n - a_1 & a_n^2 - a_1^2 & \dots & \dots & a_n^{n-1} - a_n^{n-1} \end{bmatrix} - > eqn(I)$$
$$\prod_{1 \le j \le n} (a_j - a_1) \det \begin{bmatrix} 1 & a_2 + a_1 & \dots & \dots & \sum_{n=1}^{n-1} a_n^{n-2-i}a_i^i \\ \vdots & \vdots \\ 1 & a_n + a_1 & \dots & \dots & \sum_{n=1}^{n-1} a_n^{n-2-i}a_i^i \end{bmatrix}$$
Now keep on splitting the det by column wise starting from col(2) to col(n) and see only one non zero det would surive and others would vanish
$$\prod_{1 \le j \le n} (a_j - a_1) \det \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & \dots & a_{n-1}^{n-2} \\ 1 & a_2 & a_2^2 & \dots & \dots & a_{n-1}^{n-2} \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & \dots & a_{n-1}^{n-2} \\ \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & \dots & a_{n-1}^{n-2} \end{bmatrix}$$

This document is available on 9 **Studocu** Downloaded by Manish (mani.7805.singh@gmail.com)

$$\begin{split} \prod_{1 \leq i < j \leq n} (a_j - a_1) * \prod_{2 \leq j \leq n} (a_j - a_i) \\ \prod_{1 \leq j \leq n} (a_j - a_i) \\ & \text{Other method} \\ & \text{Look at eqn}(\mathbf{I}) \text{ matrix} \\ & \text{Use } \det(A) = \det(A^T) \text{ and consecutively perform } R_k = R_k - R_{k-1} * a_1 \forall \mathbf{k} = 2 \text{ to n Try out} \end{split}$$

3.7 For  $n \in \mathbb{N}$ , prove that

 $\det \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ & & & \ddots & & & \\ & & & \ddots & & & \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix} = (-1)^{n(n-1)/2}.$ 

Use induction Method: For n=1 we have,

det 
$$\begin{bmatrix} 1 \end{bmatrix} = (-1)^{1(1-1)/2} = 1$$

Now assume it to be true for n-1 order matrix and if we are able to prove n order matrix from the n-1 order matrix we are done

To prove:: det  $\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ & & & \ddots & & & \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix} = (-1)^{n(n-1)/2}$  $det \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ & & & \ddots & & \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}$ 

Now if we expand via the first row to find det and use result of  $det(A)_{n-1}$ , we get

 $\begin{array}{c} 10 \\ \text{Downloaded by Manish} \ (\text{mani.7805.singh@gmail.com}) \end{array}$ 

$$(-1)^{n+1} \det \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ & & & \ddots & & & \\ & & \ddots & & & & \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}_{n-1}$$
$$(-1)^{n+1} * (-1)^{(n-1)(n-2)/2} = (-1)^{n(n-1)/2}$$

3.8 For  $n \in \mathbb{N}$ , prove that

|     | $\frac{1}{2}$ | $2 \\ 2$ | $\frac{3}{3}$ | · · · | $n - 1 \\ n - 1$ | ${n \atop n}$ |                  |
|-----|---------------|----------|---------------|-------|------------------|---------------|------------------|
| 1   | 3             | 3        | 3             |       | n-1              | n             | (1)n+1           |
| det | :             | ÷        | ÷             |       | ÷                | ÷             | $= (-1)^{n+1}n.$ |
|     | n-1           | n-1      | n-1           |       | n-1              | n             |                  |
|     | n             | n        | n             |       | n                | n             |                  |

$$R_n \mapsto \frac{1}{n} R_n$$

$$R_i \mapsto R_i - iR_n$$
 for all  $i \in \{1, \ldots, n-1\}$ .

For example, in the case of n = 4, you should have arrived at the following conclusion:

|     | Γ1 | 2 | 3 | 4] |            | [0] | 1 | 2 | 3] |
|-----|----|---|---|----|------------|-----|---|---|----|
| 1-4 | 2  | 2 | 3 | 4  | $= 4 \det$ | 0   | 0 | 1 | 2  |
| det | 3  | 3 | 3 | 4  |            | 0   | 0 | 0 | 1  |
|     | 4  | 4 | 4 | 4  |            | [1  | 1 | 1 | 1  |

Write the general case.

Now, expand along the first column. This is simple to do as it has only one non-zero entry. (Note that you'll get a  $(-1)^n$ .)

Thus, you get that the original determinant equals the following expression:

$$(-1)^n n \det \begin{bmatrix} 1 & 2 & \cdots & n-1 \\ 0 & 1 & \cdots & n-2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Note that the determinant written above is just 1 as it's a triangular matrix with all diagonal entries 1.

Thus, the answer is  $(-1)^n n$ .



#### 3.9 Find rank $\mathbf{A}$ using determinants, where $\mathbf{A}$ is

(i) 
$$\begin{bmatrix} 0 & 2 & -3 \\ 2 & 0 & 5 \\ -3 & 5 & 0 \end{bmatrix}$$
, (ii)  $\begin{bmatrix} 4 & 3 \\ -8 & -6 \\ 16 & 12 \end{bmatrix}$ .

Verify by transforming  ${\bf A}$  to a REF.

### 4 Tutorial 4 (on Lectures 8, 9 and 10)

4.1 Find the value(s) of  $\alpha$  for which Cramer's rule is applicable. For the remaining value(s) of  $\alpha$ , find the number of solutions, if any.

4.2 Find the cofactor matrix **C** of the matrix **A**, and verify  $\mathbf{C}^{\mathsf{T}}\mathbf{A} = (\det \mathbf{A})\mathbf{I} = \mathbf{A}\mathbf{C}^{\mathsf{T}}$ . If det  $\mathbf{A} \neq 0$ , find  $\mathbf{A}^{-1}$ , where **A** is

(i) 
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, (ii)  $\begin{bmatrix} 0 & 9 & 5 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ , (iii)  $\begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}$ .

4.3 Find the matrix of the linear transformation  $T : \mathbb{R}^{3\times 1} \to \mathbb{R}^{4\times 1}$  defined by  $T(\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathsf{T}}) := \begin{bmatrix} x_1 + x_2 & x_2 + x_3 & x_3 + x_1 & x_1 + x_2 + x_3 \end{bmatrix}^{\mathsf{T}}$  with respect to the ordered bases (i)  $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$  of  $\mathbb{R}^{3\times 1}$  and  $F = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$  of  $\mathbb{R}^{4\times 1}$ ,

(ii)  $E' = (\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_1)$  of  $\mathbb{R}^{3 \times 1}$  and  $F' = (\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4, \mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_1, \mathbf{e}_4 + \mathbf{e}_1 + \mathbf{e}_2)$  of  $\mathbb{R}^{4 \times 1}$ , first showing that E' is a basis for  $\mathbb{R}^{3 \times 1}$  and F' is a basis for  $\mathbb{R}^{4 \times 1}$ .

Part(i) We have the basis set  $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$  of  $\mathbb{R}^{3 \times 1}$  and  $F = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$  of  $\mathbb{R}^{4 \times 1}$ ,  $\mathbf{T}(\mathbf{e}_1) = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}} = \mathbf{1}\mathbf{e}_1 + \mathbf{0}\mathbf{e}_2 + \mathbf{1}\mathbf{e}_3 + \mathbf{1}\mathbf{e}_4$   $\mathbf{T}(\mathbf{e}_2) = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}} = \mathbf{1}\mathbf{e}_1 + \mathbf{1}\mathbf{e}_2 + \mathbf{0}\mathbf{e}_3 + \mathbf{1}\mathbf{e}_4$   $\mathbf{T}(\mathbf{e}_3) = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}} = \mathbf{0}\mathbf{e}_1 + \mathbf{1}\mathbf{e}_2 + \mathbf{1}\mathbf{e}_3 + \mathbf{1}\mathbf{e}_4$   $\mathbf{M}_F^E(T) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Part(ii) Check whether the set E' and set F' forms a basis set? Indeed yes they form (Try it out )  $\mathbf{T}(\mathbf{e}_1 + \mathbf{e}_2) = \begin{bmatrix} 2 & 1 & 1 & 2 \end{bmatrix}^{\mathsf{T}} = \mathbf{0}(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) + \mathbf{0}(\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4) + \mathbf{1}(\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_1) + \mathbf{1}(\mathbf{e}_4 + \mathbf{e}_1 + \mathbf{e}_2)$  =  $\mathbf{T}(\mathbf{e}_2 + \mathbf{e}_3) = \begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix}^{\mathsf{T}} = \mathbf{0}(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) + \mathbf{1}(\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4) + \mathbf{0}(\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_1) + \mathbf{1}(\mathbf{e}_4 + \mathbf{e}_1 + \mathbf{e}_2)$  =  $\mathbf{T}(\mathbf{e}_3 + \mathbf{e}_1) = \begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix}^{\mathsf{T}} = \mathbf{0}(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) + \mathbf{1}(\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4) + \mathbf{1}(\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_1) + \mathbf{0}(\mathbf{e}_4 + \mathbf{e}_1 + \mathbf{e}_2)$  = $\mathbf{M}_{F''}^{E'}(T) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ 

4.4 Let  $\mathbf{A} \in \mathbb{R}^{4 \times 4}$ . Let  $\mathbf{P} := \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ . Show that  $\mathbf{P}$  is invertible. Find an ordered bases E of  $\mathbb{R}^{4 \times 1}$ This document is available on **Studocu** Downloaded by Manish (mani.7805.singh@gmail.com) such that  $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{M}_E^E(T_\mathbf{A}).$ 

Using the theorem we get  $\mathbf{E} = \{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4\}$ 

4.5 Let  $\lambda \in \mathbb{K}$ . Find the geometric multiplicity of the eigenvalue  $\lambda$  of each of the following matrices:

 $\mathbf{A} := \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}, \ \mathbf{B} := \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}, \ \mathbf{C} := \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}.$ 

Also, find the eigenspace associated with  $\lambda$  in each case.

For  $|\mathbf{A} - \mu \mathbf{I}| = 0 = (\mu - \lambda)^3$  its true for all vector  $\mathbf{x} = (x_1, x_2, x_3)$  and hence eigen space is  $\mathbb{R}^3$ For  $|\mathbf{B} - \mu \mathbf{I}| = 0 = (\mu - \lambda)^3$  and for corresponding eigen vector  $\mathbf{x} = (x_1, x_2, x_3)$ Solve  $(\mathbf{B} - \lambda \mathbf{I})\mathbf{x} = 0 \implies \mathbf{x}_2 = 0$  and hence eigen space is  $\mathbb{R}^2$ For  $|\mathbf{C} - \mu \mathbf{I}| = 0 = (\mu - \lambda)^3$  and for corresponding eigen vector  $\mathbf{x} = (x_1, x_2, x_3)$ Solve  $(\mathbf{B} - \lambda \mathbf{I})\mathbf{x} = 0 \implies \mathbf{x}_2 = 0$ ,  $x_3 = 0$  and hence eigen space is  $\mathbb{R}$ 

4.6 Let  $\mathbf{A} := \begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix}$ . Show that 3 is an eigenvalue of  $\mathbf{A}$ , and find all eigenvectors of  $\mathbf{A}$  corresponding to it. Also, show that  $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$  is an eigenvector of  $\mathbf{A}$ , and find the corresponding eigenvalue of  $\mathbf{A}$ .

Check  $|\mathbf{A} - 3\mathbf{I}| = 0$ , we get det  $\begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{bmatrix} = 0$   $\mathbf{A}\mathbf{x} = 3\mathbf{x}$ ,  $\begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 

We get  $x_1 = 0$  and  $x_2 + 2x_3 = 0$ . So all eigen vectors  $\mathbf{x} = x_3(0, -2, 1)$  where  $x_3 \in \mathbb{R}$ To prove  $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^\mathsf{T}$  is an eigenvector of  $\mathbf{A}$ 

$$\begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

We get the eigen value to be 6.

4.7 Let  $\theta \in (-\pi, \pi]$ ,  $\mathbf{A} := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$  and  $\mathbb{K} = \mathbb{C}$ . Show that  $\cos \theta \pm i \sin \theta$  are eigenvalues of  $\mathbf{A}$ . Find an invertible matrix  $\mathbf{P}$  such that  $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$  is a diagonal matrix, and check your answer.

For 
$$|\mathbf{A} - \mu \mathbf{I}| = 0$$
,  

$$\det \left( \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} - \mu \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = 0$$

$$\det \left( \begin{bmatrix} \cos \theta - \mu & -\sin \theta \\ \sin \theta & \cos \theta - \mu \end{bmatrix} \right) = 0$$

$$\mu^2 - 2\mu \cos \theta + 1 = 0 \implies \mu = \cos \theta \pm i \sin \theta$$

$$\mathbf{x} = (x_1, x_2) \text{ where } x_1, x_2 \in \mathbb{C}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mu \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
We get  $\cos \theta x_1 - \sin \theta x_2 = (\cos \theta - i \sin \theta) x_1 \implies x_2 = i x_1$ 
We get  $\mathbf{x} = x_1(1, i)$  where  $x_1 \in \mathbb{C}$   
For other eigen value  $\cos \theta x_1 + \sin \theta x_2 = (\cos + i \sin \theta) x_1 \implies x_2 = -i x_1$ 
We get  $\mathbf{x} = x_1(1, -i)$  where  $x_1 \in \mathbb{C}$ 

$$\mathbf{P} := \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \text{ and Check it } \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} \cos \theta - i \sin \theta & 0 \\ 0 & \cos + i \sin \theta \end{bmatrix}$$

4.8 Let  $n \ge 2$  and  $\mathbf{A} := \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$ , that is,  $a_{jk} = 1$  for all  $j, k = 1, \dots, n$ . Find rank  $\mathbf{A}$  and

nullity **A**. Find an eigenvector of **A** corresponding to a nonzero eigenvalue by inspection. Find two distinct eigenvalues of **A** along with their geometric multiplicities, and find bases for the eigenspaces. Show that **A** is diagonalizable, and find an invertible matrix **P** such that  $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$  is a diagonal matrix.

 $\begin{aligned} Rank\mathbf{A} &= 1, Nullity\mathbf{A} = n - 1\\ \text{Eigen vector} &= \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T \text{ for eigen value} = n\\ \text{To find } |\mathbf{A} - \mu \mathbf{I}| &= 0, \text{ Swap all rows initially and perform } R_1 \mapsto \sum_{i=1}^n R_i \text{ and take } (n-\mu) \text{ common}\\ \text{and then } R_k \mapsto R_k - R_1 \forall \mathbf{k} = 2 \text{ to n and then expand via last column}\\ \text{we get } \mu^{n-1}(\mu - n) = 0 \implies \mu = 0 \text{ GM is n-1}, \mu = n \text{ GM is 1}\\ \text{Now find eigen vectors corresponding to all eigen values } (\mathbf{A} - \mu \mathbf{I})\mathbf{x} = 0 \text{ we get}\\ \text{For } \mu = 0, v = \{ \mathbf{x} : \sum_{i=1}^n x_i = 0 \}\\ \text{For } \mu = n \text{ we get } \mathbf{v} = x_1(1, 1, 1, 1, \dots)^T \forall x_1 \in \mathbb{R} \mathbf{P} := \begin{bmatrix} -1 & -1 & -1 & 1 & 1\\ 1 & 0 & 0 & \dots & 0 & 1\\ 0 & 1 & 0 & \dots & 0 & 1\\ 0 & 0 & 1 & \dots & 0 & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix}\\ \text{Perform } \mathbf{P}^{-1}\mathbf{A}\mathbf{P} \text{ to get to a diagonal matrix} \end{aligned}$ 



#### 5 Tutorial 5 (on Lectures 11, 12 and 13)

5.1 Find all eigenvalues, and their geometric as well as algebraic multiplicities of the following matrices. Are they diagonalizable? If so, find invertible  $\mathbf{P}$  such that  $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$  is a diagonal matrix.

(i) 
$$\mathbf{A} := \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$$
, (ii)  $\mathbf{A} := \begin{bmatrix} 3 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1/2 \end{bmatrix}$ , (iii)  $\mathbf{A} := \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ .

Similar to exercise 4.7 and 4.8

5.2 Let 
$$\mathbf{A} := \begin{bmatrix} 2 & a & b \\ 0 & 1 & c \\ 0 & 0 & 2 \end{bmatrix}$$
. Find a necessary and sufficient condition on  $a, b, c$  for  $\mathbf{A}$  to be diagonalizable.

You can easily see eigen values are 2,1,2 Just you need to check for nullspace  $(\mathbf{A} - \mu \mathbf{I})\mathbf{x} = 0$  or find nullity for  $\mu = 2$   $\begin{bmatrix} 2 - \mu & a & b \\ 0 & 1 - \mu & c \\ 0 & 0 & 2 - \mu \end{bmatrix} \mapsto \begin{bmatrix} 0 & a & b \\ 0 & -1 & c \\ 0 & 0 & 0 \end{bmatrix}$ So for nullity equal to 2 we need rank =1 hence  $R_2$  must to be a scalar multiple of  $R_1$  $\frac{a}{-1} = \frac{b}{c} \implies b=-ac$ 

5.3 Let  $k \in \mathbb{N}$  and

|                 | [0 | -1    | 0   | 0  | 0 | •••   | ••• | 0 ] |                                 |
|-----------------|----|-------|-----|----|---|-------|-----|-----|---------------------------------|
|                 | 1  | 0     | 0   | 0  | 0 | • • • | ••• | 0   |                                 |
|                 | 0  | 0     | 0   | -1 | 0 | •••   | ••• | 0   |                                 |
|                 | 0  | 0     | 1   | 0  | 0 | •••   | ••• | 0   |                                 |
| $\mathbf{A} :=$ | 0  | 0     | 0   | 0  | 0 | ·     |     | 0   | $\in \mathbb{K}^{2k \times 2k}$ |
|                 | :  | ÷     | ۰.  | ۰. | · | ۰.    | ۰.  | ÷   |                                 |
|                 | 0  | • • • |     | 0  | 0 | 0     | 0   | -1  |                                 |
|                 | 0  | •••   | ••• | 0  | 0 | 0     | 1   | 0   |                                 |

that is, **A** has all diagonal entries 0, the subdiagonal entries are 1, 0, 1, 0, ..., 1, 0, and the superdiagonal entries are -1, 0, -1, 0, ..., -1, 0. Find the characteristic polynomial of **A**, all eigenvalues of **A**, and their algebraic as well as geometric multiplicities.

Take  $(\mathbf{A} - \mu \mathbf{I})$  and perform  $R_{2i} \mapsto R_{2i} + R_{2i-1}/\mu \forall i=1$  to k There was a catch that  $\mu \neq 0$  (how would you prove that). Hint (find nullity of A) It's a Upper triangular matrix and whose det is product of diagonal entries  $\mu^k(\mu + 1/\mu)^k = 0 \implies (\mu^2 + 1)^k = 0 \implies \mu = \pm i$ Find Nullity of  $(\mathbf{A} - i\mathbf{I})$  by performing  $R_{2i} \mapsto R_{2i} - iR_{2i-1} \forall i=1$  to k Characteristic polynomial is  $(\mathbf{A}^2 + 1)^k = 0$ 

5.4 Let  $\lambda \in \mathbb{K}$ . Show that  $\lambda$  is an eigenvalue of **A** if and only if  $\overline{\lambda}$  is an eigenvalue of **A**<sup>\*</sup>, but their eigenvectors can be very different.

For forward part,

$$\lambda \|\mathbf{x}\|^2 = \lambda \langle x, x \rangle = \langle x, \lambda x \rangle = \langle x, Ax \rangle$$
  
Transformation property:  $\langle Ax, y \rangle = (Ax)^* y = x^* (A * y) \langle x, A^* y \rangle$ 

 $\lambda \|\mathbf{x}\|^2 = \langle A^* x, x \rangle$ 

Take conjugate on both sides

$$\overline{\lambda} \|\mathbf{x}\|^2 = \overline{\langle A^* x, x \rangle}$$
  
$$\overline{\lambda} \|\mathbf{x}\|^2 = \langle x, A^* x \rangle$$

Similarly prove the backward part (Try it) Other method:  $|\mathbf{A} - \lambda \mathbf{I}| = 0$ . Choose  $\mathbf{B} = \mathbf{A} - \lambda \mathbf{I}$  and we get det(B) = 0 We can claim that det(B<sup>\*</sup>)=0. So  $\mathbf{B}^* = \mathbf{A}^* - \overline{\lambda}\mathbf{I}$ . Now  $|\mathbf{A}^* - \overline{\lambda}\mathbf{I}| = 0$  hence  $\overline{\lambda}$  is an eigen value of  $\mathbf{A}^*$ 

5.5 Let  $\mathbf{A} \in \mathbb{K}^{n \times n}$ . Show that 0 is an eigenvalue of  $\mathbf{A}$  if and only if 0 is an eigenvalue of  $\mathbf{A}^*\mathbf{A}$ , and its geometric multiplicity is the same. Deduce rank  $\mathbf{A}^*\mathbf{A} = \operatorname{rank} \mathbf{A}$ .

 $\begin{array}{l} \mathbf{A}x=0 \implies A^*Ax=0 \implies x \in N(A^*A)\\ N(A) \subseteq N(A^*A)\\ \text{Now consider } A*Ax=0 \implies x^*A^*Ax=0 \implies (Ax)^*Ax=0 \implies Ax=0 \implies x \in N(A)\\ N(A^*A) \subseteq N(A)\\ \text{Hence } N(A) = N(A^*A)\\ \text{All part follows from this because geometric multiplicity of 0 is nullity of the matrix.} \end{array}$ 

5.6 Let  $\mathbf{A} := \begin{bmatrix} 2 & i & 1+i \\ -i & 3 & 1 \\ 1-i & -1 & 8 \end{bmatrix}$ . Show that no eigenvalue of  $\mathbf{A}$  is away from one of the diagonal entries of  $\mathbf{A}$  by more than  $1 + \sqrt{2}$ .

By the Gerschgorin Theorem we know  $|\lambda - a_{jj}| \leq \sum_{j \neq k} |a_{jk}|$ Lets calculate  $\sum_{j \neq k} |a_{jk}|$  for j=1 it's  $1 + \sqrt{2}$ For j=2 it's 2, For j=3 it's  $1 + \sqrt{2}$ 

5.7 A square matrix  $\mathbf{A} := [a_{jk}]$  is called **strictly diagonally dominant** if  $|a_{jj}| > \sum_{k \neq j} |a_{jk}|$  for each  $j = 1, \ldots, n$ . If  $\mathbf{A}$  strictly diagonally dominant, show that  $\mathbf{A}$  is invertible.

By the Gerschgorin Theorem we know  $|\lambda - a_{jj}| \leq \sum_{j \neq k} |a_{jk}|$ We have  $\lambda - a_{jj} > -\sum_j |a_{jk}| \mapsto I$ We already have that  $|a_{jj}| > \sum_{k \neq j} |a_{jk}| \implies a_{jj} - \sum_{k \neq j} |a_{jk}| > 0 \mapsto II$ From I and II we get  $\lambda > 0$  hence the matrix is invertible

5.8 Let  $\mathbf{A} \in \mathbb{K}^{n \times n}$ . Define  $\alpha_2 := \max\{\|\mathbf{A}\mathbf{x}\| : \|\mathbf{x}\| = 1\}$ ,  $\alpha_{\infty} := \max\{\sum_{k=1}^{n} |a_{jk}| : j = 1, \dots, n\}$  and  $\alpha_1 := \max\{\sum_{j=1}^{n} |a_{jk}| : k = 1, \dots, n\}$ , where  $\mathbf{A} := [a_{jk}]$ . Show that  $|\lambda| \le \min\{\alpha_2, \alpha_{\infty}, \alpha_1\}$  for every eigenvalue  $\lambda$ .



consider  $\lambda$  to be max of all eigen value  $\alpha_2 \geq \|\mathbf{A}\mathbf{x}\| = \|\lambda\mathbf{x}\| = |\lambda|$ By the Gerschgorin Theorem we know  $|\lambda - a_{jj}| \leq \sum_{j \neq k} |a_{jk}|$   $||\lambda| - |a_{jj}|| \leq |\lambda - a_{jj}| \leq \sum_{j \neq k} |a_{jk}| \implies |\lambda| - |a_{jj}| \leq \sum_{j \neq k} |a_{jk}|$   $||\lambda| - |a_{jj}|| \leq \sum_{j \neq k} |a_{jk}| \implies |\lambda| - |a_{jj}| \leq \sum_{j \neq k} |a_{jk}|$   $|\lambda| = |a_{jj}| + \sum_{j \neq k} |a_{jk}| \leq \alpha_{\infty}$ Eigen values of  $\mathbf{A}$  and  $\mathbf{A}^T$  are same and performing same operations as we did above we can say  $|\lambda| \leq \alpha_1$ Other method (An Important General result): Let  $(\lambda, \mathbf{x})$  be eigen pair s.t  $\rho(\mathbf{A}) = max|\lambda|$ Find  $\mathbf{y} \neq 0$  s.t  $\mathbf{x}\mathbf{y}^*$  is a non zero matrix ,  $\|.\|$  is a matrix norm  $\lambda \mathbf{x} = \mathbf{A}\mathbf{x} \implies \lambda \mathbf{x}\mathbf{y}^* = \mathbf{A}\mathbf{x}\mathbf{y}^* \implies |\lambda| \|\mathbf{x}\mathbf{y}^*\| = \|\mathbf{A}\mathbf{x}\mathbf{y}^*\| \leq \|\mathbf{A}\|\|\mathbf{x}\mathbf{y}^*\| \implies \rho(\mathbf{A}) \leq \|\mathbf{A}\|$ 

5.9 Let  $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$ . Prove the **parallelogram law**:  $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$ . In case  $\mathbf{x}$  and  $\mathbf{y}$  are both nonzero, prove the **cosine law**, which says that  $\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\|\|\mathbf{y}\|\cos\theta$ , where the angle  $\theta \in [0, \pi]$  between nonzero  $\mathbf{x}$  and  $\mathbf{y}$  is defined to be  $\cos^{-1}(\Re \langle \mathbf{x}, \mathbf{y} \rangle / \|\mathbf{x}\| \|\mathbf{y}\|)$ .

Part.a) You need to use  $\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$  and Similarly for the other term  $\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle + \langle -\mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$ Part.b)  $(\Re \langle x, y \rangle) = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$  where  $\theta \in [0, \pi]$ 

#### 6 Tutorial 6 (on Lectures 14, 15 and 16)

- 6.1 Orthonormalize the following ordered subsets of  $\mathbb{K}^{4\times 1}$ .
  - (i)  $(\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4)$
  - (ii)  $\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4, -\mathbf{e}_1 + \mathbf{e}_2, -\mathbf{e}_1 + \mathbf{e}_3, -\mathbf{e}_1 + \mathbf{e}_4).$
- 6.2 Use the Gram-Schmidt Orthogonalization Process to orthonormalize the ordered subset

 $(\begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & 1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 3 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}})$ 

and obtain an ordered orthonormal set  $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ . Also, find  $\mathbf{u}_4$  such that  $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)$  is an ordered orthonormal basis for  $\mathbb{K}^{4 \times 1}$ . Express the vector  $\begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^{\mathsf{T}}$  as a linear combination of these four basis vectors.

Let W be the subspace of 
$$\mathbb{K}^{4\times 1}$$
 spanned by the vectors  $\mathbf{x}_1 := \begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}$ ,  
 $\mathbf{x}_2 := \begin{bmatrix} 1 & 1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}$  and  $\mathbf{x}_3 := \begin{bmatrix} 3 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$  Let us apply the G-S OP.  
Let  $u_1 := \frac{x_1}{\|x_1\|} = \frac{\begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}}{\sqrt{6}}$ ,  
 $u_2 := \frac{x_2 - P_{u_1}(x_2)}{\|x_2 - P_{u_1}(x_2)\|} = \frac{\begin{bmatrix} 1 & 5 & 2 & 0 \end{bmatrix}^{\mathsf{T}}}{\sqrt{30}}$   
 $u_3 := \frac{x_3 - P_{u_1}(x_3) - P_{u_2}(x_3)}{\|x_3 - P_{u_2}(x_3)\|} = \frac{\begin{bmatrix} 12 & 0 & -6 & 5 \end{bmatrix}^{\mathsf{T}}}{\sqrt{205}}$   
You can check for yourself that  $\{u_1, u_2, u_3\}$  is an orthonormal basis  
To extend  $\{u_1, u_2, u_3\}$  to an orthonormal basis for  $\mathbf{V} := \mathbb{K}^{4\times 1}$ , we look for  $u_4 := \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^{\mathsf{T}}$   
which is orthogonal to the set  $\{x_1, x_2, x_3\}$ . Try on your own

- 6.3 Show that  $\mathbf{A} \in \mathbb{K}^{n \times n}$  is unitary if and only if its rows form an orthonormal subset of  $\mathbb{K}^{1 \times n}$ .
- 6.4 Let  $E := (\mathbf{e}_1, \dots, \mathbf{e}_n)$  be the standard basis for  $\mathbb{K}^{n \times 1}$ , and let  $F := (\mathbf{u}_1, \dots, \mathbf{u}_n)$  be an orthonormal basis for  $\mathbb{K}^{n \times 1}$ . If I denotes the identity map from  $\mathbb{K}^{n \times 1}$  to  $\mathbb{K}^{n \times 1}$ , then show that the matrix  $\mathbf{M}_E^F(I)$  is unitary.
- 6.5 Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  and let  $\lambda$  be an eigenvalue of  $\mathbf{A}$ . Show that  $p(\lambda)$  is an eigenvalue of  $p(\mathbf{A})$  for every polynomial p(t).
- 6.6 Suppose  $\mathbf{A} \in \mathbb{C}^{3 \times 3}$  satisfies  $\mathbf{A}^3 6\mathbf{A}^2 + 11\mathbf{A} = 6\mathbf{I}$ . If  $5 \leq \det \mathbf{A} \leq 7$ , determine the eigenvalues of  $\mathbf{A}$ . Is  $\mathbf{A}$  diagonalizable?
- 6.7 Let  $\mathbf{A} \in \mathbb{K}^{n \times n}$ , and let  $\lambda_1, \ldots, \lambda_n$  be the eigenvalues of  $\mathbf{A}$  with a corresponding orthonormal set of eigenvectors  $\mathbf{u}_1, \ldots, \mathbf{u}_n$ . Show that  $\mathbf{A} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^* + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^*$ .  $(\mathbf{x}\mathbf{y}^* = \text{outer product of } \mathbf{x}, \mathbf{y})$
- 6.8 Let  $\mathbf{A} \in \mathbb{K}^{n \times n}$ , and  $\lambda \in \mathbb{K}$ .
  - (i) Show that  $\lambda$  is an eigenvalue of **A** if and only  $\overline{\lambda}$  is an eigenvalue of **A**<sup>\*</sup>.

(ii) Let **A** be unitary. Show that  $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\|$  for all  $\mathbf{x} \in \mathbb{K}^{n \times 1}$ . If  $\lambda$  is an eigenvalue of **A**, then show that  $|\lambda| = 1$ .

(iii) Let  $\mathbb{K} = \mathbb{C}$  and let **A** skew self-adjoint. If  $\lambda$  is an eigenvalue of **A**, then show that  $i\lambda \in \mathbb{R}$ .

This document is available on 19 Studocu Downloaded by Manish (mani.7805.singh@gmail.com)

- 6.9 Let  $\mathbf{A} := [a_{jk}] \in \mathbb{C}^{n \times n}$ , and let  $\lambda_1, \ldots, \lambda_n$  be the eigenvalues of  $\mathbf{A}$ , counting algebraic multiplicities. Show that  $\mathbf{A}$  is normal  $\iff \sum_{1 \le j,k \le n} |a_{jk}|^2 = \sum_{j=1}^n |\lambda_j|^2$ .
- 6.10 A matrix  $\mathbf{A} \in \mathbb{K}^{n \times n}$  is called **nilpotent** if there is  $m \in \mathbb{N}$  such that  $\mathbf{A}^m = \mathbf{O}$ . If  $\mathbf{A}$  is upper triangular with all diagonal entries equal to 0, then show that  $\mathbf{A}$  is nilpotent. Further, if  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , then show that  $\mathbf{A}$  is nilpotent if and only if 0 is the only eigenvalue of  $\mathbf{A}$ .

#### Tutorial 7 (on Lectures 17, 18 and 19) 7

- 7.1 Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$ . Show that  $\mathbf{A}$  is self-adjoint if and only if  $\mathbf{A}$  is normal and all eigenvalues of  $\mathbf{A}$  are real.
- 7.2 State and prove a spectral theorem for skew self-adjoint matrices with complex entries.
- 7.3 Find an orthonormal basis for  $\mathbb{K}^{4\times 1}$  consisting of eigenvectors of

$$\mathbf{A} := \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -4 & -1 \end{bmatrix}.$$

Write down a spectral representation of **A**, and find  $\mathbf{A}^{7}\mathbf{x}$ , where  $\mathbf{x} := \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^{\mathsf{T}}$ 

- 7.4 A self adjoint matrix **A** is called **positive definite** if  $\langle \mathbf{A} \mathbf{x}, \mathbf{x} \rangle > 0$  for all nonzero  $\mathbf{x} \in \mathbb{K}^{n \times 1}$ . Show that a self-adjoint matrix is positive definite if and only if all eigenvalues of **A** are positive.
- 7.5 Real numbers  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  are placed on the 4 corners of a square in clockwise order initially. In the next step,
  - $\alpha_1$  is replaced by  $\beta_1 := (\alpha_2 + \alpha_4)/2$ ,
  - $\alpha_2$  is replaced by  $\beta_2 := (\alpha_3 + \alpha_1)/2$ ,
  - $\alpha_3$  is replaced by  $\beta_3 := (\alpha_4 + \alpha_2)/2$  and
  - $\alpha_4$  is replaced by  $\beta_4 := (\alpha_1 + \alpha_3)/2$ .

Find the numbers placed on the corners of the square after k such steps. (Hint: Find a set of 4

orthonormal eigenvectors of the matrix  $\mathbf{A} := \begin{bmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \end{bmatrix}$  and use the spectral theorem

for  $\mathbf{A}$ .)

7.6 Let Q be a real quadratic form, and let A denote the associated real symmetric matrix. Let  $g(\mathbf{x}) =$  $\|\mathbf{x}\|^2 - 1$ . If  $\mathbb{Q}$  has a local extremum at a vector  $\mathbf{x}_0$  subject to the constraint  $g(\mathbf{x}) = 0$ , then show that  $\mathbf{x}_0$  is a unit eigenvector of  $\mathbf{A}$ , and the corresponding eigenvalue  $\lambda_0$  is the corresponding Lagrange multiplier and equals  $Q(\mathbf{x}_0)$ .

In particular, the largest eigenvalue of  $\mathbf{A}$  is the constrained maximum and the smaller eigenvalue of **A** is the constrained minimum of Q.

7.7 Which quadric surface does the equation  $7x^2 + 7y^2 - 2z^2 + 20yz - 20zx - 2xy - 36 = 0$  describe? Explain by reducing the quadratic form involved to a diagonal form. Express x, y, z in terms of the new coordinates u, v, w.

 $\mathbf{Q}(x) = 7x^2 + 7y^2 - 2z^2 + 20yz - 20zx - 2xy - 36 \text{ to a diagonal form.}$ Here  $\mathbf{A} := \begin{bmatrix} 7 & -1 & -10 \\ -1 & 7 & 10 \\ -10 & 10 & -2 \end{bmatrix}$  is the associated matrix. Hence the equation of the given quadric surface becomes

> This document is available on 21 Studocu Downloaded by Manish (mani.7805.singh@gmail.com)

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & -1 & -10 \\ -1 & 7 & 10 \\ -10 & 10 & -2 \end{bmatrix} \begin{bmatrix} x & y & z \end{bmatrix}^T - 36 = 0$$
  
Now find eigen value and corresponding eigen vector and then using GSOP find  $\{u_1, u_2, u_3\}$   
Change of variable from  $\begin{bmatrix} x & y & z \end{bmatrix}^T = \mathbf{C} \begin{bmatrix} u & v & w \end{bmatrix}^T$ , where  $\mathbf{C} = [\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_3]$   
Characteristic polynomial is  $\lambda^3 - 12\lambda - 180\lambda + 1296 = 0$   
Eigen values are  $\{18, -12, 6\}$   
Eigen vectors are  $\{\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T\}$   
By GSOP Orthonormal eigen vectors are  $\{\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T\}$   
 $\mathbf{Q}_D(u, v, w) = 18u^2 - 12v^2 + 6w^2$   
The quadric surface reduces to  $18u^2 - 12v^2 + 6w^2 = 36$   
Since eigen values two positive, one negative its **1 sheeted hyperboloid**  
 $\begin{bmatrix} x & y & z \end{bmatrix}^T = \mathbf{C} \begin{bmatrix} u & v & w \end{bmatrix}^T$   
 $\begin{bmatrix} x & y & z \end{bmatrix}^T = \begin{bmatrix} \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{6}} & 0 \end{bmatrix} \begin{bmatrix} u & v & w \end{bmatrix}^T$   
 $x = \frac{-1}{\sqrt{3}}u + \frac{1}{\sqrt{6}}v + \frac{1}{\sqrt{2}}w, y = \frac{1}{\sqrt{3}}u + \frac{-1}{\sqrt{6}}v + \frac{1}{\sqrt{2}}w, z = \frac{1}{\sqrt{3}}u + \frac{2}{\sqrt{6}}v + 0w$ 

7.8 Let Y be a subspace of  $\mathbb{K}^{n \times 1}$ . Show that  $(Y^{\perp})^{\perp} = Y$ .

**F** 7

10]

Let  $\{u_1, u_2, ..., u_k\}$  and  $\{w_1, w_2, ..., w_l\}$  be an orthonormal basis for subspace respectively Y and  $Y^{\perp}$ Every vector  $\mathbf{s} \in (Y^{\perp})^{\perp}$  will be perpendicular to  $w_j \forall j=1$  to 1 Any vector can be represented in the form of  $\mathbf{s} = \mathbf{x} + \mathbf{y}$  where  $x \in Y$  and  $y \in Y^{\perp}$   $\langle s, w_j \rangle = 0 \forall j$   $\langle x + y, \sum \alpha_j w_j \rangle = 0 \forall j$ Since  $\langle x, w_j \rangle = 0$  and  $y \in Y^{\perp} \exists$  some  $\alpha_j$  s.t.  $y = \sum \alpha_j w_j$   $\langle \sum \alpha_j w_j, \sum \alpha_j w_j \rangle = 0 \forall j$ It gives us all  $\alpha'_i s$  are zero, so y=0, then  $s \in Y$ Hence every vector in  $(Y^{\perp})^{\perp}$  lies in Y, i.e  $(Y^{\perp})^{\perp} \subseteq Y$ Now let  $\mathbf{x} \in Y$  then  $x = \sum \alpha_j u_j$   $\langle x, w_i \rangle = \langle \sum \alpha_j u_j, w_i \rangle = 0$ So  $x \in W^{\perp} \implies x \in (Y^{\perp})^{\perp} \implies Y \subseteq (Y^{\perp})^{\perp}$ 

7.9 Let **A** be a self-adjoint matrix. If  $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle = 0$  for all  $\mathbf{x} \in \mathbb{K}^{n \times 1}$ , then show that  $\mathbf{A} = \mathbf{O}$ . Deduce that

if  $\|\mathbf{A}^*\mathbf{x}\| = \|\mathbf{A}\mathbf{x}\|$  for all  $\mathbf{x} \in \mathbb{K}^{n \times 1}$ , then  $\mathbf{A}$  is a normal matrix, and if  $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\|$  for all  $\mathbf{x} \in \mathbb{K}^{n \times 1}$ , then  $\mathbf{A}$  is a unitary matrix.

Part i Self adjoint  $\mathbf{A}^* = \mathbf{A}$  and  $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^* \mathbf{A}^* \mathbf{x} = \mathbf{x}^* \mathbf{A}\mathbf{x} = 0, \forall \mathbf{x} \in \mathbb{K}^{n \times 1}$ Choose  $\mathbf{x} = \mathbf{e}_k$  you get  $a_{kk} = 0 \forall k = 1$  to n Choose  $\mathbf{x} = \mathbf{e}_k + \mathbf{e}_j$  and we get  $a_{kj} + a_{jk} = 0 \ \forall \ \mathbf{k}, \mathbf{j} = 1$  to n and  $k \neq j$ Choose  $\mathbf{x} = \mathbf{e}_k - i\mathbf{e}_j$  and we get  $a_{kj} - a_{jk} = 0 \ \forall \ \mathbf{k}, \mathbf{j} = 1$  to n and  $k \neq j$ Hence  $\mathbf{A} = \mathbf{O}$ Part ii) Choose  $\mathbf{B} = \mathbf{A}\mathbf{A}^* - \mathbf{A}^*\mathbf{A}, \mathbf{B} = \mathbf{B}^*$  $\|\mathbf{A}^*\mathbf{x}\| = \|\mathbf{A}\mathbf{x}\|$ Square on both sides  $\|\mathbf{A}^*\mathbf{x}\|^2 = \|\mathbf{A}\mathbf{x}\|^2 \implies \langle \mathbf{A}^*\mathbf{x}, \mathbf{A}^*\mathbf{x} \rangle = \langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x} \rangle$  $(\mathbf{A}^*\mathbf{x})^*\mathbf{A}^*\mathbf{x} = \langle \mathbf{x}, \, \mathbf{A}^*\mathbf{A}\mathbf{x} \rangle \implies \mathbf{x}^*\mathbf{A}\mathbf{A}^*\mathbf{x} = \mathbf{x}^*\mathbf{A}^*\mathbf{A}\mathbf{x}$ We get  $\langle \mathbf{Bx}, \mathbf{x} \rangle = 0$ Hence  $\mathbf{A}$  is normal Part iii) Choose  $\mathbf{B} = \mathbf{A}\mathbf{A}^* - \mathbf{I}, \mathbf{B} = \mathbf{B}^*$  $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\|$ Square on both sides  $\|\mathbf{A}\mathbf{x}\|^2 = \|\mathbf{x}\|^2 \implies \langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle$ 

 $\langle \mathbf{x}, \, \mathbf{A}^* \mathbf{A} \mathbf{x} \rangle = \langle \mathbf{x}, \, \mathbf{x} \rangle \implies \mathbf{x}^* \mathbf{A}^* \mathbf{A} \mathbf{x} = \mathbf{x}^* \mathbf{x}$ 

We get  $\langle \mathbf{B}\mathbf{x}, \, \mathbf{x} \rangle = 0$ 

Hence  $\mathbf{A}$  is unitary

7.10 Let E be a nonempty subset of  $\mathbb{K}^{n \times 1}$ .

(i) If E is not closed, then show that there is  $\mathbf{x} \in \mathbb{K}^{n \times 1}$  such that no best approximation to  $\mathbf{x}$  exists from E.

(ii) If E is convex, then show that for every  $\mathbf{x} \in \mathbb{K}^{n \times 1}$ , there is at most one best approximation to  $\mathbf{x}$  from E.

Part i

**Definition**: A non empty subset E of  $\mathbb{K}^{n \times 1}$  is not closed, then  $\exists \mathbf{x} \in \mathbb{K}^{n \times 1}$  and a sequence  $(x_n)$  of points of E s.t  $x_n \mapsto x$ , but  $\mathbf{x} \notin E$ Suppose x had a best approximation from E, say y then



 $||x - y|| \le ||x - u|| \forall u \in E$  $||x - y|| \le ||x - x_n|| \forall n \in N$ 

Now by passing limit we get  $||x - y|| \le 0 \implies ||x - y|| = 0 \implies x = y$ But it is a contradiction since  $x \notin E$  and  $y \in E$ Part ii **Definition**: A set E is convex if  $u, v \in E \iff (1-\lambda)u + \lambda v \in E \ \forall \lambda \in [0, 1]$ Suppose there are  $u_1$  and  $u_2$  two best approximations from E to  $\mathbf{x}$  s.t  $||\mathbf{x} - u_i|| = \lambda$ Since E is convex the line joining  $u_1$  and  $u_2$  lies in E  $||\mathbf{x} - \frac{u_1 + u_2}{2}|| = ||\frac{\mathbf{x} - u_1}{2} + \frac{\mathbf{x} - u_2}{2}|| \le ||\frac{\mathbf{x} - u_1}{2}|| + ||\frac{\mathbf{x} - u_2}{2}|| = \lambda$ But then it contradicts the definition of best approximation Hence atmost one approximation

7.11 Find  $\mathbf{x} := [x_1, x_2]^{\mathsf{T}} \in \mathbb{R}^{2 \times 1}$  such that the straight line  $t = x_1 + x_2 s$  fits the data points (-1, 2), (0, 0), (1, -3) and (2, -5) best in the 'least squares' sense.

The data points are (s,t) = (-1,2), (0,0), (1,-3) and (2,-5)  

$$\mathbf{Ax} = \mathbf{b} \implies \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -3 \\ -5 \end{bmatrix}$$

To minimise, we need to find the best approximation to the vector  ${\bf b}$  from the column space  ${\bf C}({\bf A})$ 

 $\mathbf{A} = [\mathbf{y}_1 \mathbf{y}_2] \text{ and } \mathbf{u}_1 = \frac{y_1}{||y_1||} = \frac{\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T}{\sqrt{4}} \text{ and } \mathbf{u}_2 = \frac{\begin{bmatrix} -1 & 0 & 1 & 2 \end{bmatrix}^T}{\sqrt{6}}$ Best approximation is  $\langle \mathbf{u}_1, b \rangle \mathbf{u}_1 + \langle \mathbf{u}_2, b \rangle \mathbf{u}_2 = \begin{bmatrix} 1 & -1.5 & -4 & -6.5 \end{bmatrix}^T$ Now solve  $x_1 - x_2 = -1$  and  $x_1 + x_2 = -4$  gives  $x_1 = -2.5, x_2 = -1.5$ 

7.12. Let  $Q(x_1, \ldots, x_n) := \sum_{j=1}^n \sum_{k=1}^n \alpha_{jk} x_k \overline{x}_j$ , where  $\alpha_{jk} \in \mathbb{C}$ , be a **complex quadratic form**. Show that there is a unique self-adjoint matrix **A** such that

 $Q(x_1,\ldots,x_n) = \mathbf{x}^* \mathbf{A} \mathbf{x}$  for all  $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\mathsf{T} \in \mathbb{C}^{n \times 1}.$ 

 $Q(x_1, \dots, x_n) = \sum_{j=1}^n \sum_{k=1}^n \alpha_{jk} x_k \overline{x}_j = \overline{Q} = \sum_{j=1}^n \sum_{k=1}^n \overline{\alpha_{jk} x_k} x_j$ The variable j,k are dummy variable for the summation  $Q = \sum_{j=1}^n \sum_{k=1}^n \overline{\alpha_{kj} x_j} x_k \implies \alpha_{jk} = \overline{\alpha_{kj}}$ To prove uniqueness: Suppose  $Q = \sum_{j=1}^n \sum_{k=1}^n \alpha_{jk} x_k \overline{x}_j = \sum_{j=1}^n \sum_{k=1}^n \beta_{jk} x_k \overline{x}_j$ 

Choose  $\mathbf{x} = \mathbf{e}_k$  you get  $\alpha_{kk} = \beta_{jj} \forall k = 1$  to n where k=jChoose  $\mathbf{x} = \mathbf{e}_k + \mathbf{e}_j$  and we get  $\alpha_{kj} + \alpha_{jk} = \beta_{kj} + \beta_{jk} \forall k, j = 1$  to n and  $k \neq j$ Choose  $\mathbf{x} = \mathbf{e}_k - i\mathbf{e}_j$  and we get  $\alpha_{kj} - \alpha_{jk} = \beta_{kj} - \beta_{jk} \forall k, j = 1$  to n and  $k \neq j$ 

#### Hence unique

7.13. Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be normal, and let  $\mu_1, \ldots, \mu_k$  be the distinct eigenvalues of  $\mathbf{A}$ . Let  $Y_j := \mathcal{N}(\mathbf{A} - \mu_j \mathbf{I})$ for  $j = 1, \ldots, k$ . Show that  $\mathbb{C}^{n \times 1} = Y_1 \oplus \cdots \oplus Y_k$ . Also, if  $P_j$  is the orthogonal projection onto  $Y_j$ , then show that  $P_1 + \cdots + P_k = I$ ,  $P_i P_j = O$  if  $i \neq j$  and  $\mathbf{A}\mathbf{x} = \mu_1 P_1(\mathbf{x}) + \cdots + \mu_k P_k(\mathbf{x})$  for all  $\mathbf{x} \in \mathbb{C}^{n \times 1}$ .

Since **A** is normal, it is unitarily diagonalizable. So  $\mathbb{C}^n$  has a basis of eigen vectors of **A** The form would be  $\{u_{11}, ..., u_{1g_1}, ..., u_{k1}, u_{k2}, ..., u_{kg_k}\}$  where  $g_j$  = geometric multiplicity of  $\mu_j = dim \mathcal{N}(\mathbf{A} - \mu_j \mathbf{I})$  and  $\mu_{j1}, ..., \mu_{jg_j}$  are eigen vectors of eigen value  $\mu_j$  for j=1,2,...,k. We know  $g_1 + g_2 \dots + g_k = n$  and since **A** is diagonalizable. So given any  $\mathbf{x} \in \mathbb{C}^n$  we can write

$$x = \sum_{j=1}^{k} \sum_{l=1}^{g_j} \alpha_{jl} u_{jl} = y_1 + y_2 + \dots + y_k$$

where  $y_j = \sum_{l=1}^{g_j} \alpha_{jl} u_{jl} \in Y_j = \mathcal{N}(\mathbf{A} - \mu_j \mathbf{I})$ . Thus  $\mathbb{C}^n = Y_1 + \cdots + Y_k$ Since coefficients  $\alpha_{jl}$  are uniquely determined by  $\mathbf{x}, \alpha_{jl} = \langle u_{jl}, x \rangle$ , hence the decomposition is unique and we get  $\mathbb{C}^n = Y_1 \oplus \cdots \oplus Y_k$ 

The orthogonal projection map is defined by  $P_j(x) = y_j$   $(1 \le j \le k)$  and it is clear that  $x = P_1(x) + \dots + P_k(x) \ \forall x \in \mathbb{C}^n$  So  $P_1 + \dots P_k = I$ Also  $P_i P_j = P_i(y_j) = 0$  if  $i \ne j$ . Thus  $P_i P_j = 0$  if  $i \ne j$ Finally since  $y_j \in \mathcal{N}(\mathbf{A} - \mu_j \mathbf{I})$ , we get  $\mathbf{A}y_j = \mu_j y_j$ 

$$\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y}_1 + \dots \mathbf{A}\mathbf{y}_k$$
$$\mathbf{A}\mathbf{x} = \mu_1 \mathbf{y}_1 + \dots \mu_k \mathbf{y}_k$$
$$\mathbf{A}\mathbf{x} = \mu_1 P_1(\mathbf{x}) + \dots + \mu_k P_k(\mathbf{x}) \forall x \in \mathbb{C}^n$$



#### 8 Tutorial 8 (on Lectures 20 and 21)

- 8.1 State why the following sets are not subspaces:
  - (i) All  $m \times n$  matrices with nonnegative entries.
  - (ii) All solutions of the differential equation  $xy' + y = 3x^2$ .
  - (iii) All solutions of the differential equation  $y' + y^2 = 0$ .
  - (iv) All invertible  $n \times n$  matrices.
    - (a)  $\alpha \mathbf{M}$  if  $\alpha < 0$  then it doesn't lie in subspace
    - (b)  $xy'_1 + y_1 = 3x^2$  and  $xy'_2 + y_2 = 3x^2$  and  $x(y_1 + y_2)' + y_1 + y_2 3x^2 = 3x^2 \neq 0$  it doesn't lie in subspace
    - (c)  $y'_1 + y^2_1 = 0$  and  $y'_2 + y^2_2 = 0$  and  $(y_1 + y_2)' + (y_1 + y_2)^2 = 2y_1y_2 \neq 0$  it doesn't lie in subspace
    - (d)  $det(\mathbf{A}), det(\mathbf{B}) \neq 0$  but det(A+B) can be zero if det(A) = -det(B) its not invertible and hence doesnt lie
- 8.2 Let V denote the vector space of all polynomial functions on  $\mathbb{R}$  of degree at most n. Are the following subsets of V in fact subspaces of V? (i)  $W_1 := \{p \in V : p(0) = 0\},\$ 
  - (ii)  $W_2 := \{ p \in V : p'(0) = 0 = p''(0) \},\$
  - (iii)  $W_3 := \{ p \in V : p \text{ is an odd function} \}.$

If so, find a spanning set for each.

- 8.3 Let  $V := C([-\pi, \pi])$ . Show that  $S_1 := \{1, \cos, \sin\}$  is a linearly independent subset of V, while  $S_2 := \{1, \cos^2, \sin^2\}$  is a linearly dependent subset of V.
- 8.4 Let  $V := \mathbb{R}^{1 \times 2}$ , and let  $v_1 := [1 \ 0], v_2 := [1 \ 1], v_3 := [1 \ -1]$ . Explain why (24, 12) can be written as a linear combination of  $v_1, v_2, v_3$  in two different ways, namely,  $4v_1 + 16v_2 + 4v_3$  and  $6v_1 + 15v_2 + 3v_3$ .
- 8.5 Let  $n \in \mathbb{N}$ . Let  $W_1, W_2, W_3, W_4$  denote the subspaces of  $n \times n$  real matrices which are diagonal, upper triangular, symmetric and skew-symmetric. Find their dimensions.
- 8.6 Let V and W be vector spaces over K. Show that  $V \times W := \{(v, w) : v \in V \text{ and } w \in W\}$  is a vector space over K with componentwise addition and scalar multiplication. If dim V = n and dim W = m, find dim  $V \times W$ .
- 8.7 Let  $\mathbf{A} := [a_{jk}] \in \mathbb{K}^{4 \times 4}$ . Define  $T : \mathbb{K}^{2 \times 2} \to \mathbb{K}^{2 \times 2}$  by

$$T\left(\begin{bmatrix}x_{11} & x_{12}\\x_{21} & x_{22}\end{bmatrix}\right) = \begin{bmatrix}y_{11} & y_{12}\\y_{21} & y_{22}\end{bmatrix},$$

where  $\begin{bmatrix} y_{11} & y_{12} & y_{21} & y_{22} \end{bmatrix}^\mathsf{T} := \mathbf{A} \begin{bmatrix} x_{11} & x_{12} & x_{21} & x_{22} \end{bmatrix}^\mathsf{T}$ . Show that *T* is linear, and find the matrix of *T* with respect to the ordered basis  $(\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})$  of  $\mathbb{K}^{2 \times 2}$ .

8.8 Define  $T: \mathcal{P}_2 \to \mathbb{K}^{2 \times 1}$  by

$$T(\alpha_0 + \alpha_1 t + \alpha_2 t^2) := \begin{bmatrix} \alpha_0 + \alpha_1 & \alpha_1 + \alpha_2 \end{bmatrix}^{\mathsf{T}}$$

for  $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{R}$ . If  $E := (1, t, t^2)$  and  $F := (\mathbf{e}_1, \mathbf{e}_2)$ , then find  $\mathbf{M}_F^E$ . Also, if  $E' := (1, 1+t, (1+t)^2)$ and  $F' := (\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2)$ , then find  $\mathbf{M}_{F'}^{E'}$ . 8.9 (Parallelogram law) Let V be an inner product space. Prove that the norm on V induced by the inner product satisfies  $||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$  for all  $v, w \in V$ .

(Conversely, if there is a norm  $\|\cdot\|$  on a vector space V which satisfies the parallelogram law, then it can be shown that there is an inner product  $\langle\cdot,\cdot\rangle$  on V such that  $\langle v, v \rangle = \|v\|^2$  for all  $v \in V$ .)

# 8.10 For $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{m \times n}$ , define $\langle \mathbf{A}, \mathbf{B} \rangle := \operatorname{tr} \mathbf{A}^* \mathbf{B}$ . Show that $\langle \cdot, \cdot \rangle$ is an inner product on $\mathbb{K}^{m \times n}$ .

8.11 Show that

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos t}{\sqrt{\pi}}, \frac{\sin t}{\sqrt{\pi}}, \frac{\cos 2t}{\sqrt{\pi}}, \frac{\sin 2t}{\sqrt{\pi}}, \dots\right\}$$

is an orthonormal subset of  $C([-\pi,\pi])$ .

(This is the beginning of the theory of Fourier Series.)

- 8.12 Let T be a Hermitian operator on a finite dimensional inner product space V over  $\mathbb{K}$ . Prove the following.
  - (i)  $\langle T(v), v \rangle \in \mathbb{R}$  for every  $v \in V$ .
  - (ii) Every eigenvalue of T is real.
  - (iii) If  $\lambda \neq \mu$  are eigenvalues of T with v and w corresponding eigenvectors of T, then  $v \perp w$ .
  - (iv) Let W be a subspace of V such that  $T(W) \subset W$ . Then  $T(W^{\perp}) \subset W^{\perp}$ .

