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1 Tutorial 1 (on Lectures 1 and 2)

1.1 Let A be a square matrix. Show that there is a symmetric matrix B and there is a skew-symmetric
matrix C such that A = B+C. Are B and C unique?

Given B should be symmetric and C should be skew-symmetric such that A = B+C . Take

transpose on both sides of this equation. This gives us AT = BT +CT ⇒ AT = B−C . Solve

these two boxed equations simultaneously to get B = A+A
T

2 and C = A−A
T

2 .
Thus we have A = B+C and clearly, B is symmetric and C is skew-symmetric.
By our solution, B and C must be unique

1.2 Let A :=





1 2
3 4
5 6



 and B :=

[

1 2 3
4 5 6

]

. Write (i) the second row of AB as a linear combination

of the rows of B and (ii) the second column of AB as a linear combination of the columns of A.

(i) AB is a 3 × 3 matrix. The elements of the second row of AB are given by the expression:
AB2,j =

∑2
k=1A2,kBk,j . Thus, the second row can be written as the linear combination of rows

of B as follows:

3
[

1 2 3
]

+ 4
[

4 5 6
]

(ii) Similarly, the second column of AB can be written as as the linear combination of columns
of A as follows:

2





1
3
5



+ 5





2
4
6





1.3 Let A :=









1 1 1 0
−3 −17 1 2
4 −24 8 −5
0 −7 2 2









. Assuming that A is invertible, find the last column and the last row

of A−1.

AA−1 = I4, Thus we have the following system of equations to get the last column of A−1:









1 1 1 0
−3 −17 1 2
4 −24 8 −5
0 −7 2 2

















x1
x2
x3
x4









=









0
0
0
1









Solve this to get the last column of A−1

We get:
[

x1 x2 x3 x4
]T

=
[

2.75 −0.5 −2.25 1
]T

Do a similar process to get the last row. Since we already know x4, now we’ll have to solve a
system of only 3 equations and 3 unknowns. Last Row of A−1 =

[

−1.5 −0.5 0 1
]
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1.4 Show that the product of two upper triangular matrices is upper triangular. Is this true for lower
triangular matrices?

Assume A and B are two upper triangular matrices. For these upper triangular matrices, Aij

and Bij = 0 for i > j. We have to show that ABij = 0 for i > j also holds true.
We have ABij = AT

i Bj where AT
i is the ith row of A and BT

j is the jth column of B.

Thus, ABi,j = AT
i Bj =

n
∑

k=1

AikBkj

=

j
∑

k=1

AikBkj +
n
∑

k=j+1

AikBkj

Now given A,B are upper triangular. So Aij = 0, Bij = 0 for i > j. Here we are only checking

ABij for i > j, so we get
∑j

k=1AikBkj = 0 since Aik is zero in the summation.
∑n

k=j+1AikBkj =
0 since Bkj is zero in the summation.
Similarly we can show that product of two lower triangular matrix is also lower triangular but
there we would consider i < j in our analysis.

1.5 The trace of a square matrix is the sum of its diagonal entries. Show that trace (A+B) = trace (A)+
trace (B) and trace (AB) = trace (BA) for A,B ∈ Rn×n.

Part (a) is trivial.

trace(AB) =
n
∑

i=1

(AB)ii =
n
∑

i=1

n
∑

k=1

AikBki

trace(BA) =
n
∑

i=1

(BA)ii =
n
∑

i=1

n
∑

k=1

BikAki =
n
∑

k=1

n
∑

i=1

AkiBik

We have just switched the order of summation as the two summations are over independent axes.
Thus we see that trace(AB) = trace(BA) as the two expressions are equivalent

1.6 Find all solutions of the linear system Ax = b, where (i)A :=









1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18









, b :=

[

0 −1 6 6
]T
,

(ii) A :=





2 1 1
4 −6 0
−2 7 2



, b :=
[

5 −2 9
]T
,

(iii) A :=





0 2 −2 1
2 −8 14 −5
1 3 0 1



 and b :=
[

2 2 8
]T

by reducing A to a row echelon form.
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(i) We perform the row operations to the augmented matrix









1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 6
2 6 0 8 4 18 6









R4 := R4 − 2R1








1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 6
0 0 4 8 0 18 6









R2 := R2 − 2R1








1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 6
0 0 4 8 0 18 6









R3 := R3 + 5R2








1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 0 0 0 0 1
0 0 4 8 0 18 6









Swap R3 and R4








1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 4 8 0 18 6
0 0 0 0 0 0 1









R3 = R3 + 4R2








1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 0 0 0 6 2
0 0 0 0 0 0 1









The last row of the augmented matrix is inconsistent. So the system has no solution.

(ii) Performing row operations on the augmented matrix,





2 1 1 5
4 −6 0 −2
−2 7 2 9





3
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R2 := R2 − 2R1




2 1 1 5
0 −8 −2 −12
−2 7 2 9





R3 := R3 +R1




2 1 1 5
0 −8 −2 −12
0 8 3 14





R3 := R3 +R2




2 1 1 5
0 −8 −2 −12
0 0 1 2





So we get x3 = 2. Back-substituting in 8x2 + 2x3 = 12 we get x2 = 1 and back-substituting in
2x1 + x2 + x3 = 5, we get x1 = 1.

The solution is; x :=
[

1 1 2
]T

(iii) Here the augmented matrix is





0 2 −2 1 2
2 −8 14 −5 2
1 3 0 1 8





Performing the following operations, we get; Swap R1 and R3





1 3 0 1 8
2 −8 14 −5 2
0 2 −2 1 2





R2 := R2 − 2R1




1 3 0 1 8
0 −14 14 −7 −14
0 2 −2 1 2





Then R3 := 7R3 +R2




1 3 0 1 8
0 −14 14 −7 −14
0 0 0 0 0





Since the last row is 0, there are infinitely many solutions.

4
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2 Tutorial 2 (on Lectures 3, 4 and 5)

2.1 Find the Row Canonical Form of





1 2 1 1
0 0 1 −1
1 1 2 0



 .

Row1 Pivot1 = 1
Swap R2 and R3





1 2 1 1
1 1 2 0
0 0 1 −1





R2 := R2 −R1




1 2 1 1
0 −1 1 −1
0 0 1 −1





Row2 Pivot2 = -1
R2 := R2/(−1)





1 2 1 1
0 1 −1 1
0 0 1 −1





R1 := R1 − 2R2




1 0 3 −1
0 1 −1 1
0 0 1 −1





Row3 Pivot3= 1
R1 := R1 − 3R3





1 0 0 2
0 1 −1 1
0 0 1 −1





R2 := R2 +R3




1 0 0 2
0 1 0 0
0 0 1 −1





Above Matrix is the row canonical form of the given Matrix.

2.2 Let A :=





1 0 0
1 1 0
1 1 1



 . Find A−1 by Gauss-Jordan method.

2.3 An m×m matrix E is called an elementary matrix if it is obtained from the identity matrix I by
an elementary row operation. Write down all elementary matrices.

(i) Let A ∈ Rm×n. If an elementary row operation transforms A to A′, then show that A′ = EA,
where E is the corresponding elementary matrix.
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(ii) Show that every elementary matrix is invertible, and find its inverse.

(iii) Show that a square matrix A is invertible if and only if it is a product of finitely many elementary
matrices.

Part i
Each row operation is represented by Ei matrices. Let’s take E1,E2, .....Ek be elementary row
transformation matrix such that E = E1E2.....EkI so we get

A′ = E1E2.....EkA

Finally
A′ = EA

Part ii
Earlier we got to know that E = E1E2.....EkI , here we can see that Ei are elementary matrices
which are invertible and hence the product of all such Ei are invertible. We can get the inverse by

E−1 = (E1E2.....Ek)
−1

E−1 = E−1

k
E−1

k−1
.....E−1

1

Think how can you prove part3 on the basis of first part and second part
Part iii
A square matrix A is invertible if and only if you can row reduce A to an identity matrix I
Let’s take the forward case so we have been given matrix is invertible .So on performing k row
operations we obtain I

E1E2.....EkA = I

A = E−1

k
E−1

k−1
.....E−1

1

Hence its proved

2.4 Let S and T be subsets of Rn×1 such that S ⊂ T . Show that if S is linearly dependent then so is T ,
and if T is linearly independent then so is S. Does the converse hold?

Let S = [v1, v2, ...vs] . Since S ⊂ T let T = [v1, v2, ...vs, u1, u2, ..ut] . Now suppose if S is Lin-
early dependant then ∃α1, α2...αs such that α1v1 + α2v2...+ αsvs = 0 and not all αi are zero.
Now let β1v1 + β2v2 + ..+ βsvs + βs+1u1 + βs+2u2 + ...βs+tut = 0. Put βs+i = 0 where i ≥ 1 and
βi = αi for i ≤ s. So this tuple value of β isnt zero hence T is Linearly dependant.

If T is Linearly independant then the only solution for β1v1+β2v2+ ..+βsvs+βs+1u1+βs+2u2+
...βs+tut = 0 is βi = 0. Suppose if S is Linearly dependant then it means ∃α1, α2...αs such
that α1v1 + α2v2... + αsvs = 0. Sp put βi = αi for i ≤ s and βs+i = 0. This tuple satisfies
the above equation yet β 6= 0. So this contradicts that T is Linearly independant. Hence S is
Linearly independant

2.5 Are the following sets linearly independent?

6
Downloaded by Manish  (mani.7805.singh@gmail.com)

lOMoARcPSD|52083106



(i)
{[

1 −1 1
]

,
[

3 5 2
]

,
[

1 2 1
]

,
[

1 1 1
]}

⊂ R1×3,

(ii)
{[

1 9 9 8
]

,
[

2 0 0 3
]

,
[

2 0 0 8
]}

⊂ R1×4,

(iii)
{[

1 −1 0
]T
,
[

3 −5 2
]T
,
[

1 −2 1
]T} ⊂ R3×1.

2.6 Given a set of s linearly independent row vectors {a1, . . . ,ai, . . . ,aj , . . . ,as} in R1×n and α ∈ R,
show that the set {a1, . . . ,ai−1,ai + αaj ,ai+1, . . . ,aj , . . . ,as} is linearly independent.

c1a1 + c2a2 + ...ciai + ..cjaj ...+ csas = 0.
Since these vectors are linearly independant, ∀k ck = 0.
Now consider β1a1 + β2a2 + ...βi(ai + αaj) + ..βjaj ...+ βsas = 0.
So β1a1 + β2a2 + ...βiai + ..(βj + βiα)aj ...+ βsas = 0.
So β1 = β2 = ..βi.. = βs = 0, βj + αβi = 0.
Hence ∀kβk = 0. So this set of vectors is also linearly independant.

2.7 Find the ranks of the following matrices.

(i)





8 −4
−2 1
6 −3



, (ii)









0 8 −1
1 2 0
0 0 3
0 4 5









.

2.8 Are the following subsets of R3×1 subspaces?

(i)
{[

x1 x2 x3
]T

: x1, x2, x3 ∈ R, x1 + x2 + x3 = 0
}

,

(ii)
{[

x1 + x2 + x3 x2 + x3 x3
]T

: x1, x2, x3 ∈ R
}

,

(iii)
{[

x1 x2 x3
]T

: x1, x2, x3 ∈ R, x1x2x3 = 0
}

(iv)
{[

x1 x2 x3
]T

: x1, x2, x3 ∈ R, |x1|, |x2|, |x3| ≤ 1
}

.

If so, find a basis for each, and also its dimension.

2.9 Describe all subspaces of R, R2×1, R3×1 and R4×1. Can you visualise them geometrically?
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3 Tutorial 3 (on Lectures 6 and 7)

3.1 Let V be a subspace of Rn×1 with dimV = r, and let S be a finite subset of V such that spanS = V .
Suppose S has s elements. Show that (i) s ≥ r, (ii) if s = r, then S is a basis for V , (iii) if s > r,
then S contains basis for V .

3.2 Let A′ ∈ Rm×n be in a REF. Show that the pivotal columns of A′ form a basis for the column space
C(A′).

3.3 Let A ∈ Rm×n. The set R(A) consisting of all linear combinations of the rows of A is called the
row space of A. Show that R(A) is a subspace of R1×n. If A′ is obtained from A by EROs, then
prove that R(A′) = R(A). Further, show that the dimension of R(A) is equal to the rank of A.

3.4 Let A ∈ Rm×n and B ∈ Rn×p. Show that rankAB ≤ min{rankA, rankB}.

3.5 Let A :=





0 0 0 −2 1
0 2 −2 14 −1
0 2 3 13 1



. Find the rank and the nullity of A. What is the dimension of the

solution space of the homogeneous equation Ax = 0? If b :=
[

2 2 3
]T
, find the general solution

of Ax = b.

3.6 Prove that det





1 1 1
a b c
a2 b2 c2



 = (b − a)(c − a)(c − b), where a, b, c ∈ R. Also, prove an analogous

formula for a determinant of order n, known as the Vandermonde determinant.

det





1 1 1
a b c
a2 b2 c2





Use det(A) = det(AT ) and perform Rk = Rk −R1 ∀ k=2 to 3

det





1 a a2

1 b b2

1 c c2



 = det





1 a a2

0 b− a b2 − a2

0 c− a c2 − a2



 = (b− a)(c− a)(c− b)

Part 2
To prove general result use induction for n=2 we have

det

[

1 1
a1 a2

]

= (a2 − a1)

Now assume it to be true for n-1 order matrix and if we are able to prove n order matrix from
the n-1 order matrix we are done

8
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det

















1 1 1 . . . . . . . . . 1
a1 a2 a3 . . . . . . . . . an

.
.

.

an−1
1 an−1

2 an−1
3 . . . . . . . . . an−1

n

















=
∏

1≤i<j≤n

(aj − ai)

det(A) = det(AT )

det

















1 a1 a21 . . . . . . . . . an−1
1

1 a2 a22 . . . . . . . . . an−1
2

.
.

.
1 an a2n . . . . . . . . . an−1

n

















=
∏

1≤i<j≤n

(aj − ai)

Rk = Rk −R1 ∀ k=2 to n

det

















1 a1 a21 . . . . . . . . . an−1
1

0 a2 − a1 a22 − a21 . . . . . . . . . an−1
2 − an−1

n

.
.

.

0 an − a1 a2n − a21 . . . . . . . . . an−1
n − an−1

1

















− > eqn(I)

∏

1≤j≤n

(aj − a1) det

















1 a2 + a1 . . . . . .
∑n−1

0 an−2−i
2 ai1

.
.

.
.

1 an + a1 . . . . . .
∑n−1

0 an−2−i
n ai1

















Now keep on splitting the det by column wise starting from col(2) to col(n) and see only one
non zero det would surive and others would vanish

∏

1≤j≤n

(aj − a1) det

















1 a1 a21 . . . . . . . . . an−2
1

1 a2 a22 . . . . . . . . . an−2
2

.
.

.

1 an−1 a2n−1 . . . . . . . . . an−2
n−1
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∏

1≤i<j≤n

(aj − a1) ∗
∏

2≤j≤n

(aj − ai)

∏

1≤j≤n

(aj − ai)

Other method
Look at eqn(I) matrix

Use det(A) = det(AT ) and consecutively perform Rk = Rk −Rk−1 ∗ a1 ∀ k=2 to n Try out

3.7 For n ∈ N, prove that

det





















0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0

.
.

.
0 1 0 . . . 0 0 0
1 0 0 . . . 0 0 0





















= (−1)n(n−1)/2.

Use induction Method:
For n=1 we have,

det
[

1
]

= (−1)1(1−1)/2 = 1

Now assume it to be true for n-1 order matrix and if we are able to prove n order matrix from
the n-1 order matrix we are done

To prove:: det





















0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0

.
.

.
0 1 0 . . . 0 0 0
1 0 0 . . . 0 0 0





















= (−1)n(n−1)/2

det





















0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0

.
.

.
0 1 0 . . . 0 0 0
1 0 0 . . . 0 0 0





















Now if we expand via the first row to find det and use result of det(A)n−1, we get

10
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(−1)n+1 det





















0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0

.
.

.
0 1 0 . . . 0 0 0
1 0 0 . . . 0 0 0





















n−1

(−1)n+1 ∗ (−1)(n−1)(n−2)/2 = (−1)n(n−1)/2

3.8 For n ∈ N, prove that

det



















1 2 3 . . . n− 1 n
2 2 3 . . . n− 1 n
3 3 3 . . . n− 1 n
...

...
...

...
...

n− 1 n− 1 n− 1 . . . n− 1 n
n n n . . . n n



















= (−1)n+1n.

Rn 7→ 1

n
Rn

Ri 7→ Ri − iRn for all i ∈ {1, . . . , n− 1}.
For example, in the case of n = 4, you should have arrived at the following conclusion:

det









1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4









= 4det









0 1 2 3
0 0 1 2
0 0 0 1
1 1 1 1









Write the general case.
Now, expand along the first column. This is simple to do as it has only one non-zero entry.

(Note that you’ll get a (−1)n.)
Thus, you get that the original determinant equals the following expression:

(−1)nn det











1 2 · · · n− 1
0 1 · · · n− 2
...

...
. . .

...
0 0 · · · 1











.

Note that the determinant written above is just 1 as it’s a triangular matrix with all diagonal
entries 1.

Thus, the answer is (−1)nn.
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3.9 Find rankA using determinants, where A is

(i)





0 2 −3
2 0 5
−3 5 0



 , (ii)





4 3
−8 −6
16 12



 .

Verify by transforming A to a REF.
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4 Tutorial 4 (on Lectures 8, 9 and 10)

4.1 Find the value(s) of α for which Cramer’s rule is applicable. For the remaining value(s) of α, find
the number of solutions, if any.

x + 2y + 3z = 20
x + 3y + z = 13
x + 6y + αz = α.

4.2 Find the cofactor matrix C of the matrix A, and verify CTA=(detA)I=ACT. If detA 6= 0, find
A−1, where A is

(i)

[

a b
c d

]

, (ii)





0 9 5
2 0 0
0 2 0



 , (iii)





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 .

4.3 Find the matrix of the linear transformation T : R3×1 → R4×1 defined by T
( [

x1 x2 x3
]T)

:=
[

x1 + x2 x2 + x3 x3 + x1 x1 + x2 + x3
]T

with respect to the ordered bases (i) E = (e1, e2, e3) of
R3×1 and F = (e1, e2, e3, e4) of R

4×1,

(ii) E′ = (e1+e2, e2+e3, e3+e1) of R
3×1 and F ′ = (e1+e2+e3, e2+e3+e4, e3+e4+e1, e4+e1+e2)

of R4×1, first showing that E′ is a basis for R3×1 and F ′ is a basis for R4×1.

Part(i)
We have the basis set E = (e1, e2, e3) of R

3×1 and F = (e1, e2, e3, e4) of R
4×1,

T( e1) =
[

1 0 1 1
]T

= 1e1 + 0e2 + 1e3 + 1e4

T( e2) =
[

1 1 0 1
]T

= 1e1 + 1e2 + 0e3 + 1e4

T( e3) =
[

0 1 1 1
]T

= 0e1 + 1e2 + 1e3 + 1e4

ME
F (T ) =









1 1 0
0 1 1
1 0 1
1 1 1









Part(ii)
Check whether the set E′ and set F ′ forms a basis set? Indeed yes they form ( Try it out )

T( e1+e2) =
[

2 1 1 2
]T

= 0(e1+e2+e3)+0(e2+e3+e4)+1(e3+e4+e1)+1(e4+e1+e2)
=
T( e2+e3) =

[

1 2 1 2
]T

= 0(e1+e2+e3)+1(e2+e3+e4)+0(e3+e4+e1)+1(e4+e1+e2)
=
T( e3+e1) =

[

1 1 2 2
]T

= 0(e1+e2+e3)+1(e2+e3+e4)+1(e3+e4+e1)+0(e4+e1+e2)
=

ME′

F ′(T ) =









0 0 0
0 1 1
1 0 1
1 1 0









4.4 Let A ∈ R4×4. Let P :=









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









. Show that P is invertible. Find an ordered bases E of R4×1
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such that P−1AP = ME
E(TA).

Using the theorem we get E = {P1,P2,P3,P4}

4.5 Let λ ∈ K. Find the geometric multiplicity of the eigenvalue λ of each of the following matrices:

A :=





λ 0 0
0 λ 0
0 0 λ



, B :=





λ 1 0
0 λ 0
0 0 λ



, C :=





λ 1 0
0 λ 1
0 0 λ



.

Also, find the eigenspace associated with λ in each case.

For |A− µI| = 0 = (µ− λ)3 its true for all vector x = (x1, x2, x3) and hence eigen space is R3

For |B− µI| = 0 = (µ− λ)3 and for corresponding eigen vector x = (x1, x2, x3)
Solve (B− λI)x = 0 =⇒ x2 = 0 and hence eigen space is R2

For |C− µI| = 0 = (µ− λ)3 and for corresponding eigen vector x = (x1, x2, x3)
Solve (B− λI)x = 0 =⇒ x2 = 0, x3 = 0 and hence eigen space is R

4.6 LetA :=





3 0 0
−2 4 2
−2 1 5



. Show that 3 is an eigenvalue ofA, and find all eigenvectors ofA corresponding

to it. Also, show that
[

0 1 1
]T

is an eigenvector of A, and find the corresponding eigenvalue of A.

Check |A− 3I| = 0, we get det





0 0 0
−2 1 2
−2 1 2



 = 0

Ax = 3x

,




3 0 0
−2 4 2
−2 1 5









x1
x2
x3



 = 3





x1
x2
x3





We get x1 = 0 and x2 + 2x3 = 0. So all eigen vectors x = x3(0,−2, 1) where x3 ∈ R

To prove
[

0 1 1
]T

is an eigenvector of A





3 0 0
−2 4 2
−2 1 5









0
1
1



 =





0
6
6



 = 6





0
1
1





We get the eigen value to be 6.

4.7 Let θ ∈ (−π, π], A :=

[

cos θ − sin θ
sin θ cos θ

]

and K = C. Show that cos θ ± i sin θ are eigenvalues of A.

Find an invertible matrix P such that P−1AP is a diagonal matrix, and check your answer.
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For |A− µI| = 0,

det

([

cos θ − sin θ
sin θ cos θ

]

− µ

[

1 0
0 1

])

= 0

det

([

cos θ − µ − sin θ
sin θ cos θ − µ

])

= 0

µ2 − 2µ cos θ + 1 = 0 =⇒ µ = cos θ ± i sin θ

x = (x1, x2) where x1, x2 ∈ C

[

cos θ − sin θ
sin θ cos θ

] [

x1
x2

]

= µ

[

x1
x2

]

We get cos θx1 − sin θx2 = (cos θ − i sin θ)x1 =⇒ x2 = ix1
We get x = x1(1, i) where x1 ∈ C

For other eigen value cos θx1 + sin θx2 = (cos+i sin θ)x1 =⇒ x2 = −ix1
We get x = x1(1,−i) where x1 ∈ C

P :=

[

1 1
i −i

]

and Check it P−1AP =

[

cos θ − i sin θ 0
0 cos+i sin θ

]

4.8 Let n ≥ 2 and A :=







1 · · · 1
...

...
...

1 · · · 1






∈ Rn×n, that is, ajk = 1 for all j, k = 1, . . . , n. Find rankA and

nullityA. Find an eigenvector of A corresponding to a nonzero eigenvalue by inspection. Find two
distinct eigenvalues of A along with their geometric multiplicities, and find bases for the eigenspaces.
Show that A is diagonalizable, and find an invertible matrix P such that P−1AP is a diagonal
matrix.

RankA = 1, NullityA = n− 1

Eigen vector =
[

1 1 ... 1
]T

for eigen value=n
To find |A−µI| = 0, Swap all rows inititially and perform R1 7→

∑n
i=1Ri and take (n-µ) common

and then Rk 7→ Rk −R1∀ k=2 to n and then expand via last column
we get µn−1(µ− n) = 0 =⇒ µ = 0 GM is n-1 ,µ = n GM is 1
Now find eigen vectors corresponding to all eigen values (A− µI)x = 0 we get
For µ = 0 ,v = { x :

∑n
i=1 xi = 0}

Forµ = n we get v = x1(1, 1, 1, 1....)
T∀x1 ∈ R P :=





















−1 −1 −1 . . −1 1
1 0 0 . . 0 1
0 1 0 . . 0 1
0 0 1 . . 0 1
. . . . . . .
. . . . . . .
0 0 0 . . 1 1





















Perform P−1AP to get to a diagonal matrix
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5 Tutorial 5 (on Lectures 11, 12 and 13)

5.1 Find all eigenvalues, and their geometric as well as algebraic multiplicities of the following matrices.
Are they diagonalizable? If so, find invertible P such that P−1AP is a diagonal matrix.

(i) A :=

[

5 −1
1 3

]

, (ii) A :=









3 2 1 0
0 1 0 1
0 2 −1 0
0 0 0 1/2









, (iii) A :=





2 1 0
0 2 1
0 0 2



.

Similar to exercise 4.7 and 4.8

5.2 Let A :=





2 a b
0 1 c
0 0 2



. Find a necessary and sufficient condition on a, b, c for A to be diagonalizable.

You can easily see eigen values are 2,1,2
Just you need to check for nullspace (A− µI)x = 0 or find nullity for µ = 2




2− µ a b
0 1− µ c
0 0 2− µ



 7→





0 a b
0 −1 c
0 0 0





So for nullity equal to 2 we need rank =1 hence R2 must to be a scalar multiple of R1
a
−1 = b

c =⇒ b=-ac

5.3 Let k ∈ N and

A :=





























0 −1 0 0 0 · · · · · · 0
1 0 0 0 0 · · · · · · 0
0 0 0 −1 0 · · · · · · 0
0 0 1 0 0 · · · · · · 0

0 0 0 0 0
. . . · · · 0

...
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 0 0 0 −1
0 · · · · · · 0 0 0 1 0





























∈ K2k×2k,

that is, A has all diagonal entries 0, the subdiagonal entries are 1, 0, 1, 0 . . . , 1, 0, and the superdiag-
onal entries are −1, 0,−1, 0, . . . ,−1, 0. Find the characteristic polynomial of A, all eigenvalues of A,
and their algebraic as well as geometric multiplicities.

Take (A− µI) and perform R2i 7→ R2i +R2i−1/µ ∀ i=1 to k
There was a catch that µ 6= 0 (how would you prove that). Hint (find nullity of A)
It’s a Upper triangular matrix and whose det is product of diagonal entries
µk(µ+ 1/µ)k = 0 =⇒ (µ2 + 1)k = 0 =⇒ µ = ±i
Find Nullity of (A− iI) by performing R2i 7→ R2i − iR2i−1 ∀ i=1 to k
Characteristic polynomial is (A2 + 1)k = 0

5.4 Let λ ∈ K. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A∗, but their
eigenvectors can be very different.
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For forward part,

λ‖x‖2 = λ < x, x >=< x, λx >=< x,Ax >

Transformation property: < Ax, y >= (Ax)∗y = x∗(A ∗ y) < x,A∗y >

λ‖x‖2 =< A∗x, x >

Take conjugate on both sides

λ‖x‖2 = < A∗x, x >

λ‖x‖2 =< x,A∗x >

Similarly prove the backward part (Try it)

Other method:
|A− λI| = 0. Choose B = A− λI and we get det(B) = 0
We can claim that det(B*)=0. So B∗ = A∗ − λI.
Now |A∗ − λI| = 0 hence λ is an eigen value of A∗

5.5 Let A ∈ Kn×n. Show that 0 is an eigenvalue of A if and only if 0 is an eigenvalue of A∗A, and its
geometric multiplicity is the same. Deduce rankA∗A = rankA.

Ax = 0 =⇒ A∗Ax = 0 =⇒ x ∈ N(A∗A)
N(A) ⊆ N(A∗A)
Now consider A ∗Ax = 0 =⇒ x∗A∗Ax = 0 =⇒ (Ax)∗Ax = 0 =⇒ Ax = 0 =⇒ x ∈ N(A)
N(A∗A) ⊆ N(A)
Hence N(A) = N(A∗A)
All part follows from this because geometric multiplicity of 0 is nullity of the matrix.

5.6 Let A :=





2 i 1 + i
−i 3 1
1− i −1 8



. Show that no eigenvalue of A is away from one of the diagonal entries

of A by more than 1 +
√
2.

By the Gerschgorin Theorem we know |λ− ajj | ≤
∑

j 6=k |ajk|
Lets calculate

∑

j 6=k |ajk| for j=1 it’s 1 +
√
2

For j=2 it’s 2 , For j=3 it’s 1 +
√
2

5.7 A square matrix A := [ajk] is called strictly diagonally dominant if |ajj | >
∑

k 6=j |ajk| for each
j = 1, . . . , n. If A strictly diagonally dominant, show that A is invertible.

By the Gerschgorin Theorem we know |λ− ajj | ≤
∑

j 6=k |ajk|
We have λ− ajj > −∑

j |ajk| 7→ I
We already have that |ajj | >

∑

k 6=j |ajk| =⇒ ajj −
∑

k 6=j |ajk| > 0 7→ II
From I and II we get λ > 0 hence the matrix is invertible

5.8 Let A ∈ Kn×n. Define α2 := max{‖Ax‖ : ‖x‖ = 1}, α∞ := max
{
∑n

k=1 |ajk| : j = 1, . . . , n
}

and
α1 := max

{
∑n

j=1 |ajk| : k = 1, . . . , n
}

, where A := [ajk]. Show that |λ| ≤ min{α2, α∞, α1} for every
eigenvalue λ.
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consider λ to be max of all eigen value
α2 ≥ ‖Ax‖ = ‖λx‖ = |λ|

By the Gerschgorin Theorem we know |λ− ajj | ≤
∑

j 6=k |ajk|
||λ| − |ajj || ≤ |λ− ajj | ≤

∑

j 6=k |ajk|
||λ| − |ajj || ≤

∑

j 6=k |ajk| =⇒ |λ| − |ajj | ≤
∑

j 6=k |ajk|
|λ| = |ajj |+

∑

j 6=k |ajk| ≤ α∞

Eigen values of A and AT are same and performing same operations as we did above we can say
|λ| ≤ α1

Other method (An Important General result):
Let (λ,x) be eigen pair s.t ρ(A) = max|λ|
Find y 6= 0 s.t xy∗ is a non zero matrix , ‖.‖ is a matrix norm
λx = Ax =⇒ λxy∗ = Axy∗ =⇒ |λ|‖xy∗‖ = ‖Axy∗‖ ≤ ‖A‖‖xy∗‖ =⇒ ρ(A) ≤ ‖A‖

5.9 Let x,y ∈ Kn×1. Prove the parallelogram law: ‖x+y‖2+‖x−y‖2 = 2‖x‖2+2‖y‖2. In case x and
y are both nonzero, prove the cosine law, which says that ‖x−y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ,
where the angle θ ∈ [0, π] between nonzero x and y is defined to be cos−1

(

R 〈x, y〉/‖x‖‖y‖
)

.

Part.a) You need to use ‖x+ y‖2 =< x+ y,x+ y >=
< x,x+ y > + < y,x+ y >=< x,x > + < x,y > + < y,x > + < y,y > and
Similarly for the other term ‖x− y‖2 =< x− y,x− y >=
< x,x− y > + < −y,x− y >=< x,x > − < x,y > − < y,x > + < y,y >
Part.b) (R < x, y >) = ‖x‖‖y‖ cos θ where θ ∈ [0, π]
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6 Tutorial 6 (on Lectures 14, 15 and 16)

6.1 Orthonormalize the following ordered subsets of K4×1.

(i) (e1, e1 + e2, e1 + e2 + e3, e1 + e2 + e3 + e4)

(ii) e1 + e2 + e3 + e4, −e1 + e2, −e1 + e3, −e1 + e4).

6.2 Use the Gram-Schmidt Orthogonalization Process to orthonormalize the ordered subset
( [

1 −1 2 0
]T

,
[

1 1 2 0
]T

,
[

3 0 0 1
]T )

and obtain an ordered orthonormal set (u1,u2,u3). Also, find u4 such that (u1,u2,u3,u4) is an

ordered orthonormal basis for K4×1. Express the vector
[

1 −1 1 −1
]T

as a linear combination of
these four basis vectors.

Let W be the subspace of K4×1 spanned by the vectors x1 :=
[

1 −1 2 0
]T

,

x2 :=
[

1 1 2 0
]T

and x3 :=
[

3 0 0 1
]T

Let us apply the G-S OP.

Let u1 :=
x1

‖x1‖ =

[

1 −1 2 0
]

T

√
6

, u2 :=
x2−Pu1

(x2)

‖x2−Pu1
(x2)‖ =

[

1 5 2 0
]

T

√
30

u3 :=
x3−Pu1

(x3)−Pu2
(x3)

‖x3−Pu1
(x3)−Pu2

(x3)‖ =

[

12 0 −6 5
]

T

√
205

You can check for yourself that {u1, u2, u3} is an orthonormal basis

To extend {u1, u2, u3} to an orthonormal basis for V :=K4×1 , we look for u4 :=
[

α1 α2 α3 α4

]T

which is orthogonal to the set {x1, x2, x3}. Try on your own

6.3 Show that A ∈ Kn×n is unitary if and only if its rows form an orthonormal subset of K1×n.

6.4 Let E := (e1, . . . , en) be the standard basis for Kn×1, and let F := (u1, . . . ,un) be an orthonormal
basis for Kn×1. If I denotes the identity map from Kn×1 to Kn×1, then show that the matrix MF

E(I)
is unitary.

6.5 Let A ∈ Cn×n and let λ be an eigenvalue of A. Show that p(λ) is an eigenvalue of p(A) for every
polynomial p(t).

6.6 Suppose A ∈ C3×3 satisfies A3 − 6A2 + 11A = 6I.

If 5 ≤ detA ≤ 7, determine the eigenvalues of A.

Is A diagonalizable?

6.7 Let A ∈ Kn×n, and let λ1, . . . , λn be the eigenvalues of A with a corresponding orthonormal set of
eigenvectors u1, . . . ,un. Show that A = λ1u1u

∗
1 + · · ·+ λnunu

∗
n. (xy

∗=outer product of x,y)

6.8 Let A ∈ Kn×n, and λ ∈ K.

(i) Show that λ is an eigenvalue of A if and only λ is an eigenvalue of A∗.
(ii) Let A be unitary. Show that ‖Ax‖ = ‖x‖ for all x ∈ Kn×1. If λ is an eigenvalue of A, then show
that |λ| = 1.

(iii) Let K = C and let A skew self-adjoint. If λ is an eigenvalue of A, then show that iλ ∈ R.
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6.9 Let A := [ajk] ∈ Cn×n, and let λ1, . . . , λn be the eigenvalues of A, counting algebraic multiplicities.
Show that A is normal ⇐⇒ ∑

1≤j,k≤n |ajk|2=
∑n

j=1 |λj |2.

6.10 A matrix A ∈ Kn×n is called nilpotent if there is m ∈ N such that Am = O. If A is upper triangular
with all diagonal entries equal to 0, then show that A is nilpotent. Further, if A ∈ Cn×n, then show
that A is nilpotent if and only if 0 is the only eigenvalue of A.
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7 Tutorial 7 (on Lectures 17, 18 and 19)

7.1 Let A ∈ Cn×n. Show that A is self-adjoint if and only if A is normal and all eigenvalues of A are
real.

7.2 State and prove a spectral theorem for skew self-adjoint matrices with complex entries.

7.3 Find an orthonormal basis for K4×1 consisting of eigenvectors of

A :=









−1 0 0 0
0 −1 0 0
0 0 −1 −4
0 0 −4 −1









.

Write down a spectral representation of A, and find A7x, where x :=
[

1 2 3 4
]T

7.4 A self adjoint matrix A is called positive definite if 〈Ax, x〉 > 0 for all nonzero x ∈ Kn×1. Show
that a self-adjoint matrix is positive definite if and only if all eigenvalues of A are positive.

7.5 Real numbers α1, α2, α3, α4 are placed on the 4 corners of a square in clockwise order initially. In
the next step,

α1 is replaced by β1 := (α2 + α4)/2,

α2 is replaced by β2 := (α3 + α1)/2,

α3 is replaced by β3 := (α4 + α2)/2 and

α4 is replaced by β4 := (α1 + α3)/2.

Find the numbers placed on the corners of the square after k such steps. (Hint: Find a set of 4

orthonormal eigenvectors of the matrix A :=









0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0









and use the spectral theorem

for A.)

7.6 Let Q be a real quadratic form, and let A denote the associated real symmetric matrix. Let g(x) =
‖x‖2−1. If Q has a local extremum at a vector x0 subject to the constraint g(x) = 0, then show that
x0 is a unit eigenvector of A, and the corresponding eigenvalue λ0 is the corresponding Lagrange
multiplier and equals Q(x0).

In particular, the largest eigenvalue of A is the constrained maximum and the smaller eigenvalue of
A is the constrained minimum of Q.

7.7 Which quadric surface does the equation 7x2 + 7y2 − 2z2 + 20yz − 20zx − 2xy − 36 = 0 describe?
Explain by reducing the quadratic form involved to a diagonal form. Express x, y, z in terms of the
new coordinates u, v, w.

Q(x) = 7x2 + 7y2 − 2z2 + 20yz − 20zx− 2xy − 36 to a diagonal form.

Here A :=





7 −1 −10
−1 7 10
−10 10 −2



is the associated matrix.

Hence the equation of the given quadric surface becomes
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[

x y z
]





7 −1 −10
−1 7 10
−10 10 −2





[

x y z
]T − 36 = 0

Now find eigen value and corresponding eigen vector and then using GSOP find {u1, u2, u3}
Change of variable from

[

x y z
]T

= C
[

u v w
]T

,where C = [u1u2u3]
Characteristic polynomial is λ3 − 12λ− 180λ+ 1296 = 0
Eigen values are {18,-12,6}
Eigen vectors are {

[

−1 1 1
]T

,
[

1 −1 2
]T

,
[

1 1 0
]T }

By GSOP Orthonormal eigen vectors are {
[

−1 1 1
]T

√
3

,

[

1 −1 2
]T

√
6

,

[

1 1 0
]T

√
2

}
QD(u, v, w) = 18u2 − 12v2 + 6w2

The quadric surface reduces to 18u2 − 12v2 + 6w2 = 36
Since eigen values two positive, one negative its 1 sheeted hyperboloid

[

x y z
]T

= C
[

u v w
]T

[

x y z
]T

=







−1√
3

1√
6

1√
2

1√
3

−1√
6

1√
2

1√
3

2√
6

0







[

u v w
]T

x = −1√
3
u+ 1√

6
v + 1√

2
w, y = 1√

3
u+ −1√

6
v + 1√

2
w, z = 1√

3
u+ 2√

6
v + 0w

7.8 Let Y be a subspace of Kn×1. Show that (Y ⊥)⊥ = Y .

Let {u1, u2, ...uk} and {w1, w2, ...wl} be an orthonormal basis for subspace respectively Y and
Y ⊥

Every vector s ∈ (Y ⊥)⊥ will be perpendicular to wj∀ j=1 to l
Any vector can be represented in the form of s = x+ y where x ∈ Y and y ∈ Y ⊥

〈s, wj〉 = 0∀j

〈x+ y,
∑

αjwj〉 = 0∀j

Since 〈x, wj〉 = 0 amd y ∈ Y ⊥ ∃ some αj s.t. y =
∑

αjwj

〈
∑

αjwj ,
∑

αjwj〉 = 0∀j

It gives us all α
′

is are zero, so y=0 , then s ∈ Y
Hence every vector in (Y ⊥)⊥ lies in Y, i.e (Y ⊥)⊥ ⊆ Y

Now let x ∈ Y then x =
∑

αjuj

〈x, wi〉 = 〈
∑

αjuj , wi〉 = 0

So x ∈ W⊥ =⇒ x ∈ (Y ⊥)⊥ =⇒ Y ⊆ (Y ⊥)⊥

Hence Y = (Y ⊥)⊥

7.9 Let A be a self-adjoint matrix. If 〈Ax, x〉 = 0 for all x ∈ Kn×1, then show that A = O. Deduce that
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if ‖A∗x‖ = ‖Ax‖ for all x ∈ Kn×1, then A is a normal matrix, and if ‖Ax‖ = ‖x‖ for all x ∈ Kn×1,
then A is a unitary matrix.

Part i
Self adjoint A∗ = A and 〈Ax, x〉 = x∗A∗x = x∗Ax = 0, ∀ x ∈ Kn×1

Choose x = ek you get akk = 0 ∀ k = 1 to n
Choose x = ek + ej and we get akj + ajk = 0 ∀ k,j = 1 to n and k 6= j
Choose x = ek − iej and we get akj − ajk = 0 ∀ k,j = 1 to n and k 6= j
Hence A = O
Part ii) Choose B = AA∗ −A∗A, B = B∗

‖A∗x‖ = ‖Ax‖

Square on both sides

‖A∗x‖2 = ‖Ax‖2 =⇒ 〈A∗x, A∗x〉 = 〈Ax, Ax〉
(A∗x)∗A∗x = 〈x, A∗Ax〉 =⇒ x∗AA∗x = x∗A∗Ax

We get 〈Bx, x〉 = 0

Hence A is normal
Part iii) Choose B = AA∗ − I, B = B∗

‖Ax‖ = ‖x‖

Square on both sides

‖Ax‖2 = ‖x‖2 =⇒ 〈Ax, Ax〉 = 〈x, x〉
〈x, A∗Ax〉 = 〈x, x〉 =⇒ x∗A∗Ax = x∗x

We get 〈Bx, x〉 = 0

Hence A is unitary

7.10 Let E be a nonempty subset of Kn×1.

(i) If E is not closed, then show that there is x ∈ Kn×1 such that no best approximation to x exists
from E.

(ii) If E is convex, then show that for every x ∈ Kn×1, there is at most one best approximation to x
from E.

Part i
Definition: A non empty subset E of Kn×1 is not closed, then ∃ x ∈ Kn×1 and a sequence (xn)
of points of E s.t xn 7→ x, but x /∈ E
Suppose x had a best approximation from E, say y then
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||x− y|| ≤ ||x− u||∀u ∈ E

||x− y|| ≤ ||x− xn||∀n ∈ N

Now by passing limit we get ||x− y|| ≤ 0 =⇒ ||x− y|| = 0 =⇒ x = y
But it is a contradiction since x /∈ E and y ∈ E

Part ii
Definition: A set E is convex if u,v ∈ E ⇐⇒ (1-λ)u+ λv ∈ E ∀λ ∈ [0, 1]
Suppose there are u1 and u2 two best approximations from E to x s.t ||x− ui|| = λ
Since E is convex the line joining u1 and u2 lies in E
||x− u1+u2

2 || = ||x−u1

2 + x−u2

2 || ≤ ||x−u1

2 ||+ ||x−u2

2 || = λ
But then it contradicts the definition of best approximation
Hence atmost one approximation

7.11 Find x := [x1, x2]
T ∈ R2×1 such that the straight line t = x1+x2s fits the data points (−1, 2), (0, 0),

(1,−3) and (2,−5) best in the ‘least squares’ sense.

The data points are (s,t) = (−1, 2), (0, 0),(1,−3) and (2,−5)

Ax = b =⇒









1 −1
1 0
1 1
1 2









[

x1
x2

]

=









2
0
−3
−5









To minimise, we need to find the best approximation to the vector b from the column space
C(A)

A = [y1y2] and u1 =
y1

||y1|| =

[

1 1 1 1
]T

√
4

and u2 =

[

−1 0 1 2
]T

√
6

Best approximation is 〈u1, b〉u1 + 〈u2, b〉u2 =
[

1 −1.5 −4 −6.5
]T

Now solve x1 − x2 = −1 and x1 + x2 = −4 gives x1 = −2.5, x2 = −1.5

7.12. Let Q(x1, . . . , xn) :=
∑n

j=1

∑n
k=1 αjkxkxj , where αjk ∈ C, be a complex quadratic form. Show

that there is a unique self-adjoint matrix A such that

Q(x1, . . . , xn)=x∗Ax for all x :=
[

x1 · · · xn
]T ∈ Cn×1.

Q(x1, . . . , xn) =
∑n

j=1

∑n
k=1 αjkxkxj = Q =

∑n
j=1

∑n
k=1 αjkxkxj

The variable j,k are dummy variable for the summation
Q =

∑n
j=1

∑n
k=1 αkjxjxk =⇒ αjk = αkj

To prove uniqueness:
Suppose Q =

∑n
j=1

∑n
k=1 αjkxkxj =

∑n
j=1

∑n
k=1 βjkxkxj

Choose x = ek you get αkk = βjj ∀ k = 1 to n where k=j
Choose x = ek + ej and we get αkj + αjk = βkj + βjk ∀ k,j = 1 to n and k 6= j
Choose x = ek − iej and we get αkj − αjk = βkj − βjk ∀ k,j = 1 to n and k 6= j
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Hence unique

7.13. Let A ∈ Cn×n be normal, and let µ1, . . . , µk be the distinct eigenvalues of A. Let Yj := N (A− µjI)
for j = 1, . . . , k. Show that Cn×1 = Y1 ⊕ · · · ⊕ Yk. Also, if Pj is the orthogonal projection onto Yj ,
then show that P1 + · · · + Pk = I, PiPj = O if i 6= j and Ax = µ1P1(x) + · · · + µkPk(x) for all
x ∈ Cn×1.

Since A is normal , it is unitarily diagonalizable. So Cn has a basis of eigen vectors of A
The form would be {u11, .., u1g1 , ..., uk1, uk2, ..., ukgk} where gj = geometric multiplicity of µj =
dimN (A− µjI) and µj1, ...,µjgj are eigen vectors of eigen value µj for j=1,2,..,k.
We know g1 + g2....+ gk = n and since A is diagonalizable. So given any x ∈ Cn we can write

x =

k
∑

j=1

gj
∑

l=1

αjlujl = y1 + y2 + ...+ yk

where yj =
∑gj

l=1 αjlujl ∈ Yj = N (A− µjI). Thus C
n = Y1 + · · ·+ Yk

Since coeffiecients αjl are uniquely determined by x, αjl = 〈ujl, x〉, hence the decomposition is
unique and we get Cn = Y1 ⊕ · · · ⊕ Yk

The orthogonal projection map is defined by Pj(x) = yj (1 ≤ j ≤ k) and it is clear that
x = P1(x) + .....+ Pk(x) ∀x ∈ Cn So P1 + ...Pk = I
Also PiPj = Pi(yj) = 0 if i 6= j .Thus PiPj = 0 if i 6= j
Finally since yj ∈ N (A− µjI), we get Ayj = µjyj

Ax = Ay1 + .....Ayk

Ax = µ1y1 + .....µkyk

Ax = µ1P1(x) + · · ·+ µkPk(x)∀x ∈ Cn
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8 Tutorial 8 (on Lectures 20 and 21)

8.1 State why the following sets are not subspaces:

(i) All m× n matrices with nonnegative entries.

(ii) All solutions of the differential equation xy′ + y = 3x2.

(iii) All solutions of the differential equation y′ + y2 = 0.

(iv) All invertible n× n matrices.

(a) αM if α < 0 then it doesn’t lie in subspace

(b) xy′1 + y1 = 3x2 and xy′2 + y2 = 3x2 and x(y1 + y2)
′ + y1 + y2 − 3x2 = 3x2 6= 0 it doesn’t lie

in subspace

(c) y′1+y21 = 0 and y′2+y22 = 0 and (y1+y2)
′+(y1+y2)

2 = 2y1y2 6= 0 it doesn’t lie in subspace

(d) det(A), det(B) 6= 0 but det(A+B) can be zero if det(A) = -det(B) its not invertible and
hence doesnt lie

8.2 Let V denote the vector space of all polynomial functions on R of degree at most n. Are the following
subsets of V in fact subspaces of V ? (i) W1 := {p ∈ V : p(0) = 0},
(ii) W2 := {p ∈ V : p′(0) = 0 = p′′(0)},
(iii) W3 := {p ∈ V : p is an odd function}.
If so, find a spanning set for each.

8.3 Let V := C([−π, π]). Show that S1 := {1, cos, sin} is a linearly independent subset of V , while
S2 := {1, cos2, sin2} is a linearly dependent subset of V .

8.4 Let V := R1×2, and let v1 := [1 0], v2 := [1 1], v3 := [1 − 1]. Explain why (24, 12) can be written as
a linear combination of v1, v2, v3 in two different ways, namely, 4v1+16v2+4v3 and 6v1+15v2+3v3.

8.5 Let n ∈ N. Let W1,W2,W3,W4 denote the subspaces of n×n real matrices which are diagonal, upper
triangular, symmetric and skew-symmetric. Find their dimensions.

8.6 Let V and W be vector spaces over K. Show that V ×W := {(v, w) : v ∈ V and w ∈ W} is a vector
space over K with componentwise addition and scalar multiplication. If dimV = n and dimW = m,
find dimV ×W .

8.7 Let A := [ajk] ∈ K4×4. Define T : K2×2 → K2×2 by

T

([

x11 x12
x21 x22

])

=

[

y11 y12
y21 y22

]

,

where
[

y11 y12 y21 y22
]T

:= A
[

x11 x12 x21 x22
]T
. Show that T is linear, and find the matrix

of T with respect to the ordered basis
(

E11,E12,E21,E22

)

of K2×2.

8.8 Define T : P2 → K2×1 by

T (α0 + α1t+ α2t
2) :=

[

α0 + α1 α1 + α2

]T

for α0, α1, α2 ∈ R. If E := (1, t, t2) and F := (e1, e2), then find ME
F . Also, if E

′ :=
(

1, 1+ t, (1 + t)2
)

and F ′ := (e1, e1 + e2), then find ME′

F ′ .
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8.9 (Parallelogram law) Let V be an inner product space. Prove that the norm on V induced by the
inner product satisfies ‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 for all v, w ∈ V .

(Conversely, if there is a norm ‖ · ‖ on a vector space V which satisfies the parallelogram law, then
it can be shown that there is an inner product 〈· , ·〉 on V such that 〈v, v〉 = ‖v‖2 for all v ∈ V .)

8.10 For A,B ∈ Km×n, define 〈A, B〉 := trA∗B. Show that 〈· , ·〉 is an inner product on Km×n.

8.11 Show that
{

1√
2π

,
cos t√

π
,
sin t√
π
,
cos 2t√

π
,
sin 2t√

π
, . . .

}

is an orthonormal subset of C([−π, π]).

(This is the beginning of the theory of Fourier Series.)

8.12 Let T be a Hermitian operator on a finite dimensional inner product space V over K. Prove the
following.

(i) 〈T (v), v〉 ∈ R for every v ∈ V .

(ii) Every eigenvalue of T is real.

(iii) If λ 6= µ are eigenvalues of T with v and w corresponding eigenvectors of T , then v ⊥ w.

(iv) Let W be a subspace of V such that T (W ) ⊂ W . Then T (W⊥) ⊂ W⊥.
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