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Velocity and Acceleration: General Definitions

@ Velocity of a particle is defined as

o r(t+A) —r(t)  dr
=TT A T @

@ Similarly, the acceleration is defined as

v(t+At)—v(t) dv _ d (dr 7d72r
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Velocity and Acceleration: Cartesian Coordinates

@ In Cartesian coordinates
r— x?—l—yj—i—zﬁ

@ Therefore
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@ So that the three Cartesian components can be deduced
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o Likewise, for acceleration we have
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Cartesian coordinates: Accelaration

@ so that
i
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Cartesian Coordinates: Solving the kinematic equations

@ The question is: suppose we know the acceleration of a
particle as a function of time, a(t)

@ How can we obtain its velocity v(t), and the position r(t), as a
function of time?

@ This clearly requires integrating the so-called kinematic
equation
d?r
— = alt).
g2 = 2(t)

@ How do we achieve that?



Cartesian Coordinates: Integrating the kinematic equations

e Formally speaking, one has to follow a two-step procedure
@ First, we integrate the acceleration to obtain velocity

dv

— =alt).

g =2t

= dv =adt
— / dv = / adt
@ The integral above is an indefinite integral, therefore, we need
initial conditions to integrate it fully

@ Assuming that at some initial time ty, the velocity of the

particle is vg, i.e., v(ty) = vo.



Integrating the kinematic equations: velocity

@ Then

In the last equation above, we changed the variable of
integration to t’, to keep it distinct from the general time t.

o The integrated expression above is a vector equation, which
has three Cartesian components.



Integrating the kinematic equations: position

@ We need to perform one more integration to obtain position r,
assuming that now the velocity is known

dr
— =v(t
5 = V()
@ Upon integrating this similar to the previous case, we obtain
t
r(t)=ro+ [ v(t)dt,

to

where r(ty) = rg, is the initial position of the particle.



Full form of integrated equations in Cartesian coordinates

@ Three Cartesian components of the acceleration equation

t
ve(t) = vox+ [ ax(t)dt

to

t
vy(t) = v0y+/ a,(t')dt’
to

t
vo(t) =vor + | a.(t)dt

to
@ And, three Cartesian components of the velocity equation

t

x(t)=x0+ [ w(t)dt
to
t



Integration of Kinematic Equations: Examples

° Example 1: A particle moving with constant acceleration
a= aX|+ayJ+azk i.e., ax, ay, and a, are constants..

o Assume, initial velocity v(t = 0) = u = uyl 4 uy) + uk.

@ And, initial position r(t =0) =rg = x07+yoj+ zoﬁ.

o Equation of motion is

which leads to

dvx
dt
dv,

dt
dve



Example 1 contd.

@ The form of the equations is identical for the three directions.

@ So we integrate the x equation, and same result will apply to
other directions

@ We have
dv, = a,dt
Vy t
— [Tdve=a [ o
Uy t=0
Vie(t) = ux + axt
Similarly for y and z directions

vy(t) =u, +ay,t
vo(t) = u,+azt

@ These can be combined in a single vector equation

v=u-+tat



Example 1 contd....

@ To obtain the trajectory r(t), we must integrate the velocity

equation
dr
V= p =u+at
@ We consider the x component of the equation
dx
P + axt,

which can be integrated as

dx = udt + ay tdt

X t t
:>/ dx’:ux/ dt’+ax/ t' dt’
X0 0 0

1
— x—xg= uXt+§aXt2

1
x(t) =xo+ uxt+ §a>(t2



Example 1 ...

@ Similarly, we have for y and z components

1
y(t)=yo+uyt+ ant2

1
z(t) =zo+ut+ Eazt2

@ These yield the vector equation

1
r(t) = ro+ut+§at2
@ Define the net displacement s =r —rg, so that
1 >
s(t) = ut+§at .

Note the similarity of this equation with the 1D equation
s=ut+ Jat.



Example 2: Electron in an oscillating electric field

@ Imagine that an electron of charge —e and mass m is exposed
to an electric field

E = Eysinoti
@ Force F acting on the electron is F = —¢eE, so that
F e . o
a(t) = — = ——Epsinwti
m m

@ Initial conditions: at t =0, electron is at rest, at the origin,

o Effectively, we have 1D motion in x direction, so that

dv e
— = ——FEysinwt.
dt m°



Example 2: contd.

@ First integration of the equation yields
t
v(t) = v0+/ a(t')dt
0
E t
v(t)=vo— 2/ sinwt'dt/
m Jo
eEo
t)= — ot—1
v(t)=wvo+ o, (cos )
because vg = 0, we have
E
v(t) = =2 (coswt — 1)

ma

@ Integration of velocity equation yields the trajectory



Example 2: ...

@ On integration, because vop =0, we have

eEo
mm>

x(t) =xo+ (sinwt — wt)

@ Using the fact xo =0, we finally have

E
x(t) = :’(;2 (sinwt — ot).

Note that besides an oscillating term, we also have a term
which denotes drift of the electron with a constant velocity!



Kinematics in plane polar coordinates

o Computing quantities such as velocity and acceleration is a bit
more complicated in plane polar coordinates

o The reason:  and 6 are direction dependent

@ Let us compute the velocity

dr d
vfafa(rr).

@ Using the chain rule, we have

dr dr
v=—F+r—.

dt dt
o Note that as the particle moves, vector t also changes so that
gt £0.
° But how to compute dr?

@ A geometric caIcuIatlon is possible, but let us take a different
approach.



Velocity in plane polar coordinates

@ Let us use Cartesian coordinates for the purpose
= cosBi+sin6)

@ Because Cartesian basis vectors i and } have fixed directions in
space, so they don’t change with time
o Therefore

d?  dcos@. dsinf.

dt ~  dt | dt
o Now
dcos@ . do L
7 ——smeﬁ——smeﬂ
dsin® do .
7 —COSGE —=cos00
@ So that
dr . a2 o ; . A o N
i —sinB60i+cos00) =10 (—sm 9|—|—C059J> =600



Velocity in plane polar coordinates contd.

@ Therefore, finally we have

d dr A
v = d—:?—i— rd—tr_ =rr+r60
= v+ veé

@ Thus, we have obtained an expression for velocity in terms of
its radial and angular (also called tangential) components

e What is the physical significance of v, and vy?



o Consider the figure

-

'

Case 1

Velocity in polar coordinates: Physical Significance

Case 2

e Case 1: This case corresponds to motion along the radial
direction, with 6 held fixed (6 =

0), so that v = it.

o Case 2: Here there is no radial motion (7 = 0), so velocity
will be along the arc of a circle with v =r66



Acceleration in polar coordinates

@ Acceleration can be computed as

L
o dt

:jt(i?—i—réé)

_di,.dP d(r8), . d
*dtr+rdt+ dt 9+r9dt

T T
= F?—i—i’GG—i—i’GG—i—rGG—i—rGE
e We compute ‘Z,—?, by expressing 6 in Cartesian coordinates

6 d . .
Pl <—sin 6i+c056j>
= —cos06i—sin 99]

=67



Acceleration in polar coordinates....

@ On substituting the expression of ‘Z,—?, we obtain
a= (F—réz)?—i— <2ié+ré) 0

o Different terms have the following interpretations

¥ due to change of radial speed, points in radial direction

—rB? centripetal acceleration, pointing radially inwards

e 2i0 Coriolis acceleration, present whenever both radial and
angular velocities are nonzero, and points in the tangential
direction

e r0 tangential angular acceleration, due to changing angular
velocity, points in tangential direction



Example: Bead moving along the spoke of a rotating wheel

o Consider a bead moving along the spoke of a rotating wheel

@ Both v and w are constant

@ Let us calculate the velocity and acceleration of the bead in
plane polar coordinates



Bead on a spoke...

@ Here, clearly

r=u
6=0w
r=0
6=0

@ Therefore, velocity in polar coordinates is
v=uf+rwb
o But, for this case, clearly r = ut, if rp =0. Therefore

v =uf+ut®b

@ And the acceleration
a=—w’rt+2uwd
= —@2utt +2umd



