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Velocity and Acceleration: General De�nitions

Velocity of a particle is de�ned as

v = lim
∆t→0

r(t+∆t)− r(t)

∆t
=

d r

dt
.

Similarly, the acceleration is de�ned as

a= lim
∆t→0

v(t+∆t)− v(t)

∆t
=

dv

dt
=

d

dt

(
d r

dt

)
=

d2r

dt2
.



Velocity and Acceleration: Cartesian Coordinates

In Cartesian coordinates

r = x î+ y ĵ+ z k̂

Therefore

v =
d r

dt
=

dx

dt
î+

dy

dt
ĵ+

dz

dt
k̂

So that the three Cartesian components can be deduced

vx =
dx

dt

vy =
dy

dt

vz =
dz

dt

Likewise, for acceleration we have

a=
dv

dt
=

d2r

dt2
,



Cartesian coordinates: Accelaration

so that

ax =
dvx

dt
=

d2x

dt2

ay =
dvy

dt
=

d2y

dt2

az =
dvz

dt
=

d2z

dt2



Cartesian Coordinates: Solving the kinematic equations

The question is: suppose we know the acceleration of a

particle as a function of time, a(t)

How can we obtain its velocity v(t), and the position r(t), as a
function of time?

This clearly requires integrating the so-called kinematic

equation
d2r

dt2
= a(t).

How do we achieve that?



Cartesian Coordinates: Integrating the kinematic equations

Formally speaking, one has to follow a two-step procedure

First, we integrate the acceleration to obtain velocity

dv

dt
= a(t).

=⇒ dv = adt

=⇒
∫

dv =
∫

adt

The integral above is an inde�nite integral, therefore, we need

initial conditions to integrate it fully

Assuming that at some initial time t0, the velocity of the

particle is v0, i.e., v(t0) = v0.



Integrating the kinematic equations: velocity

Then ∫
v(t)

v0

dv =
∫ t

t0

adt ′

v(t)− v(t0) =
∫ t

t0

adt ′

v(t) = v0+
∫ t

t0

a(t ′)dt ′.

In the last equation above, we changed the variable of

integration to t ′, to keep it distinct from the general time t.

The integrated expression above is a vector equation, which

has three Cartesian components.



Integrating the kinematic equations: position

We need to perform one more integration to obtain position r,

assuming that now the velocity is known

d r

dt
= v(t)

Upon integrating this similar to the previous case, we obtain

r(t) = r0+
∫ t

t0

v(t)dt,

where r(t0) = r0, is the initial position of the particle.



Full form of integrated equations in Cartesian coordinates

Three Cartesian components of the acceleration equation

vx(t) = v0x +
∫ t

t0

ax(t
′)dt ′

vy (t) = v0y +
∫ t

t0

ay (t
′)dt ′

vz(t) = v0z +
∫ t

t0

az(t
′)dt ′

And, three Cartesian components of the velocity equation

x(t) = x0+
∫ t

t0

vx(t
′)dt ′

y(t) = y0+
∫ t

t0

vy (t
′)dt ′

z(t) = z0+
∫ t

t0

vz(t
′)dt ′



Integration of Kinematic Equations: Examples

Example 1: A particle moving with constant acceleration

a= ax î+ay ĵ+az k̂, i.e., ax , ay , and az are constants..

Assume, initial velocity v(t = 0) = u= ux î+uy ĵ+uz k̂.

And, initial position r(t = 0) = r0 = x0̂i+ y0̂j+ z0k̂.

Equation of motion is

dv

dt
= a(t)

which leads to

dvx

dt
= ax

dvy

dt
= ay

dvz

dt
= az



Example 1 contd.

The form of the equations is identical for the three directions.

So we integrate the x equation, and same result will apply to

other directions

We have

dvx = axdt

=⇒
∫ vx

ux

dvx = ax

∫ t

t=0

dt ′

vx(t) = ux +ax t

Similarly for y and z directions

vy (t) = uy +ay t

vz(t) = uz +az t

These can be combined in a single vector equation

v = u+at



Example 1 contd....

To obtain the trajectory r(t), we must integrate the velocity

equation

v =
d r

dt
= u+at

We consider the x component of the equation

dx

dt
= ux +ax t,

which can be integrated as

dx = uxdt+ax tdt

=⇒
∫ x

x0

dx ′ = ux

∫ t

0

dt ′+ax

∫ t

0

t ′dt ′

=⇒ x− x0 = ux t+
1

2
ax t

2

x(t) = x0+ux t+
1

2
ax t

2



Example 1 ....

Similarly, we have for y and z components

y(t) = y0+uy t+
1

2
ay t

2

z(t) = z0+uz t+
1

2
az t

2

These yield the vector equation

r(t) = r0+ut+
1

2
at2

De�ne the net displacement s= r− r0, so that

s(t) = ut+
1

2
at2.

Note the similarity of this equation with the 1D equation

s = ut+ 1

2
at2.



Example 2: Electron in an oscillating electric �eld

Imagine that an electron of charge −e and mass m is exposed

to an electric �eld

E= E0 sinω t̂ i

Force F acting on the electron is F=−eE, so that

a(t) =
F

m
=− e

m
E0 sinω t̂ i

Initial conditions: at t = 0, electron is at rest, at the origin,

E�ectively, we have 1D motion in x direction, so that

dv

dt
=− e

m
E0 sinωt.



Example 2: contd.

First integration of the equation yields

v(t) = v0+
∫ t

0

a(t ′)dt ′

v(t) = v0−
eE0

m

∫ t

0

sinωt ′dt ′

v(t) = v0+
eE0

mω
(cosωt−1)

because v0 = 0, we have

v(t) =
eE0

mω
(cosωt−1)

Integration of velocity equation yields the trajectory

x(t) = x0+
∫ t

0

v(t ′)dt ′

x(t) = x0+
eE0

mω

∫ t

0

(
cosωt ′−1

)
dt ′



Example 2: ...

On integration, because v0 = 0, we have

x(t) = x0+
eE0

mω2
(sinωt−ωt)

Using the fact x0 = 0, we �nally have

x(t) =
eE0

mω2
(sinωt−ωt) .

Note that besides an oscillating term, we also have a term

which denotes drift of the electron with a constant velocity!



Kinematics in plane polar coordinates

Computing quantities such as velocity and acceleration is a bit

more complicated in plane polar coordinates

The reason: r̂ and θ̂ are direction dependent

Let us compute the velocity

v =
d r

dt
=

d

dt
(r r̂) .

Using the chain rule, we have

v =
dr

dt
r̂+ r

d r̂

dt
.

Note that as the particle moves, vector r̂ also changes so that
d r̂
dt

̸= 0.

But, how to compute d r̂
dt
?

A geometric calculation is possible, but let us take a di�erent

approach.



Velocity in plane polar coordinates
Let us use Cartesian coordinates for the purpose

r̂ = cosθ î+sinθ ĵ

Because Cartesian basis vectors î and ĵ have �xed directions in

space, so they don't change with time

Therefore

d r̂

dt
=

d cosθ

dt
î+

d sinθ

dt
ĵ

Now

d cosθ

dt
=−sinθ

dθ

dt
=−sinθθ̇

d sinθ

dt
= cosθ

dθ

dt
= cosθθ̇

So that

d r̂

dt
=−sinθθ̇ î+cosθθ̇ ĵ= θ̇

(
−sinθ î+cosθ ĵ

)
= θ̇ θ̂



Velocity in plane polar coordinates contd.

Therefore, �nally we have

v =
dr

dt
r̂+ r

d r̂

dt
= ṙ r̂+ r θ̇ θ̂

= vr r̂+ vθ θ̂

Thus, we have obtained an expression for velocity in terms of

its radial and angular (also called tangential) components

What is the physical signi�cance of vr and vθ?



Velocity in polar coordinates: Physical Signi�cance

Consider the �gure

Case 1: This case corresponds to motion along the radial

direction, with θ held �xed (θ̇ = 0), so that v = ṙ r̂.

Case 2: Here there is no radial motion (ṙ = 0), so velocity

will be along the arc of a circle with v = r θ̇ θ̂



Acceleration in polar coordinates

Acceleration can be computed as

a=
dv

dt

=
d

dt

(
ṙ r̂+ r θ̇ θ̂

)
=

d ṙ

dt
r̂+ ṙ

d r̂

dt
+

d(r θ̇)

dt
θ̂ + r θ̇

d θ̂

dt

= r̈ r̂+ ṙ θ̇ θ̂ + ṙ θ̇ θ̂ + r θ̈ θ̂ + r θ̇
d θ̂

dt

We compute d θ̂

dt
, by expressing θ̂ in Cartesian coordinates

d θ̂

dt
=

d

dt

(
−sinθ î+cosθ ĵ

)
=−cosθθ̇ î− sinθθ̇ ĵ

=−θ̇ r̂



Acceleration in polar coordinates....

On substituting the expression of d θ̂

dt
, we obtain

a=
(
r̈ − r θ̇

2

)
r̂+

(
2ṙ θ̇ + r θ̈

)
θ̂

Di�erent terms have the following interpretations

r̈ due to change of radial speed, points in radial direction

−r θ̇2 centripetal acceleration, pointing radially inwards

2ṙ θ̇ Coriolis acceleration, present whenever both radial and

angular velocities are nonzero, and points in the tangential

direction

r θ̈ tangential angular acceleration, due to changing angular

velocity, points in tangential direction



Example: Bead moving along the spoke of a rotating wheel

Consider a bead moving along the spoke of a rotating wheel

Both u and ω are constant

Let us calculate the velocity and acceleration of the bead in

plane polar coordinates



Bead on a spoke...
Here, clearly

ṙ = u

θ̇ = ω

r̈ = 0

θ̈ = 0

Therefore, velocity in polar coordinates is

v = ur̂+ rωθ̂

But, for this case, clearly r = ut, if r0 = 0. Therefore

v = ur̂+utωθ̂

And the acceleration

a=−ω
2r r̂+2uωθ̂

=−ω
2ut r̂+2uωθ̂


