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Newton's Law of Motion

@ First we define the momentum (p) of a particle (or a more
complicated system) as

p=my,

where m is the mass of the system, and v is its velocity.
o Newtons' second law of motion states that force F acting on a
system is equal to its rate of change of momentum

dp

e

@ This is the most general definition of Newton's second law of
motion and is applicable also to those systems, such as a

rocket, whose mass m is not constant.

F=

@ However, for a system whose mass does not change with time,
we have its more familiar form

_d(mv)  dv
F="a ~"at"

@ Next, we explore some consequences of Newton's second law.

ma.



Work and Energy

Consider a 1D system confined to move in x direction
Let the force acting on a system of mass m, be F(x)

Thus the force can depend on the position

e 6 o6 o

Then the work done dW in moving the particle by an
infinitesimal amount dx is given by

dW = F(x)dx

@ Thus, the work done W, in moving the particle from position
x = a to x = b, will be the integral of the expression above

b
Wp = / F(x)dx
a



Work-Energy relationship

@ Let us manipulate this expression

@ But, we can write

dx = gdt = vdt.
dt

@ Substituting it above, we have

b1 dv? bd (1
ab—m/ gevt= j zﬁd’-‘—/a dt<2mv>dt

mvg — fmv2

— Wab— 5

2



Work-Energy Theorem

@ Thus, we have shown in 1D that work done on a particle in
taking it from point A to B, is nothing but change in its
kinetic energy during the journey

@ This is nothing but the statement of work-energy theorem in
1D

@ But most forces are three dimensional in nature, as are most
of the displacements

@ For a 3D case, the force F, at position r :X?—l—yj—sz(, can be
written in terms of Cartesian components as

~

F(r)=F(x,y,z) = FX(X,y,z)?—f— Fy(x,y,z)j+ Fz(x,y,z)lz
@ Note that each component of force is a function of all the

three Cartesian coordinates

@ A position dependent vector quantity such as F(r), is called a
vector field.



Work-Energy Theorem in 3D

@ Suppose this force displaces a particle of mass m by an
infinitesimal vector dr = dxi+ dyj+ dzk, then the total work
done will be

dW = Fydx+ F,dy + F,dz = F-dr

@ Obviously, work done in displacing the particle by a finite
amount, starting from r =r, to r =rp, will be

"
W,, — / F.dr.

Such three dimensional integrals are called line integrals, which
need to be evaluated along a path.

@ Similar to the 1D case, we have

dr
dr = —dt = vdt
r ™ v



Work-Energy Theorem 3D...

@ Then

r, ' dv d (1
Wab—/ F-dr—/ra mdt-vdt—/ra dt<2mv~v> dt
" d
—/b ( >dt

b 1 1
Wab:/ F-dr=Z-mv}—Z-mv2.
rs 2 2

o Finally

@ Thus the form of Work-Energy theorem in 3D is similar to that
in 1D



Line Integrals

@ Because work done is expressed in terms of a line integral
(Wap = [ F-dr), it will, in principle, depend on the path
connecting points A and B.

@ For example, for the three paths shown below, the line
integral, in general, will have three different values

B

A

@ Do we have forces F(r) for which this line integral is path
independent?



Conservative Forces

@ Most fundamental forces in nature satisfy this property
o Examples: gravitational force, electrostatic force

@ For such forces work done will not depend on the path of
displacement

@ Rather it will depend only on the positions of the end points
(A and B in this case) of the path

@ Such forces are called “Conservative Forces”



Potential Energy

@ Thus, for conservative forces, a mathematical function
function V/(r) exists such that

L)

Wab:/ Fedr = — (V(rp) — V(r,))

fa
Above negative sign on the RHS is chosen as a matter of
convention

e If such a function V(r) did not exist, line integral will always
depend on the path connecting A and B

@ Thus V/(r) guarantees that the work done depends only on the
endpoints of the path, and not the path itself

@ The function V(r) has dimensions of energy, and is called the
potential energy. V/(r) is a scalar field, unlike F(r), which is a
vector field.



Potential energy: properties

@ It is easier to deal with scalars rather than vectors, because
one doesn't have to worry about a direction.

@ For conservative forces, work done along a closed path is zero

@ Consider the closed path shown below

B

A
@ Along the closed path shown above

%F dr—/ Fdr+/ F-dr

(V(rp) = V(ra)) = (V(ra) = V(rp))
=0



Conservation of Energy

@ A consequence of work-energy theorem for conservative forces
is that sum of kinetic and potential energies of a system is
conserved

@ For a conservative force we have
s 1, 1
Wap = / F-dr = SMVp — 5 mvy = V(ry)— V(rp)
fa
L L
= 5;mv; +V(ry) = SMYb + V(rp)

which is nothing but conservation of total energy (kinetic +
potential)

@ That is the reason behind the name “conservative force”.



Potential energy at a point

@ So far we have computed only the potential energy difference
between two points (A and B, say)

@ How do we define the potential energy V/(r), at a given point r
in space?

@ It is defined with respect to a reference point rg, which is
normally taken to be infinity

o It is defined as the work done against the force F(r), in
bringing the particle from the reference point O to point r

r

V() == | F(r)-dr

o



Relation between force and potential energy

@ Consider a 1D conservative force, so that

V(b)— V(a) = — / ” F(x)dx.

@ Let points x = a and x = b be infinitesimally close to each
other, i.e., a=x and b= x+ Ax, with Ax small

V(x+Ax) = V(x) = — / ),

o We define AV(x) = V(x+ Ax) — V(x), and for small Ax, we
have

x+Ax
/ F(x")dx' ~ F(x)Ax+ -

@ Substituting it above, we obtain

AV ~ —F(x)Ax
AV

F(x) ~ A



Force and Potential Energy....

@ In the limit Ax — 0, we get

dVv

F(x)=——
(x)=——

@ This is the required relationship between F and V in 1D.

@ How to generalize it to 3D7



Force and Potential Energy: Connection in 3D

@ In 3D, both F(r) and V/(r) are functions of all three Cartesian
coordinates x, y, and z.

@ So, we have to be careful with our mathematics

e We know

V(rp)—V(ra) = /Fdr

ra

@ As before, we choose r; =r and rp = r -+ Ar, to obtain
r+Ar
V(r+Ar) - V(r) = —/ F.dr’

o Because Ar = Axi+ Ayj+ Azk is an infinitesimal
displacement vector in 3D, so

r+Ar
—/ F-dr' ~ —F(r)- Ar = — FAx — F,Ay — F,Az



Force and Potential Energy in 3D....

e To compute V(r+ Ar)— V/(r), we use Taylor's expansion for
multiple variables

V(r+Ar)=V(x+Ax,y +Ay,z+ Az)

A% oV oV
(x,y,z )+§Ax—|—a—A +$Az—|— O(dr?)

Vv
V(r)+VV-Ar+ 0(dr?)

@ Symbol VV, stands for “gradient of V", defined as

V. dV. 8VlA(

W=ttt oz

%—Z, %y, and aV are called “partial derivatives”’, computed by
taking the derlvatlve with respect to the given variable (say x),
treating other two variables (say y and z) as constants.

@ Note that gradient operator applies on a scalar field, and the
result is a vector field.



Potential energy contd...

o With this
V(r+Ar)—V(r)=VV.-Ar=—F(r)- Ar.
@ Because Ar is an arbitrary displacement, therefore,

VV.-Ar=—F(r)-Ar
= F(r)=-VV

@ This is a very important result showing that a conservative
force can be written as the gradient of corresponding potential
energy.

o Before we proceed further, let us have a bit of mathematical
exploration



Calculation of Gradient: Example 1

@ First let us compute a few partial derivatives
o Let f(x,y,z) =r? =x?>+y?+ 22, then

of

$—2X
af
ay =Y
af
5—22

@ So that o
Vi =2(xi+yj+zk) =2r



Calculation of Gradient: Example 2

o Let g(x,y,z) = xyz, then

@ So that
Vg = yzi+ xzj + xyk



A few suggested exercises

e Compute the gradient of the following scalar functions
f(x,y,z) =x"+y*+2*
g(x,y,2) = x*y* +y? 2% + 2°x°
®(x,y,2) = 3xy22% + 2xyz 4 4x2y?

@ Gradient and other functions can also be computed in other
coordinate systems such as plane-polar coordinates



A bit of vector calculus: Gradient of a Scalar Function

e Consider a scalar function T(x,y,z)

@ We want to compute the change in T, as we move from initial
coordinates r = (x, y, z) infinitesimally to the new position
r+dr=(x+dx,y+dy,z+dz)

@ Using Taylor expansion (for multi-variables), and retaining
terms up to first order

aT

oT
+ dy —=— +dz——+higher order terms

oT
T(r+dr)=T(r)+dx 3y 35

Ix
@ Or, to the first order terms,
T(r+dr)=T(r)+dr-VT
@ Where

dr = dxi + dyj + dzk

vr=9T;, 972 9T,

dx dy dz 5.k



Gradient contd.

@ Defining T(r+dr)= T(r)+dT, we conclude
dT =dr-VT,

where the vector VT defined above is called the of
scalar field T.

@ Thus VT defines the rate of change of the scalar field with
respect to the spatial coordinates, and is itself a vector
quantity

@ Let us examine VT a bit more



Physical Meaning of Gradient

@ Let us plot the constant surfaces of a given scalar field T

@ As per the figure, we can write the change in the scalar field
dT as
dT =dr-VT = |dr||VT|cos6
@ Let us consider two possibilities:

e dr is along a constant T surface
e dr is in an arbitrary direction
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Gradient, physical meaning...

e If dr is along a constant T surface then dT = 0. This means

|dr||VT|cos6 =0
= cosf =0

@ Thus the direction of VT at a given point r is always
perpendicular to the constant T surface passing through that
point

@ Let us consider dr to be in an arbitrary direction

@ Then from dT = |dr||V T|cos#, it is obvious that the
magnitude of the maximum possible change in T is

dTmax = |dr||V T,

i.e., when cos =1.
@ Thus the direction of VT is also the direction of maximum
change in the scalar function T.
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Gradient continued...

@ Thus, at a given point r, if one moves in the direction of VT ,
maximum change in T will take place

@ This property of gradient is used in optimization problems
involving location of maxima/minima of scalar functions

Examples:

@ Let us consider a scalar function
T=r’=x>+y*+2
It is easy to see that

AT, dT. JT . s A A
VT == — i+ —j+—=—k=2xi+2yj+2zk =2r
dx  dy~ 0z

@ Consider ®(x,y,z) = x2y + y?z + z?x + 2xyz
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Gradient calculation

Clearly
o Py o oy 349!2
= — 4+ — —
dx 8yj dz
= (2xy +2yz + 2°)i + (2yz + 2xz + x2)] + (2zx + 2xy + y? )k

Vo

@ Thus, in Cartesian coordinates, the gradient operator can be
denoted as

@ In curvilinear coordinates the gradient operator has more
complicated forms
d d

Cylindrical V = %ﬁ +——06+
J .

>
NS
>

Spherical V=

P +—
dr  rdé rsin 68¢¢



Some Properties of Gradient

o

V(U+V)=VU+VV
2]

V(UV)=UVV+VVU
5)

V(V") =nV"lvy
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Curl of a Vector Field

Let us consider a vector field F = F,/ + Fyf+ F,k, and evaluate its
line integral along a infinitesimal rectangular path shown below

z

Clearly
Dyz &) Cly+Ay.z+ A2)
= Fdl=[ Fd+ /[ Fud
A AB BC
. ¥ =
e . +[ Fdi+ [ Fa
/-/ Now
=
/ F.dlz/F.dyf;u Fy(y,z)Ay
/_/ AB
x F.dl = / F.dzk
BC

~ F,(y+Ay,z)Az
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Curl contd....

Using first order Taylor expansion

dF,

F.(y+Ay,z)=F.(y,z)+ 3y Ay
So that
oF,
Fdl+ [ Fdl=(FAy+FAz+ 2020y
AB BC dy

Similarly one can show (by integrating in AD and DC directions)

oF
F.dl+ F.dl=— <FyAy+ F,Az+ yAsz)
cD DA dz

By adding all the contributions we obtain

_(OF, 9F,
%Fm_<ay—az>A& (1)
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Curl contd....

Where AS, = Ay/Az, is the area of the infinitesimal loop, directed
along the x axis. Let us define a quantity called , denoted as

V x
VxF=

e~
kﬁ\%}‘m'\q
RN

Using this we can cast Eq. 1 as

j{F.cu — (VxF),AS, = (VxF)-AS 2)
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Stokes' Theorem

If a vector field F is integrated along a
closed loop of an arbitrary shape, then the line integral is equal to
the surface integral of the curl of F, evaluated over the area
enclosed by the loop

jéF.cn:/S(vXF)-ds

N |
% - \
; s a0
- b ad \
1 o \‘7 =
N LT N " *
NN N =
N * . = » b
\\ y y
N e A
A} -
sy
F oy 1 o
* Y
v ¥
\ '
rd
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Proof of Stokes’ Theorem

22N We can split the area enclosed by the
, Mgt : loop into a large number of
S Nk infinitesimal loops as shown, for each
R A TR B one of which Eq. 2 will hold. Upon
R ok 1 P adding the contribution of all such
oy RGN loops, we get the desired result

| / ]{F.dlz/s(vXF)-ds.

Note that in the line integral, the
contribution only from the boundary
of the loop will survive because the
contribution from the internal lines
gets canceled from adjacent loops.
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Curl in Cylindrical Coordinate system

For a vector field
A=Ap+As0+A,Z

e}

C[10A, dAg
VXA—(p 39 ‘az)

+ aﬁ _ dA;
dz dp

+; (8(pAg) aAp>2

D>

ap ao
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Curl in Spherical Polar Coordinate System

For a vector field
A=Ar+Ag0 +A¢(P

1 (9 24
1 1 JdA, 0
’ <S|nG 39 or (rA‘f’)) o

0 0A,\ -
+% <ar(fAe) >¢
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Examples of Calculation of Curl

@ Calculate the curl of the vector field F = —yi+ zj+ x2k

Pk

_ d d J

VxF=| 5 Iy oz

—y z x?
:—f+2xf+/2

@ Easy to verify that V x r =0, where r = x/+ y/ + zk.
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Stokes theorem: An example

o Consider a 2D vector field
F= —y?—l—xj
@ And a closed loop shaped like a square as shown

Y

C B (a.a)

X
o A

@ Let us verify Stokes theorem for this case.

]{F.dI:/S(VxF)-dS.



Stokes theorem, example contd.

Y

C B (aa)

X
(] o A

o LHS of Stokes theorem
7{F.d|: Fdl+ [ Fdi+ | Fd+ [ F.d
OA AB BC co
o Now

~ a
F.dI:/F.dxi:/ (—y)dx =0,y =0
OA 0
~ a a
F.dI:/F.dyj:/ xdy:a/ dy = a°
AB 0 0

R 0 0
F.dI:/F.dxi:/ (—y)dx:—a/ dy = a°
BC a a

A 0
F.dI:/F.dyj:/ xdy =0, x=0
co a



Stokes theorem, example...

Y

C B (a2)

X
o A

@ Thus, LHS of Stokes theorem yields

%F.dl =2+ a°=23°

@ Let us calculate the RHS

/ (VX F)-dS
@ It is obvious that

V x F =2k

dS = dxdyk



Stokes theorem verified

C B (aa)
o o A X
@ So that
/(VxF)-dS:Z/dx/dy:2a2
@ Thus

LHS = RHS

Stokes theorem stands verified for this case



Stokes theorem and Conservative Forces

For a general vector field F, Stokes theorem states

fF.dl:/s(vXF)-ds.

If F is a conservative force, then we know

]{F.dl —0.

@ The surface area enclosed by a closed loop, in general, is
nonzero

Therefore, for a conservative force F, Stokes theorem implies
VxF=0.

Thus, all conservative forces have vanishing curl.



Curl of Conservative Forces

@ We also saw that a conservative force can be expressed as

oV, dV, JVi

o Let us calculate the curl of F

i j k

d d el

VxF= Ix M 9z
v v v
dx dy dz

o We obtain

8yaz azay 9z9x ' Ixdz )3

a2v 2V ¢
xBy dydx

=0



Curl of Force...

@ Right hand side vanishes term by term because

9’V 9%V
dydz dzdy

etc.

@ The result obtained above: Curl of a conservative force
vanishes, is due to the general result: curl of gradient of any
scalar function vanishes

Vx (Vo) =0,

where ®(r) is any scalar function.



Example: Obtaining potential from the force

@ This can be done by integrating the partial differential
equation (PDE)
—-VV =F,

@ For 3D case, this amounts to integrating three PDEs

A
8X:7FX
oV
o = F
oV
PR

o We illustrate the method by a 2D case, where F is
F = A(xi+yj)

o First we check whether V x F =0, or not?

e If VX F #0, then one cannot find a V/(r) which satisfies
—-VV =F.



Obtaining potential from force

° ~ ~ ~
i j k
VxF=| & & £ |=(0)i+(0)+(0)k=0
Ax? Ay 0
@ Thus, F is a conservative force, and will satisfy
A%
2 _AX?
dx X
A%
T __A
dy Y
@ On integrating the x equation, we have
Ax3
V(x,y) = R f(y),

where f(y) is an unknown function of y.
@ On substituting this in y equation we have

d Ax3
ay <—3 + f()’)) =—Ay



Obtaining potential from force

° ~ ~ ~
i j k
VxF=| & & £ |=(0)i+(0)+(0)k=0
Ax? Ay 0
@ Thus, F is a conservative force, and will satisfy
A%
2 _AX?
dx X
A%
T __A
dy Y
@ On integrating the x equation, we have
Ax3
V(x,y) = R f(y),

where f(y) is an unknown function of y.
@ On substituting this in y equation we have

d Ax3
ay <—3 + f()’)) =—Ay



Potential from force...

o We have

af df

g_2__a

dy dy g

A 2
— f(y):—Ty+C
e Leading to the final result
Ax3  Ay?
Vixy) =5~ 5 +C



