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Newton’s Law of Motion

First we define the momentum (p) of a particle (or a more
complicated system) as

p = mv,

where m is the mass of the system, and v is its velocity.
Newtons’ second law of motion states that force F acting on a
system is equal to its rate of change of momentum

F =
dp
dt

.

This is the most general definition of Newton’s second law of
motion and is applicable also to those systems, such as a
rocket, whose mass m is not constant.
However, for a system whose mass does not change with time,
we have its more familiar form

F =
d(mv)

dt
= m

dv
dt

= ma.

Next, we explore some consequences of Newton’s second law.



Work and Energy

Consider a 1D system confined to move in x direction
Let the force acting on a system of mass m, be F (x)

Thus the force can depend on the position
Then the work done dW in moving the particle by an
infinitesimal amount dx is given by

dW = F (x)dx

Thus, the work done Wab in moving the particle from position
x = a to x = b, will be the integral of the expression above

Wab =
∫ b

a
F (x)dx



Work-Energy relationship

Let us manipulate this expression

Wab =
∫ b

a
F (x)dx

=
∫ b

a
madx

= m
∫ b

a

dv

dt
dx .

But, we can write

dx =
dx

dt
dt = vdt.

Substituting it above, we have

Wab = m
∫ b

a

dv

dt
vdt = m

∫ b

a

1
2
dv2

dt
dt =

∫ b

a

d

dt

(
1
2
mv2

)
dt

=⇒ Wab =
1
2
mv2

b −
1
2
mv2

a



Work-Energy Theorem

Thus, we have shown in 1D that work done on a particle in
taking it from point A to B, is nothing but change in its
kinetic energy during the journey
This is nothing but the statement of work-energy theorem in
1D
But most forces are three dimensional in nature, as are most
of the displacements
For a 3D case, the force F, at position r = x î+y ĵ+ z k̂, can be
written in terms of Cartesian components as

F(r) = F(x ,y ,z) = Fx(x ,y ,z )̂i+Fy (x ,y ,z )̂j+Fz(x ,y ,z)k̂

Note that each component of force is a function of all the
three Cartesian coordinates
A position dependent vector quantity such as F(r), is called a
vector field.



Work-Energy Theorem in 3D

Suppose this force displaces a particle of mass m by an
infinitesimal vector dr = dx î+dy ĵ+dz k̂, then the total work
done will be

dW = Fxdx +Fydy +Fzdz = F·dr

Obviously, work done in displacing the particle by a finite
amount, starting from r = ra to r = rb, will be

Wab =
∫ rb

ra
F·dr.

Such three dimensional integrals are called line integrals, which
need to be evaluated along a path.
Similar to the 1D case, we have

dr =
dr
dt

dt = vdt



Work-Energy Theorem 3D...

Then

Wab =
∫ rb

ra
F·dr =

∫ rb

ra
m
dv
dt
·vdt =

∫ rb

ra

d

dt

(
1
2
mv ·v

)
dt

=
∫ rb

ra

d

dt

(
1
2
mv2

)
dt

Finally

Wab =
∫ rb

ra
F·dr =

1
2
mv2

b −
1
2
mv2

a .

Thus the form of Work-Energy theorem in 3D is similar to that
in 1D



Line Integrals

Because work done is expressed in terms of a line integral
(Wab =

∫ rb
ra F·dr), it will, in principle, depend on the path

connecting points A and B.
For example, for the three paths shown below, the line
integral, in general, will have three different values

A

B

1

2

3

Do we have forces F(r) for which this line integral is path
independent?



Conservative Forces

Most fundamental forces in nature satisfy this property
Examples: gravitational force, electrostatic force
For such forces work done will not depend on the path of
displacement
Rather it will depend only on the positions of the end points
(A and B in this case) of the path
Such forces are called “Conservative Forces”



Potential Energy

Thus, for conservative forces, a mathematical function
function V (r) exists such that

Wab =
∫ rb

ra
F·dr =−(V (rb)−V (ra))

Above negative sign on the RHS is chosen as a matter of
convention
If such a function V (r) did not exist, line integral will always
depend on the path connecting A and B
Thus V (r) guarantees that the work done depends only on the
endpoints of the path, and not the path itself
The function V (r) has dimensions of energy, and is called the
potential energy. V (r) is a scalar field, unlike F(r), which is a
vector field.



Potential energy: properties
It is easier to deal with scalars rather than vectors, because
one doesn’t have to worry about a direction.
For conservative forces, work done along a closed path is zero
Consider the closed path shown below

A

B

2

1

Along the closed path shown above∮
F ·dr =

∫ rb

ra
F·dr +

∫ ra

rb
F·dr

=−(V (rb)−V (ra))− (V (ra)−V (rb))

= 0



Conservation of Energy

A consequence of work-energy theorem for conservative forces
is that sum of kinetic and potential energies of a system is
conserved
For a conservative force we have

Wab =
∫ rb

ra
F·dr =

1
2
mv2

b −
1
2
mv2

a = V (ra)−V (rb)

=⇒ 1
2
mv2

a +V (ra) =
1
2
mv2

b +V (rb)

which is nothing but conservation of total energy (kinetic +
potential)
That is the reason behind the name “conservative force”.



Potential energy at a point

So far we have computed only the potential energy difference
between two points (A and B, say)
How do we define the potential energy V (r), at a given point r
in space?
It is defined with respect to a reference point rO , which is
normally taken to be infinity
It is defined as the work done against the force F(r), in
bringing the particle from the reference point O to point r

V (r) =−
∫ r

rO
F(r) ·dr



Relation between force and potential energy

Consider a 1D conservative force, so that

V (b)−V (a) =−
∫ b

a
F (x)dx .

Let points x = a and x = b be infinitesimally close to each
other, i.e., a = x and b = x + ∆x , with ∆x small

V (x + ∆x)−V (x) =−
∫ x+∆x

x
F (x ′)dx ′.

We define ∆V (x) = V (x + ∆x)−V (x), and for small ∆x , we
have ∫ x+∆x

x
F (x ′)dx ′ ≈ F (x)∆x + · · ·

Substituting it above, we obtain

∆V ≈−F (x)∆x

F (x)≈−∆V

∆x
.



Force and Potential Energy....

In the limit ∆x → 0, we get

F (x) =−dV

dx

This is the required relationship between F and V in 1D.
How to generalize it to 3D?



Force and Potential Energy: Connection in 3D

In 3D, both F(r) and V (r) are functions of all three Cartesian
coordinates x , y , and z .
So, we have to be careful with our mathematics
We know

V (rb)−V (ra) =−
∫ rb

ra
F·dr.

As before, we choose ra = r and rb = r + ∆r, to obtain

V (r + ∆r)−V (r) =−
∫ r+∆r

r
F·dr′.

Because ∆r = ∆x î+ ∆y ĵ+ ∆z k̂ is an infinitesimal
displacement vector in 3D, so

−
∫ r+∆r

r
F·dr′ ≈−F(r) ·∆r =−Fx∆x−Fy∆y −Fz∆z



Force and Potential Energy in 3D....

To compute V (r + ∆r)−V (r), we use Taylor’s expansion for
multiple variables

V (r + ∆r) = V (x + ∆x ,y + ∆y ,z + ∆z)

= V (x ,y ,z) +
∂V

∂x
∆x +

∂V

∂y
∆y +

∂V

∂z
∆z +O(dr2)

= V (r) + ∇V ·∆r +O(dr2)

Symbol ∇V , stands for “gradient of V”, defined as

∇V =
∂V

∂x
î+

∂V

∂y
ĵ+

∂V

∂z
k̂

∂V
∂x ,

∂V
∂y , and

∂V
∂z are called “partial derivatives”, computed by

taking the derivative with respect to the given variable (say x),
treating other two variables (say y and z) as constants.
Note that gradient operator applies on a scalar field, and the
result is a vector field.



Potential energy contd...

With this

V (r + ∆r)−V (r) = ∇V ·∆r =−F(r) ·∆r.

Because ∆r is an arbitrary displacement, therefore,

∇V ·∆r =−F(r) ·∆r
=⇒ F(r) =−∇V

This is a very important result showing that a conservative
force can be written as the gradient of corresponding potential
energy.
Before we proceed further, let us have a bit of mathematical
exploration



Calculation of Gradient: Example 1

First let us compute a few partial derivatives
Let f (x ,y ,z) = r2 = x2 + y2 + z2, then

∂ f

∂x
= 2x

∂ f

∂y
= 2y

∂ f

∂z
= 2z

So that
∇f = 2(x î+ y ĵ+ z k̂) = 2r



Calculation of Gradient: Example 2

Let g(x ,y ,z) = xyz , then

∂g

∂x
= yz

∂g

∂y
= xz

∂g

∂z
= xy

So that
∇g = yz î+ xz ĵ+ xy k̂



A few suggested exercises

Compute the gradient of the following scalar functions

f (x ,y ,z) = x4 + y4 + z4

g(x ,y ,z) = x2y2 + y2z2 + z2x2

Φ(x ,y ,z) = 3xy2z3 +2xyz +4x2y2

Gradient and other functions can also be computed in other
coordinate systems such as plane-polar coordinates



A bit of vector calculus: Gradient of a Scalar Function

Consider a scalar function T (x ,y ,z)

We want to compute the change in T , as we move from initial
coordinates r ≡ (x ,y ,z) infinitesimally to the new position
r +dr ≡ (x +dx ,y +dy ,z +dz)

Using Taylor expansion (for multi-variables), and retaining
terms up to first order

T (r+dr) =T (r)+dx
∂T

∂x
+dy

∂T

∂y
+dz

∂T

∂z
+higher order terms

Or, to the first order terms,

T (r +dr) = T (r) +dr ·∇T

Where

dr = dx î +dy ĵ +dzk̂

∇T =
∂T

∂x
î +

∂T

∂y
ĵ +

∂T

∂z
k̂



Gradient contd.

Defining T (r +dr) = T (r) +dT , we conclude

dT = dr ·∇T ,

where the vector ∇T defined above is called the gradient of
scalar field T .
Thus ∇T defines the rate of change of the scalar field with
respect to the spatial coordinates, and is itself a vector
quantity
Let us examine ∇T a bit more



Physical Meaning of Gradient

Let us plot the constant surfaces of a given scalar field T

As per the figure, we can write the change in the scalar field
dT as

dT = dr ·∇T = |dr||∇T |cosθ

Let us consider two possibilities:

dr is along a constant T surface
dr is in an arbitrary direction

Chapter 3: Work-Energy Theorem



Gradient, physical meaning...

If dr is along a constant T surface then dT = 0. This means

|dr||∇T |cosθ = 0
=⇒ cosθ = 0

Thus the direction of ∇T at a given point r is always
perpendicular to the constant T surface passing through that
point
Let us consider dr to be in an arbitrary direction
Then from dT = |dr||∇T |cosθ , it is obvious that the
magnitude of the maximum possible change in T is

dTmax = |dr||∇T |,

i.e., when cosθ = 1.
Thus the direction of ∇T is also the direction of maximum
change in the scalar function T .
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Gradient continued...

Thus, at a given point r, if one moves in the direction of ∇T ,
maximum change in T will take place

This property of gradient is used in optimization problems
involving location of maxima/minima of scalar functions

Examples:
1 Let us consider a scalar function

T = r2 = x2 + y2 + z2

It is easy to see that

∇T ==
∂T

∂x
î +

∂T

∂y
ĵ +

∂T

∂z
k̂ = 2x î +2y ĵ +2zk̂ = 2r

2 Consider Φ(x ,y ,z) = x2y + y2z + z2x +2xyz
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Gradient calculation

Clearly

∇Φ =
∂ Φ

∂x
î +

∂ Φ

∂y
ĵ +

∂ Φ

∂z
k̂

= (2xy +2yz + z2)î + (2yz +2xz + x2)ĵ + (2zx +2xy + y2)k̂

Thus, in Cartesian coordinates, the gradient operator can be
denoted as

∇≡ ∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

In curvilinear coordinates the gradient operator has more
complicated forms

Cylindrical ∇≡ ∂

∂ρ
ρ̂ +

∂

ρ∂θ
θ̂ +

∂

∂z
k̂

Spherical ∇≡ ∂

∂ r
r̂ +

∂

r∂θ
θ̂ +

∂

r sinθ∂φ
φ̂
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Some Properties of Gradient

1

∇(U +V ) = ∇U + ∇V

2

∇(UV ) = U∇V +V∇U

3

∇(V n) = nV n−1
∇V
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Curl of a Vector Field

Let us consider a vector field F = Fx î +Fy ĵ +Fz k̂ , and evaluate its
line integral along a infinitesimal rectangular path shown below

Clearly ∮
F.d l =

∫
AB

F.d l+
∫
BC

F.d l

+
∫
CD

F.d l+
∫
DA

F.d l

Now ∫
AB

F.d l =
∫

F.dy ĵ ≈ Fy (y ,z)∆y∫
BC

F.d l =
∫

F.dzk̂

≈ Fz(y + ∆y ,z)∆z

Chapter 3: Work-Energy Theorem



Curl contd....

Using first order Taylor expansion

Fz(y + ∆y ,z) = Fz(y ,z) +
∂Fz
∂y

∆y

So that∫
AB

F.d l+
∫
BC

F.d l =

(
Fy∆y +Fz∆z +

∂Fz
∂y

∆z∆y

)
Similarly one can show (by integrating in AD and DC directions)∫

CD
F.d l+

∫
DA

F.d l =−
(
Fy∆y +Fz∆z +

∂Fy
∂z

∆z∆y

)
By adding all the contributions we obtain∮

F.dl =

(
∂Fz
∂y
− ∂Fy

∂z

)
∆Sx (1)
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Curl contd....

Where ∆Sx = ∆y∆z , is the area of the infinitesimal loop, directed
along the x axis. Let us define a quantity called curl, denoted as
∇×

∇×F =

∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z

Fx Fy Fz

∣∣∣∣∣∣ .
Using this we can cast Eq. 1 as∮

F.d l = (∇×F)x ∆Sx = (∇×F) ·∆S (2)
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Stokes’ Theorem

Stokes’ Theorem: If a vector field F is integrated along a
closed loop of an arbitrary shape, then the line integral is equal to

the surface integral of the curl of F, evaluated over the area
enclosed by the loop∮
F.dl =

∫
S

(∇×F) ·dS
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Proof of Stokes’ Theorem

Outline of the proof:

We can split the area enclosed by the
loop into a large number of
infinitesimal loops as shown, for each
one of which Eq. 2 will hold. Upon
adding the contribution of all such
loops, we get the desired result∮

F.d l =
∫
S

(∇×F) ·dS.

Note that in the line integral, the
contribution only from the boundary
of the loop will survive because the
contribution from the internal lines
gets canceled from adjacent loops.
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Curl in Cylindrical Coordinate system

Curl in Cylindrical Coordinates: For a vector field
A = Aρ ρ̂ +Aθ θ̂ +Az ẑ

∇×A =

(
1
ρ

∂Az

∂θ
− ∂Aθ

∂z

)
ρ̂

+

(
∂Aρ

∂z
− ∂Az

∂ρ

)
θ̂

+
1
ρ

(
∂ (ρAθ )

∂ρ
−

∂Aρ

∂φ

)
ẑ
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Curl in Spherical Polar Coordinate System

Curl in Spherical Polar Coordinates: For a vector field
A = Ar r̂ +Aθ θ̂ +Aφ φ̂

∇×A =
1

r sinθ

(
∂

∂θ

(
Aφ sinθ

)
− ∂Aθ

∂φ

)
r̂

+
1
r

(
1

sinθ

∂Ar

∂φ
− ∂

∂ r

(
rAφ

))
θ̂

+
1
r

(
∂

∂ r
(rAθ )− ∂Ar

∂θ

)
φ̂
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Examples of Calculation of Curl

1 Calculate the curl of the vector field F =−y î + z ĵ + x2k̂

∇×F =

∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z

−y z x2

∣∣∣∣∣∣
=−î +2x ĵ + k̂

2 Easy to verify that ∇× r = 0, where r = x î + y ĵ + zk̂ .
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Stokes theorem: An example

Consider a 2D vector field

F =−y î+ x ĵ

And a closed loop shaped like a square as shown

B

AO

C (a,a)

X

Y

Let us verify Stokes theorem for this case.∮
F.d l =

∫
S

(∇×F) ·dS.



Stokes theorem, example contd.

B

AO

C (a,a)

X

Y

LHS of Stokes theorem∮
F.d l =

∫
OA

F.d l+
∫
AB

F.d l+
∫
BC

F.d l+
∫
CO

F.d l

Now ∫
OA

F.d l =
∫

F.dx î =
∫ a

0
(−y)dx = 0 , ∵ y = 0∫

AB
F.d l =

∫
F.dy ĵ =

∫ a

0
xdy = a

∫ a

0
dy = a2

∫
BC

F.d l =
∫

F.dx î =
∫ 0

a
(−y)dx =−a

∫ 0

a
dy = a2

∫
CO

F.d l =
∫

F.dy ĵ =
∫ 0

a
xdy = 0 , ∵ x = 0



Stokes theorem, example...

B

AO

C (a,a)

X

Y

Thus, LHS of Stokes theorem yields∮
F.d l = a2 +a2 = 2a2

Let us calculate the RHS∫
(∇×F) ·dS

It is obvious that

∇×F = 2k̂

dS = dxdy k̂



Stokes theorem verified

B

AO

C (a,a)

X

Y

So that ∫
(∇×F) ·dS = 2

∫
dx
∫

dy = 2a2

Thus
LHS = RHS

Stokes theorem stands verified for this case



Stokes theorem and Conservative Forces

For a general vector field F, Stokes theorem states∮
F.dl =

∫
S

(∇×F) ·dS.

If F is a conservative force, then we know∮
F.dl = 0.

The surface area enclosed by a closed loop, in general, is
nonzero
Therefore, for a conservative force F, Stokes theorem implies

∇×F = 0.

Thus, all conservative forces have vanishing curl.



Curl of Conservative Forces

We also saw that a conservative force can be expressed as

F =−∇V (r) =−∂V

∂x
î− ∂V

∂y
ĵ− ∂V

∂z
k̂

Let us calculate the curl of F

∇×F =

∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z

− ∂V
∂x − ∂V

∂y − ∂V
∂z

∣∣∣∣∣∣∣
We obtain

∇×F =

(
− ∂ 2V

∂y∂z
+

∂ 2V

∂z∂y

)
î+

(
− ∂ 2V

∂z∂x
+

∂ 2V

∂x∂z

)
ĵ

+

(
− ∂ 2V

∂x∂y
+

∂ 2V

∂y∂x

)
k̂

= 0



Curl of Force...

Right hand side vanishes term by term because

∂ 2V

∂y∂z
=

∂ 2V

∂z∂y
etc.

The result obtained above: Curl of a conservative force
vanishes, is due to the general result: curl of gradient of any
scalar function vanishes

∇× (∇Φ) = 0,

where Φ(r) is any scalar function.



Example: Obtaining potential from the force

This can be done by integrating the partial differential
equation (PDE)

−∇V = F,

For 3D case, this amounts to integrating three PDEs

∂V

∂x
=−Fx

∂V

∂y
=−Fy

∂V

∂z
=−Fz

We illustrate the method by a 2D case, where F is

F = A(x 2̂i+ y ĵ)

First we check whether ∇×F = 0, or not?
If ∇×F 6= 0, then one cannot find a V (r) which satisfies
−∇V = F.



Obtaining potential from force

∇×F =

∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z

Ax2 Ay 0

∣∣∣∣∣∣= (0)̂i+ (0)̂j+ (0)k̂ = 0

Thus, F is a conservative force, and will satisfy

∂V

∂x
=−Ax2

∂V

∂y
=−Ay

On integrating the x equation, we have

V (x ,y) =−Ax3

3
+ f (y),

where f (y) is an unknown function of y .
On substituting this in y equation we have

∂

∂y

(
−Ax3

3
+ f (y)

)
=−Ay



Obtaining potential from force

∇×F =

∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂z

Ax2 Ay 0

∣∣∣∣∣∣= (0)̂i+ (0)̂j+ (0)k̂ = 0

Thus, F is a conservative force, and will satisfy

∂V

∂x
=−Ax2

∂V

∂y
=−Ay

On integrating the x equation, we have

V (x ,y) =−Ax3

3
+ f (y),

where f (y) is an unknown function of y .
On substituting this in y equation we have

∂

∂y

(
−Ax3

3
+ f (y)

)
=−Ay



Potential from force...

We have

∂ f

∂y
=

df

dy
=−Ay

=⇒ f (y) =−Ay2

2
+C

Leading to the final result

V (x ,y) =−Ax3

3
− Ay2

2
+C


