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Introduction

Question: How do laws of physics change, when we change

the frame of reference (coordinate system)?

Are laws of physics same in all inertial frames of reference, i.e.,

frames moving with constant velocities?

What if the frames of reference are accelerating?

Underlying assumption will be that frames are moving with

nonrelativistic velocities (v ≪ c)

For relativistic velocities, correct theory is Einstein's Special

theory of relativity.



Inertial Frames of Reference

First we consider inertial frames of reference

We demonstrate that in inertial frames of reference, Newton's

second law holds good

Let α and β be two frames of reference displaced by vector S

We consider the dynamics of a particle of mass m in both the

frames

Position rβ of the particle in frame β , is related to its position

rα in frame α by

rβ = rα −S



Inertial Frames of Reference....

If an observer in frame α measures the acceleration of mass m

to be aα , according to her the force acting on the mass Fα is

Fα =maα

Similarly the observer in β on measuring its acceleration to be

aβ will conclude that the force is

Fβ =maβ .

Question is: What is the relationship between Fα and Fβ?



Inertial frames....

By taking time derivatives of rβ = rα −S, we obtain

vβ = vα −V

aβ = aα −A

Where V = Ṡ and A= S̈, are the velocity and acceleration,

respectively, of frame β w.r.t. frame α .

If A= 0, i.e., β is an inertial frame, then

aβ = aα

=⇒ Fα =maα =maβ = Fβ

Thus measured force is same in both the frames, as is the

equation of motion.



Non-inertial Frames

Thus, Newton's second law is unchanged when the frames of

reference are inertial

What about non-inertial frames of reference, i.e., when A ̸= 0?

We already have the result that

aβ = aα −A

=⇒ Fβ =maβ =maα −mA= Fα +Fp ̸= Fα

where Fp =−mA.

Above notation Fp stands for pseudo Force.

Thus force measured by an observer in a non-inertial frame is

di�erent from the one measured by an observer in an inertial

frame.



Non-inertial frames and pseudo forces

According to the observer in the non-inertial frame, the object

is experiencing an additional force −mA, in a direction

opposite to that of the acceleration

Because this force is absent for an observer in the inertial

frame, it is called �Pseudo Force�.

To illustrate this, we consider the example of a pendulum in an

accelerating car



Example: Pendulum in an Accelerating Car

Consider a car with a pendulum inside, moving with an

acceleration A

We want to �nd the tension in the string T , and the angle θ

the pendulum makes from the vertical

We will analyze the problem both in the lab frame (static on

ground) and the accelerated frame (moving with car)



Analysis in Lab Frame (Attached to the Ground)
Free body diagram in the lab frame is

With respect to lab frame, mass m has an acceleration A

As shown, it experiences two forces, tension T of the string,

and its own weight W =mg

We want to �nd angle of inclination θ , and T

Application of Newton's law in vertical and horizontal

directions, yields

T cosθ −W = 0 (vertical)

T sinθ =mA (horizontal)



Lab frame contd.

Leading to the solution

tanθ =
A

g

T =m
√
g2+A2

Let us analyze the problem in the non-inertial frame, next



Analysis in non-Inertial Frame (moving with the car)

In the non-inertial (NI) frame, the free-body diagram is

In the NI frame, particle is stationary, and in equilibrium

But it is acted upon by three forces, instead of two

Additional force is the �ctitious (or pseudo) force F�ct =−mA

Equations of motion are

−F�ct +T sinθ = 0 (horizontal)

T cosθ −W = 0 (vertical)



Non-inertial frame contd.

Because F�ct =mA, both these equations are essentially same

as in case of inertial frame

Thus we obtain the same expressions for T and θ .

Next, we discuss di�erent types of accelerating frames, i.e., the

rotating frames of reference



Rotating frames of reference

Rotating frames of references are non-inertial

Because any particle executing circular motion experiences

centripetal acceleration

Next, we develop the theory of rotating frames of references

But, before that, we illustrate the vector nature of angular

velocity



Vector nature of angular velocity

We denoted the position of a particle as a vector

r = x î+ y ĵ+ z k̂

Can we similarly specify the angular position of a particle

θθθ = θx î+θy ĵ+θz k̂?

The answer is no because such an expression does not satisfy

commutative law of vector addition

θθθ1+θθθ2 ̸= θθθ2+θθθ1

Let us rotate a block �rst around the x axis, and then around

the y axis. Compare that to the same operations performed in

the reverse order



Non-commutative nature of �nite rotations

Consider those two rotations, with each one of them being π/2

Clearly θx î+θy ĵ ̸= θy ĵ+θx î



Vector nature of Angular Velocity

On the other hand, one can verify that in�nitesimal rotations

commute to �rst order terms

∆θx î+∆θy ĵ≈∆θy ĵ+∆θx î

Thus, in�nitesimal rotations can be represented as vectors

Because angular velocity is de�ned in terms of in�nitesimal

rotations

ωωω = lim
∆t→0

∆θθθ

∆t
,

Angular velocity can be denoted as a vector

ωωω = ωx î+ωy ĵ+ωz k̂

And, in general,

ωωω = ω n̂,

where n̂ is the direction of the axis of rotation, and ω is the

magnitude of the angular velocity.



Relation between linear velocity and angular velocity

It is obvious that angular velocity ωωω , will give rise to linear

velocity v

What is the mathematical relation between the two?



Linear and Angular Velocities

Consider a rigid body rotating with a uniform angular velocity

ωωω = ω n̂ as shown



Linear and angular velocity...
Note that the position vector r of a particular point in the rigid

body, precesses about the axis of rotation, and forms a cone

with its tip at the origin

φ is the constant angle between r and n̂

During precession, r traces a circle of radius r sinφ

Let ∆θ be the angle by which r rotates in time ∆t



Relation between v and ωωω

It is obvious from the �gure that the magnitude of change in r,

i.e., ∆r is given by

|∆r|= 2r sinφ sin
∆θ

2

For ∆t → 0, ∆θ → 0, so that

|∆r|= 2r sinφ sin
∆θ

2
≈ 2r sinφ

∆θ

2
≈ r sinφ∆θ

Leading to (for ∆t → 0)∣∣∣∣∆r

∆t

∣∣∣∣= r sinφ
∆θ

∆t

=⇒
∣∣∣∣d rdt

∣∣∣∣= r sinφ
dθ

dt
= ωr sinφ



v−ωωω relation....

Obviously, for ∆t → 0, dr
dt is in tangential direction

Keeping the direction and magnitude of dr
dt in mind, we

conclude
d r

dt
= v = ωωω × r



Rate of change of a general rotating vector

Previous discussion was about when position vector r was

precessing with a constant angular velocity ω , about the axis

in direction n̂.

But the same arguments will hold if, instead of r, some general

vector A, was precessing with a constant angular velocity ω ,

about the axis in direction n̂.

Then, we will have
dA

dt
= ωωω ×A.

This is a very important general relation about the rate of

change of rotating vectors.

Let A= v, then using above, we get the expression for

acceleration of a rotating particle

dv

dt
= a= ωωω × v = ωωω × (ωωω × r) (centripetal acceleration)



Physics in Rotating Reference Frames

Consider a general vector A which is changing with time

When observed from an inertial frame, its rate of change is(
dA
dt

)
in
.

Suppose we have a non-inertial frame of reference which is

rotating with a constant angular velocity ΩΩΩ

What is the rate of change of A, i.e.,
(
dA
dt

)
rot

, with respect to

the rotating frame?

Let î, ĵ, k̂ be the basis vectors of the inertial frame

And î′, ĵ′, k̂′ be the basis vectors of the rotating frame



Physics in rotating frames...

This means that î′, ĵ′, k̂′ are rotating w.r.t. the inertial frame

with angular velocity ΩΩΩ.

At a given point in time, A in two frames can be expressed as

A= Ax î+Ay ĵ+Az k̂ (inertial)

A= A′
x î
′+A′

y ĵ
′+A′

z k̂
′ (rotating)

Therefore, in inertial frame(
dA

dt

)
in

=
dAx

dt
î+

dAy

dt
ĵ+

dAz

dt
k̂
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Physics in rotating frames contd.

We can also compute the time derivative of the second

expression of A

Keeping in mind that not only the components of A, but the

basis vectors î′, ĵ′, k̂′ are changing with time due to rotation

Therefore, the rate of change of A will be(
dA

dt

)
in

=
dA′

x

dt
î′+

dA′
y

dt
ĵ′+

dA′
z

dt
k̂′+A′

x

d î′

dt
+A′

y

d ĵ′

dt
+A′

z

d k̂′

dt

Because vectors î′, ĵ′, k̂′ are rotating with angular velocity ΩΩΩ,
w.r.t. to the inertial frame

d î′

dt
=ΩΩΩ× î′

d ĵ′

dt
=ΩΩΩ× ĵ′

d k̂′

dt
=ΩΩΩ× k̂′
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Rotating frames

So that(
dA

dt

)
in

=
dA′

x

dt
î′+

dA′
y

dt
ĵ′+

dA′
z

dt
k̂′+ΩΩΩ×

(
A′
x î
′+A′

y ĵ
′+A′

z k̂
′
)

First three terms denote the rate of change of A as seen in the

rotating frame, i.e.,

dA′
x

dt
î′+

dA′
y

dt
ĵ′+

dA′
z

dt
k̂′ =

(
dA

dt

)
rot

Leading to (
dA

dt

)
in

=

(
dA

dt

)
rot

+ΩΩΩ×A

Because A is a general vector, the previous formula can be

symbolically expressed as(
d

dt

)
in

=

(
d

dt

)
rot

+ΩΩΩ×
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Velocity and acceleration in a rotating frame

Taking A= r, we have(
d r

dt

)
in

=

(
d r

dt

)
rot

+ΩΩΩ× r

=⇒ vin = vrot +ΩΩΩ× r

On taking A= vin, we get(
dvin
dt

)
in

=

(
dvin
dt

)
rot

+ΩΩΩ× vin

=⇒
(
dvin
dt

)
in

=

(
d

dt

)
rot

(vrot +ΩΩΩ× r)+ΩΩΩ× (vrot +ΩΩΩ× r)
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Acceleration in Rotating Frame

Or(
dvin
dt

)
in

=

(
dvrot
dt

)
rot

+

(
d(ΩΩΩ× r)

dt

)
rot

+ΩΩΩ× vrot +ΩΩΩ× (ΩΩΩ× r)

=

(
dvrot
dt

)
rot

+ΩΩΩ× vrot +ΩΩΩ× vrot +ΩΩΩ× (ΩΩΩ× r)

=⇒ ain = arot +2ΩΩΩ× vrot +ΩΩΩ× (ΩΩΩ× r)

Above, we used that condition that ΩΩΩ= constant, so that

Ω̇ΩΩ = 0.

Thus, the acceleration as seen in the rotating frame is

arot = ain−2ΩΩΩ× vrot −ΩΩΩ× (ΩΩΩ× r)
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Pseudo Forces in Rotating Frames

Multiplying the previous equation by m on both sides, and

using notations Frot =marot and F=main, we have

Frot = F−2mΩΩΩ× vrot −mΩΩΩ× (ΩΩΩ× r)

= F+Fcoriolis +Fcentrifugal

= F+F�ct

Where F is the real force acting on the particle, while Fcoriolis

and Fcentrifugal are pseudo (�ctitious) forces

Fcoriolis =−2mΩΩΩ× vrot

Fcentrifugal =−mΩΩΩ× (ΩΩΩ× r)
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Probing Centrifugal and Coriolis Forces

Consider a circular plank (say a merry-go-round) rotating with

an angular velocity ΩΩΩ= Ωk̂, with a mass m as shown

X

Y

Ω

v

θ

r

O

Mass m is moving with a velocity v which is in the radial

direction w.r.t. plank

Location of the particle at a given instant is r, w.r.t. to

rotating coordinate system

What are the magnitudes and directions of pseudo forces?



Centrifugal Force

Centrifugal force can be computed as

Fcentrifugal =−mΩΩΩ× (ΩΩΩ× r)

=−mΩ2r k̂× (k̂× r̂)

=−mΩ2r k̂× θ̂θθ

=−mΩ2r(−r̂)

=mΩ2r.

Thus centrifugal force has the same magnitude as the

centripetal force, but opposite direction, as expected of a

pseudo force.
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Coriolis Force

Coriolis force exists only when the particle moves with respect

to the rotating frame. Here

vrot = v r̂.

Therefore,

Fcoriolis =−2mΩΩΩ× vrot

=−2mΩv(k̂× r̂)

=−2mΩv θ̂θθ
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Coriolis and Centrifugal Forces

Thus, �nally the direction of the forces

X

Y

Ω

θ

r

O

Centrifugal

Coriolis

v
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Coriolis Force due to Rotation of Earth

Earth's Angular Velocity in a Non-Intertial Frame

Here x points to south, y to east, and z is radially outwards

(vertically above from earth), and λ is latitude angle

In this frame

ΩΩΩ=−Ωcosλ î+Ωsinλ k̂
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Coriolis Force on a Falling Object

If a particle of mass m is falling vertically down, at a given

instant with velocity v, then

v =−v k̂

Then Coriolis force on it due to Earth's rotation is

Fc =−2m(ΩΩΩ×v)=−2mΩ

∣∣∣∣∣∣
î ĵ k̂

−cosλ 0 sinλ

0 0 −v

∣∣∣∣∣∣= 2mvΩcosλ ĵ

Thus, the object will experience a force towards east, and will

get deviated in that direction

Another example: away from equator, wind �ow becomes

circular due to Coriolis force

Note Fc ⊥ vrot , so it will lead to a circular motion

PH111: Introduction to Classical Mechanics Chapter 4: Non-Inertial Frames and Pseudo Forces



The Foucault Pendulum

The Foucault pendulum (FP) is a �ne example of Coriolis

Force

It clearly demonstrates that we on earth are located in a

rotating frame

That is, a non-inertial frame

Very good information on FP is available on Wikipedia with all

the history

Check out the Wikipedia page here

The following simpli�ed treatment is based on a solved

example in Kleppner and Kolenkow.
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The Foucault Pendulum...

If consider a large enough pendulum, we will see that its plane

of oscillations rotates

That is the pendulum doesn't keep oscillating in the same

plane

This rotation and its period can be explained mathematically

in terms of the Coriolis force
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The Foucault Pendulum...

Consider the following �gure showing a pendulum on Earth's

surface
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The Foucault Pendulum...

In the �gure, λ denotes the latitude angle

(r ,θ) denote the plane polar coordinates of the bob of the

pendulum

the coordinate system is supposed to be attached to the earth

the earth is supposed to be �at

A good approximation given that bob doesn't move over large

distances

We further assume that the length of the pendulum is l

Let us setup the equations of motion of the bob
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The Foucault Pendulum...

Clearly, the bob is moving along the r̂ direction

If its motion were in a plane, θ will not change with time

Then θ̇ = 0

The frequency of oscillations ω of the pendulum will be

ω =

√
l

g

Therefore, r(t) will be given by

r(t) = r0 sinωt,

where r0 is the amplitude
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The Foucault Pendulum...

Assume, as before, the angular velocity of the rotation of earth

is ΩΩΩ
ΩΩΩ= Ωsinλ k̂−Ωcosλ r̂,

where k̂ denotes the perpendicular to earth's surface at the

lattitude λ

If the mass of the bob is m, the Coriolis force acting on the

bob is

Fc =−2m(ΩΩΩ× v)

Given that to a good approximation v = ṙ r̂, we obtain from

above

Fc =−2m(Ωsinλ k̂+Ωcosλ r̂)× (ṙ r̂)

=−2mṙΩsinλ θ̂θθ
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The Foucault Pendulum...

Thus Coriolis force is strictly in the tangential (θ̂θθ) direction

So we set up the equation of motion in the tangential direction

m(2ṙ θ̇ + r θ̈) =−2mṙΩsinλ

Leading to

2ṙ θ̇ + r θ̈ =−2Ωsinλ ṙ

Although, this equation can be solved quite precisely, but we

will use an approximate approach

Reasonable to assume θ̇ (angular speed of precession) to be

constant

Implying that θ̈ = 0
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The Foucault Pendulum...

This leads to the equation

2ṙ θ̇ =−2Ωsinλ ṙ

Thus we obtain the solution of the problem

θ̇ =−Ωsinλ

With |θ̇ |=Ωsinλ , we obtain the period of the precession to be

T =
2π

|θ̇ |
=

2π

Ωsinλ
=

24 hr

sinλ

For Paris, λ ≈ 49°, so that TParis ≈ 32 hr which is very close to

the observed value of 31 hr 50 minutes!

Clearly, at the north pole Tnorth−pole ≈ 24 hr
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