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Introduction

@ Question: How do laws of physics change, when we change
the frame of reference (coordinate system)?

@ Are laws of physics same in all inertial frames of reference, i.e.,
frames moving with constant velocities?

@ What if the frames of reference are accelerating?

@ Underlying assumption will be that frames are moving with
nonrelativistic velocities (v < ¢)

o For relativistic velocities, correct theory is Einstein’s Special
theory of relativity.



Inertial Frames of Reference

o First we consider inertial frames of reference

o We demonstrate that in inertial frames of reference, Newton's
second law holds good

o Let @ and B be two frames of reference displaced by vector S

@ We consider the dynamics of a particle of mass m in both the
frames
@ Position rg of the particle in frame 3, is related to its position

re in frame a by
rg=rq—>S



Inertial Frames of Reference....

@ If an observer in frame a measures the acceleration of mass m
to be ay, according to her the force acting on the mass Fy is

Fo = mag

@ Similarly the observer in B on measuring its acceleration to be
ag will conclude that the force is

FB = maﬁ.

@ Question is: What is the relationship between F, and Fﬁ?



Inertial frames....

e By taking time derivatives of rg="rq — S, we obtain

vg =vg —V
ag=aqg—A

@ Where V=S and A =S, are the velocity and acceleration,
respectively, of frame B w.r.t. frame a.

o If A=0, i.e, B is an inertial frame, then

aﬁ:aa
- Fa:maa:maﬁ:Fﬁ

@ Thus measured force is same in both the frames, as is the
equation of motion.



Non-inertial Frames

@ Thus, Newton's second law is unchanged when the frames of
reference are inertial

@ What about non-inertial frames of reference, i.e., when A # 07

e We already have the result that

ag=ag—A
— Fﬁ:maﬁzmaa—mA:Fa—FFp#Fa
where F, = —mA.

Above notation F, stands for pseudo Force.

@ Thus force measured by an observer in a non-inertial frame is
different from the one measured by an observer in an inertial
frame.



Non-inertial frames and pseudo forces

@ According to the observer in the non-inertial frame, the object
is experiencing an additional force —mA, in a direction
opposite to that of the acceleration

@ Because this force is absent for an observer in the inertial
frame, it is called “Pseudo Force”.

@ To illustrate this, we consider the example of a pendulum in an
accelerating car



Example: Pendulum in an Accelerating Car

e Consider a car with a pendulum inside, moving with an
acceleration A

@ We want to find the tension in the string T, and the angle 6
the pendulum makes from the vertical

@ We will analyze the problem both in the lab frame (static on
ground) and the accelerated frame (moving with car)



Analysis in Lab Frame (Attached to the Ground)

@ Free body diagram in the lab frame is

Acceleration = A
w
@ With respect to lab frame, mass m has an acceleration A

@ As shown, it experiences two forces, tension T of the string,
and its own weight W = mg

@ We want to find angle of inclination 6, and T

@ Application of Newton’s law in vertical and horizontal
directions, yields

T cos® — W = 0 (vertical)
T sin @ = mA (horizontal)



Lab frame contd.

@ Leading to the solution

tan0 =

T=my\/g?+ A2

@ Let us analyze the problem in the non-inertial frame, next

0 |



Analysis in non-Inertial Frame (moving with the car)

@ In the non-inertial (NI) frame, the free-body diagram is

Acceleration =0

w

In the NI frame, particle is stationary, and in equilibrium
But it is acted upon by three forces, instead of two
Additional force is the fictitious (or pseudo) force Fgep = —mA

Equations of motion are

—Ffict + T sin@ = 0 (horizontal)
T cos® — W = 0 (vertical)



Non-inertial frame contd.

@ Because Fg; = mA, both these equations are essentially same
as in case of inertial frame

@ Thus we obtain the same expressions for T and 6.

@ Next, we discuss different types of accelerating frames, i.e., the
rotating frames of reference



Rotating frames of reference

@ Rotating frames of references are non-inertial

@ Because any particle executing circular motion experiences
centripetal acceleration

@ Next, we develop the theory of rotating frames of references

e But, before that, we illustrate the vector nature of angular
velocity



Vector nature of angular velocity

@ We denoted the position of a particle as a vector
r= x?+yj+ zk
e Can we similarly specify the angular position of a particle
6 = 0,16, +6,k?

@ The answer is no because such an expression does not satisfy
commutative law of vector addition

0,+6,#6,+06;

@ Let us rotate a block first around the x axis, and then around
the y axis. Compare that to the same operations performed in
the reverse order



Non-commutative nature of finite rotations

o Consider those two rotations, with each one of them being /2

z

0,i+0,f

65+ 6,0

o Clearly 6,i+ Qyj * 9yj+ O,



Vector nature of Angular Velocity

@ On the other hand, one can verify that infinitesimal rotations
commute to first order terms

AB i+ A8 J~ AB,+ A8,

@ Thus, infinitesimal rotations can be represented as vectors

@ Because angular velocity is defined in terms of infinitesimal

rotations
. A6
o= lim

At—0 At

@ Angular velocity can be denoted as a vector
@ = (l)xll\"‘ (Dy]"‘ wzﬁ

@ And, in general,
O = oh,

where fi is the direction of the axis of rotation, and  is the
magnitude of the angular velocity.



Relation between linear velocity and angular velocity

o It is obvious that angular velocity @, will give rise to linear
velocity v

o What is the mathematical relation between the two?



Linear and Angular Velocities

o Consider a rigid body rotating with a uniform angular velocity
® = i as shown

Axis of
rotation




Linear and angular velocity...

@ Note that the position vector r of a particular point in the rigid
body, precesses about the axis of rotation, and forms a cone
with its tip at the origin

@ ¢ is the constant angle between r and f

@ During precession, r traces a circle of radius rsin¢

@ Let AB be the angle by which r rotates in time At

-~

rsin ¢ sin %



Relation between v and @

@ It is obvious from the figure that the magnitude of change in r,
i.e., Ar is given by

| Ar| :2rsin¢sin%
@ For At -0, AB — 0, so that
|Ar| = 2rsin ¢ sin % R 2rsin¢% ~ rsing /A6

e Leading to (for At — 0)

ﬂ = rsin(l)g
At| At

E

. do :
il rsm(j)g =rsing




v — @ relation. ...

e Obviously, for At — 0, % is in tangential direction
n
//// i\\\\ I"/, "\
i _at '\\
C YN \ -
! o |
I'.I | J.'
' [ rsing /f
at

o Keeping the direction and magnitude of 2 in mind, we

dt
conclude
dr @ X
— =v= r
dt



Rate of change of a general rotating vector

@ Previous discussion was about when position vector r was
precessing with a constant angular velocity @, about the axis
in direction f.

@ But the same arguments will hold if, instead of r, some general
vector A, was precessing with a constant angular velocity ,
about the axis in direction A.

@ Then, we will have

dA
— = A.
dt o X

@ This is a very important general relation about the rate of

change of rotating vectors.

@ Let A =v, then using above, we get the expression for
acceleration of a rotating particle

@
dt

=a=mXxv=0X(®Xxr) (centripetal acceleration)



Physics in Rotating Reference Frames

Consider a general vector A which is changing with time

When observed from an inertial frame, its rate of change is
dA

(W)in'

@ Suppose we have a non-inertial frame of reference which is

rotating with a constant angular velocity Q

@ What is the rate of change of A, i.e.,(‘é—/:‘)mt, with respect to
the rotating frame?

Let 1, J, k be the basis vectors of the inertial frame

And 7,7, K’ be the basis vectors of the rotating frame



Physics in rotating frames. ..

o This means that 7, ', k' are rotating w.r.t. the inertial frame
with angular velocity Q.

@ At a given point in time, A in two frames can be expressed as

A= Ad+A)]+ Ak (inertial)

A=AV +A ) + ALK (rotating)

@ Therefore, in inertial frame

d7A _%¢+ﬂo+dAzﬁ
dt ).~ dt ' dt’T dt
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Physics in rotating frames contd.

@ We can also compute the time derivative of the second
expression of A

@ Keeping in mind that not only the components of A, but the
basis vectors 1, j, k' are changing with time due to rotation

@ Therefore, the rate of change of A will be

< dA) _ Ay dA, o, A dv dj di/

/ p g / /
dt Gl T g KA A A

o Because vectors 1, |/, k' are rotating with angular velocity €,
w.r.t. to the inertial frame

dv’

7 =Qx
dJ %
E—QXJ
dk’ .,
I_QXk
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Rotating frames

e So that
/A dA/ N ! N ~ ~ A
<‘i:> = dixi’_|_ dtyj’+ diz K'+Q x (A’Xi’+A’yj’+A’zk’>
in

@ First three terms denote the rate of change of A as seen in the
rotating frame, i.e.,

dA;?,+dA’y¢,+dA/zﬁ,_ dA
dt dtd e T \dt ),

dA dA
<dt)in B (Chf)rot—{_g2 A

@ Because A is a general vector, the previous formula can be
symbolically expressed as

d d
(dt> in B (dt> rot +QX
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o Leading to



Velocity and acceleration in a rotating frame

e Taking A =r, we have

dr dr
<dt>in B <dt>r0t+Q T

= Vjp =Vt +Q Xr

o On taking A =v;,, we get

<dvi") = (dvi"> +Q X Vi,
dt in dt rot

dvi, (d
= < it >in_<dt>mt(v,ot—|—ﬂ><r)—|—ﬂ><(v,ot—l—er)
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Acceleration in Rotating Frame

e Or

dvin\ [ dVior d(2xr)
(F), = () (TG, remrax@en

_ (dvmf) Q% Vrot 4 @ X Vror +Q % (R x 1)
dt rot

= Ajn = Arot +2Q X Vyor + Q X (Q % 1)

A_bove, we used that condition that € = constant, so that
Q=0.

@ Thus, the acceleration as seen in the rotating frame is

arot:ain_QQXVrot—QX(QXr)
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Pseudo Forces in Rotating Frames

o Multiplying the previous equation by m on both sides, and
using notations F,,; = ma,o: and F = maj,, we have

Frot = F —2mQ X v or — mS x (Q xr)

= F +Fcoriolis + Fcentrifugal
=F+Ffice

@ Where F is the real force acting on the particle, while Fo/iofis
and Fcentrifugar are pseudo (fictitious) forces

F coriolis = —2mS X Vot

I:centrifugal = —m2 x (L xr)
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Probing Centrifugal and Coriolis Forces

e Consider a circular plank (say a merry-go-round) rotating with
an angular velocity Q = Qk, with a mass m as shown
Y

e Mass m is moving with a velocity v which is in the radial
direction w.r.t. plank

@ Location of the particle at a given instant is r, w.r.t. to
rotating coordinate system

@ What are the magnitudes and directions of pseudo forces?



Centrifugal Force

e Centrifugal force can be computed as

Fcentrifugal =—mQ x (Q X r)
= —mQ2rk x (k x 7)
= —mQ%rkx 6
= —mQ?r(—7)
= mQ?r.
Thus centrifugal force has the same magnitude as the

centripetal force, but opposite direction, as expected of a
pseudo force.
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Coriolis Force

@ Coriolis force exists only when the particle moves with respect
to the rotating frame. Here

Vyor = VT.
@ Therefore,

F coriolis = —2mSQ X Vo
= —2mQv(k x ?)
= —2mQvo
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Coriolis and Centrifugal Forces

Thus, finally the direction of the forces
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Coriolis Force due to Rotation of Earth

o Earth’s Angular Velocity in a Non-Intertial Frame

e 1 N

// . \/{z
,/ \\
/ \
[ - SRR
(. RN
\

\\ 5/// /

@ Here x points to south, y to east, and z is radially outwards
(vertically above from earth), and A is latitude angle

o In this frame A
Q= —QcosAi+QsinAk
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Coriolis Force on a Falling Object

o If a particle of mass m is falling vertically down, at a given
instant with velocity v, then

v=—vk

@ Then Coriolis force on it due to Earth’s rotation is

To) k )
Fe=-2m(Qxv)=-2mQ| —cosA 0 sinA |=2mvQcosA]
0 0 —v

@ Thus, the object will experience a force towards east, and will
get deviated in that direction

@ Another example: away from equator, wind flow becomes
circular due to Coriolis force

@ Note F. L v,o, so it will lead to a circular motion
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The Foucault Pendulum

@ The Foucault pendulum (FP) is a fine example of Coriolis
Force

o It clearly demonstrates that we on earth are located in a
rotating frame

o That is, a non-inertial frame

@ Very good information on FP is available on Wikipedia with all
the history

@ Check out the Wikipedia page here

@ The following simplified treatment is based on a solved
example in Kleppner and Kolenkow.
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https://en.wikipedia.org/wiki/Foucault_pendulum

The Foucault Pendulum...

o If consider a large enough pendulum, we will see that its plane
of oscillations rotates

@ That is the pendulum doesn’t keep oscillating in the same
plane

@ This rotation and its period can be explained mathematically
in terms of the Coriolis force
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The Foucault Pendulum...

o Consider the following figure showing a pendulum on Earth’s
surface
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The Foucault Pendulum...

@ In the figure, A denotes the latitude angle

@ (r,0) denote the plane polar coordinates of the bob of the
pendulum

@ the coordinate system is supposed to be attached to the earth
@ the earth is supposed to be flat

@ A good approximation given that bob doesn’t move over large
distances

@ We further assume that the length of the pendulum is /

@ Let us setup the equations of motion of the bob
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The Foucault Pendulum...

@ Clearly, the bob is moving along the ¥ direction
o If its motion were in a plane, 0 will not change with time
e Then 6 =0
@ The frequency of oscillations @ of the pendulum will be
/
0=4—
g

@ Therefore, r(t) will be given by
r(t) = rysinwt,

where ry is the amplitude
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The Foucault Pendulum...

@ Assume, as before, the angular velocity of the rotation of earth
is Q
Q=QsinAk—QcosAt,
where k denotes the perpendicular to earth’s surface at the
lattitude A

@ If the mass of the bob is m, the Coriolis force acting on the
bob is
Fe=—-2m(Q xv)

@ Given that to a good approximation v = i¥, we obtain from
above

Fo = —2m(Qsin Ak + Qcos A?) x (#)
= —2miQsinA O
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The Foucault Pendulum...

~

@ Thus Coriolis force is strictly in the tangential (8) direction

@ So we set up the equation of motion in the tangential direction
m(2+6 +r@) = —2miQsin A
o Leading to _ )
20 +r0 = —2QsinAr

@ Although, this equation can be solved quite precisely, but we
will use an approximate approach

o Reasonable to assume 6 (angular speed of precession) to be
constant

e Implying that 6 =0
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The Foucault Pendulum...

@ This leads to the equation
270 = —2Qsin AF

@ Thus we obtain the solution of the problem

0 = —Qsind
e With |8] = Qsin A, we obtain the period of the precession to be

Com 2m 24k
18] QsinA  sind

o For Paris, A =49, so that Tp,is ~ 32 hr which is very close to
the observed value of 31 hr 50 minutes!

o Clearly, at the north pole Tportn—pote = 24 hr
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