PH111: Introduction to Classical Mechanics Chapter 4: Non-Inertial Frames and Pseudo Forces

- Question: How do laws of physics change, when we change the frame of reference (coordinate system)?
- Are laws of physics same in all inertial frames of reference, i.e., frames moving with constant velocities?
- What if the frames of reference are accelerating?
- Underlying assumption will be that frames are moving with nonrelativistic velocities ($v \ll c$)
- For relativistic velocities, correct theory is Einstein's Special theory of relativity.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Inertial Frames of Reference

- First we consider inertial frames of reference
- We demonstrate that in inertial frames of reference, Newton's second law holds good
- ullet Let lpha and eta be two frames of reference displaced by vector S

- We consider the dynamics of a particle of mass *m* in both the frames
- Position r_{β} of the particle in frame β , is related to its position r_{α} in frame α by

$$r_{\beta} = r_{\alpha} - S$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ○○○

 If an observer in frame α measures the acceleration of mass m to be a_α, according to her the force acting on the mass F_α is

$$\mathsf{F}_{lpha}=m\mathsf{a}_{lpha}$$

• Similarly the observer in β on measuring its acceleration to be a_β will conclude that the force is

$$F_{\beta} = ma_{\beta}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Question is: What is the relationship between F_{α} and F_{β} ?

• By taking time derivatives of $r_{\beta} = r_{\alpha} - S$, we obtain

$$\mathbf{v}_{eta} = \mathbf{v}_{lpha} - \mathbf{V}$$

 $\mathbf{a}_{eta} = \mathbf{a}_{lpha} - \mathbf{A}$

- Where $V = \dot{S}$ and $A = \ddot{S}$, are the velocity and acceleration, respectively, of frame β w.r.t. frame α .
- If A = 0, i.e., $m{eta}$ is an inertial frame, then

$$a_{\beta} = a_{\alpha}$$
$$\implies F_{\alpha} = ma_{\alpha} = ma_{\beta} = F_{\beta}$$

• Thus measured force is same in both the frames, as is the equation of motion.

Non-inertial Frames

- Thus, Newton's second law is unchanged when the frames of reference are inertial
- What about non-inertial frames of reference, i.e., when $A \neq 0$?
- We already have the result that

$$\begin{array}{l} \mathsf{a}_{\beta} = \mathsf{a}_{\alpha} - \mathsf{A} \\ \Longrightarrow \ \mathsf{F}_{\beta} = m \mathsf{a}_{\beta} = m \mathsf{a}_{\alpha} - m \mathsf{A} = \mathsf{F}_{\alpha} + \mathsf{F}_{p} \neq \mathsf{F}_{\alpha} \\ \text{where } \mathsf{F}_{p} = -m \mathsf{A}. \end{array}$$

Above notation F_p stands for pseudo Force.

• Thus force measured by an observer in a non-inertial frame is different from the one measured by an observer in an inertial frame.

Non-inertial frames and pseudo forces

- According to the observer in the non-inertial frame, the object is experiencing an additional force -mA, in a direction opposite to that of the acceleration
- Because this force is absent for an observer in the inertial frame, it is called "Pseudo Force".
- To illustrate this, we consider the example of a pendulum in an accelerating car

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Pendulum in an Accelerating Car

• Consider a car with a pendulum inside, moving with an acceleration A

- We want to find the tension in the string T, and the angle θ the pendulum makes from the vertical
- We will analyze the problem both in the lab frame (static on ground) and the accelerated frame (moving with car)

《曰》 《卽》 《臣》 《臣》

Analysis in Lab Frame (Attached to the Ground)

• Free body diagram in the lab frame is

$$\frac{\theta}{W} = \frac{T}{A}$$
Acceleration = A

- With respect to lab frame, mass *m* has an acceleration A
- As shown, it experiences two forces, tension T of the string, and its own weight W = mg
- We want to find angle of inclination heta, and au
- Application of Newton's law in vertical and horizontal directions, yields

 $T \cos \theta - W = 0 \text{ (vertical)}$ $T \sin \theta = mA \text{ (horizontal)}$

• Leading to the solution

$$an heta = rac{A}{g}$$
 $T = m \sqrt{g^2 + A^2}$

• Let us analyze the problem in the non-inertial frame, next

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Analysis in non-Inertial Frame (moving with the car)

• In the non-inertial (NI) frame, the free-body diagram is

- In the NI frame, particle is stationary, and in equilibrium
- But it is acted upon by three forces, instead of two
- Additional force is the fictitious (or pseudo) force $F_{fict} = -mA$
- Equations of motion are

$$-F_{fict} + T \sin \theta = 0 \text{ (horizontal)}$$
$$T \cos \theta - W = 0 \text{ (vertical)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Because $F_{fict} = mA$, both these equations are essentially same as in case of inertial frame
- Thus we obtain the same expressions for T and θ .
- Next, we discuss different types of accelerating frames, i.e., the rotating frames of reference

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Rotating frames of references are non-inertial
- Because any particle executing circular motion experiences centripetal acceleration
- Next, we develop the theory of rotating frames of references
- But, before that, we illustrate the vector nature of angular velocity

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Vector nature of angular velocity

• We denoted the position of a particle as a vector

$$\mathsf{r} = x\hat{\mathsf{i}} + y\hat{\mathsf{j}} + z\hat{\mathsf{k}}$$

• Can we similarly specify the angular position of a particle

$$\boldsymbol{\theta} = \theta_x \hat{\mathbf{i}} + \theta_y \hat{\mathbf{j}} + \theta_z \hat{\mathbf{k}}?$$

 The answer is no because such an expression does not satisfy commutative law of vector addition

$$\boldsymbol{\theta}_1 + \boldsymbol{\theta}_2 \neq \boldsymbol{\theta}_2 + \boldsymbol{\theta}_1$$

• Let us rotate a block first around the x axis, and then around the y axis. Compare that to the same operations performed in the reverse order

Non-commutative nature of finite rotations

• Consider those two rotations, with each one of them being $\pi/2$

<ロ> (四) (四) (日) (日) (日)

æ

• Clearly $\theta_x \hat{i} + \theta_y \hat{j} \neq \theta_y \hat{j} + \theta_x \hat{i}$

Vector nature of Angular Velocity

• On the other hand, one can verify that infinitesimal rotations commute to first order terms

$$\Delta \theta_x \hat{i} + \Delta \theta_y \hat{j} \approx \Delta \theta_y \hat{j} + \Delta \theta_x \hat{i}$$

- Thus, infinitesimal rotations can be represented as vectors
- Because angular velocity is defined in terms of infinitesimal rotations

$$\boldsymbol{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \boldsymbol{\theta}}{\Delta t},$$

• Angular velocity can be denoted as a vector

$$\boldsymbol{\omega} = \omega_x \hat{\mathbf{i}} + \omega_y \hat{\mathbf{j}} + \omega_z \hat{\mathbf{k}}$$

And, in general,

$$\boldsymbol{\omega} = \boldsymbol{\omega} \hat{\mathbf{n}},$$

where $\hat{\mathbf{n}}$ is the direction of the axis of rotation, and $\boldsymbol{\omega}$ is the magnitude of the angular velocity.

Relation between linear velocity and angular velocity

 $\bullet\,$ It is obvious that angular velocity $\pmb{\omega},$ will give rise to linear velocity v

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

• What is the mathematical relation between the two?

Linear and Angular Velocities

• Consider a rigid body rotating with a uniform angular velocity $\pmb{\omega} = \pmb{\omega} \hat{\mathbf{n}}$ as shown

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Linear and angular velocity...

- Note that the position vector r of a particular point in the rigid body, precesses about the axis of rotation, and forms a cone with its tip at the origin
- ϕ is the constant angle between r and $\hat{\mathsf{n}}$
- During precession, r traces a circle of radius $r\sin\phi$
- Let $\Delta heta$ be the angle by which r rotates in time Δt

Relation between v and $\boldsymbol{\omega}$

 It is obvious from the figure that the magnitude of change in r, i.e., Δr is given by

$$|\Delta \mathbf{r}| = 2r \sin \phi \sin \frac{\Delta \theta}{2}$$

• For $\Delta t \rightarrow 0$, $\Delta \theta \rightarrow 0$, so that

$$|\Delta \mathbf{r}| = 2r \sin \phi \sin \frac{\Delta \theta}{2} \approx 2r \sin \phi \frac{\Delta \theta}{2} \approx r \sin \phi \Delta \theta$$

• Leading to (for $\Delta t
ightarrow 0$)

$$\left|\frac{\Delta \mathbf{r}}{\Delta t}\right| = r \sin \phi \frac{\Delta \theta}{\Delta t}$$
$$\implies \left|\frac{d\mathbf{r}}{dt}\right| = r \sin \phi \frac{d\theta}{dt} = \omega r \sin \phi$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Obviously, for $\Delta t
ightarrow 0$, $rac{dr}{dt}$ is in tangential direction

<ロ> (四) (四) (三) (三) (三)

• Keeping the direction and magnitude of $\frac{dr}{dt}$ in mind, we conclude

$$\frac{d\mathbf{r}}{dt} = \mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$

Rate of change of a general rotating vector

- Previous discussion was about when position vector r was precessing with a constant angular velocity ω, about the axis in direction n̂.
- But the same arguments will hold if, instead of r, some general vector A, was precessing with a constant angular velocity ω, about the axis in direction n̂.
- Then, we will have

$$\frac{dA}{dt} = \boldsymbol{\omega} \times A.$$

- This is a very important general relation about the rate of change of rotating vectors.
- Let A = v, then using above, we get the expression for acceleration of a rotating particle

 $\frac{d\mathbf{v}}{dt} = \mathbf{a} = \boldsymbol{\omega} \times \mathbf{v} = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) \text{ (centripetal acceleration)}$

Physics in Rotating Reference Frames

- Consider a general vector A which is changing with time
- When observed from an inertial frame, its rate of change is $\left(\frac{dA}{dt}\right)_{in}$.
- $\bullet\,$ Suppose we have a non-inertial frame of reference which is rotating with a constant angular velocity Ω
- What is the rate of change of A, i.e., $\left(\frac{dA}{dt}\right)_{rot}$, with respect to the rotating frame?

(中) (문) (문) (문) (문)

- Let $\hat{i}, \hat{j}, \hat{k}$ be the basis vectors of the inertial frame
- And $\hat{i}', \hat{j}', \hat{k}'$ be the basis vectors of the rotating frame

Physics in rotating frames...

- This means that $\hat{i}', \hat{j}', \hat{k}'$ are rotating w.r.t. the inertial frame with angular velocity Ω .
- At a given point in time, A in two frames can be expressed as

$$\begin{split} \mathsf{A} &= A_x \hat{\mathsf{i}} + A_y \hat{\mathsf{j}} + A_z \hat{\mathsf{k}} \text{ (inertial)} \\ \mathsf{A} &= A_x' \hat{\mathsf{i}}' + A_y' \hat{\mathsf{j}}' + A_z' \hat{\mathsf{k}}' \text{ (rotating)} \end{split}$$

• Therefore, in inertial frame

$$\left(\frac{dA}{dt}\right)_{in} = \frac{dA_x}{dt}\hat{\mathbf{i}} + \frac{dA_y}{dt}\hat{\mathbf{j}} + \frac{dA_z}{dt}\hat{\mathbf{k}}$$

Physics in rotating frames contd.

- We can also compute the time derivative of the second expression of A
- Keeping in mind that not only the components of A, but the basis vectors $\hat{i}', \hat{j}', \hat{k}'$ are changing with time due to rotation
- Therefore, the rate of change of A will be

$$\left(\frac{dA}{dt}\right)_{in} = \frac{dA'_x}{dt}\hat{\mathbf{i}}' + \frac{dA'_y}{dt}\hat{\mathbf{j}}' + \frac{dA'_z}{dt}\hat{\mathbf{k}}' + A'_x\frac{d\hat{\mathbf{i}}'}{dt} + A'_y\frac{d\hat{\mathbf{j}}'}{dt} + A'_z\frac{d\hat{\mathbf{k}}'}{dt}$$

• Because vectors $\hat{i}', \hat{j}', \hat{k}'$ are rotating with angular velocity $\Omega,$ w.r.t. to the inertial frame

$$\frac{d\hat{i}'}{dt} = \mathbf{\Omega} \times \hat{i}'$$
$$\frac{d\hat{j}'}{dt} = \mathbf{\Omega} \times \hat{j}'$$
$$\frac{d\hat{k}'}{dt} = \mathbf{\Omega} \times \hat{k}'$$

PH111: Introduction to Classical Mechanics Chapter 4: No

Rotating frames

So that

$$\left(\frac{dA}{dt}\right)_{in} = \frac{dA'_x}{dt}\hat{\mathbf{i}}' + \frac{dA'_y}{dt}\hat{\mathbf{j}}' + \frac{dA'_z}{dt}\hat{\mathbf{k}}' + \mathbf{\Omega} \times \left(A'_x\hat{\mathbf{i}}' + A'_y\hat{\mathbf{j}}' + A'_z\hat{\mathbf{k}}'\right)$$

• First three terms denote the rate of change of A as seen in the rotating frame, i.e.,

$$\frac{dA'_{x}}{dt}\hat{i}' + \frac{dA'_{y}}{dt}\hat{j}' + \frac{dA'_{z}}{dt}\hat{k}' = \left(\frac{dA}{dt}\right)_{rot}$$

Leading to

$$\left(\frac{dA}{dt}\right)_{in} = \left(\frac{dA}{dt}\right)_{rot} + \mathbf{\Omega} \times A$$

 Because A is a general vector, the previous formula can be symbolically expressed as

$$\left(rac{d}{dt}
ight)_{in} = \left(rac{d}{dt}
ight)_{rot} + \mathbf{\Omega} imes$$

PH111: Introduction to Classical Mechanics Chapter 4: No

Velocity and acceleration in a rotating frame

• Taking A = r, we have

$$\left(\frac{d\mathbf{r}}{dt}\right)_{in} = \left(\frac{d\mathbf{r}}{dt}\right)_{rot} + \mathbf{\Omega} \times \mathbf{r}$$
$$\implies \mathbf{v}_{in} = \mathbf{v}_{rot} + \mathbf{\Omega} \times \mathbf{r}$$

• On taking $A = v_{in}$, we get

$$\begin{pmatrix} \frac{d\mathbf{v}_{in}}{dt} \end{pmatrix}_{in} = \left(\frac{d\mathbf{v}_{in}}{dt} \right)_{rot} + \mathbf{\Omega} \times \mathbf{v}_{in}$$

$$\Longrightarrow \left(\frac{d\mathbf{v}_{in}}{dt} \right)_{in} = \left(\frac{d}{dt} \right)_{rot} (\mathbf{v}_{rot} + \mathbf{\Omega} \times \mathbf{r}) + \mathbf{\Omega} \times (\mathbf{v}_{rot} + \mathbf{\Omega} \times \mathbf{r})$$

PH111: Introduction to Classical Mechanics Chapter 4: No

伺 ト イヨ ト イヨト

Acceleration in Rotating Frame

Or

$$\begin{pmatrix} \frac{d\mathbf{v}_{in}}{dt} \end{pmatrix}_{in} = \left(\frac{d\mathbf{v}_{rot}}{dt} \right)_{rot} + \left(\frac{d(\mathbf{\Omega} \times \mathbf{r})}{dt} \right)_{rot} + \mathbf{\Omega} \times \mathbf{v}_{rot} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$
$$= \left(\frac{d\mathbf{v}_{rot}}{dt} \right)_{rot} + \mathbf{\Omega} \times \mathbf{v}_{rot} + \mathbf{\Omega} \times \mathbf{v}_{rot} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$
$$\implies \mathbf{a}_{in} = \mathbf{a}_{rot} + 2\mathbf{\Omega} \times \mathbf{v}_{rot} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$

Above, we used that condition that $\Omega=\mbox{constant},$ so that $\dot{\Omega}=0.$

• Thus, the acceleration as seen in the rotating frame is

$$a_{\textit{rot}} = a_{\textit{in}} - 2\mathbf{\Omega} \times v_{\textit{rot}} - \mathbf{\Omega} \times (\mathbf{\Omega} \times r)$$

A B + A B +

Pseudo Forces in Rotating Frames

 Multiplying the previous equation by m on both sides, and using notations F_{rot} = ma_{rot} and F = ma_{in}, we have

$$F_{rot} = F - 2m\mathbf{\Omega} \times v_{rot} - m\mathbf{\Omega} \times (\mathbf{\Omega} \times r)$$
$$= F + F_{coriolis} + F_{centrifugal}$$
$$= F + F_{fict}$$

 Where F is the real force acting on the particle, while F_{coriolis} and F_{centrifugal} are pseudo (fictitious) forces

$$F_{coriolis} = -2m\mathbf{\Omega} \times v_{rot}$$
$$F_{centrifugal} = -m\mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$

Probing Centrifugal and Coriolis Forces

• Consider a circular plank (say a merry-go-round) rotating with an angular velocity $\mathbf{\Omega} = \Omega \hat{\mathbf{k}}$, with a mass *m* as shown

- Mass m is moving with a velocity v which is in the radial direction w.r.t. plank
- Location of the particle at a given instant is r, w.r.t. to rotating coordinate system
- What are the magnitudes and directions of pseudo forces?

• Centrifugal force can be computed as

$$\begin{aligned} \mathsf{F}_{centrifugal} &= -m\mathbf{\Omega} \times (\mathbf{\Omega} \times \mathsf{r}) \\ &= -m\Omega^2 r \hat{\mathsf{k}} \times (\hat{\mathsf{k}} \times \hat{\mathsf{r}}) \\ &= -m\Omega^2 r \hat{\mathsf{k}} \times \hat{\boldsymbol{\theta}} \\ &= -m\Omega^2 r (-\hat{\mathsf{r}}) \\ &= m\Omega^2 \mathsf{r}. \end{aligned}$$

Thus centrifugal force has the same magnitude as the centripetal force, but opposite direction, as expected of a pseudo force.

• Coriolis force exists only when the particle moves with respect to the rotating frame. Here

$$v_{rot} = v\hat{r}.$$

• Therefore,

$$F_{coriolis} = -2m\mathbf{\Omega} \times \mathbf{v}_{rot}$$
$$= -2m\Omega \mathbf{v}(\hat{\mathbf{k}} \times \hat{\mathbf{r}})$$
$$= -2m\Omega \mathbf{v}\,\hat{\boldsymbol{\theta}}$$

Coriolis and Centrifugal Forces

Thus, finally the direction of the forces

PH111: Introduction to Classical Mechanics Chapter 4: No

Coriolis Force due to Rotation of Earth

• Earth's Angular Velocity in a Non-Intertial Frame

- Here x points to south, y to east, and z is radially outwards (vertically above from earth), and λ is latitude angle
- In this frame

$$\mathbf{\Omega} = -\Omega\cos\lambda\hat{i} + \Omega\sin\lambda\hat{k}$$

Coriolis Force on a Falling Object

 If a particle of mass m is falling vertically down, at a given instant with velocity v, then

$$v = -v\hat{k}$$

• Then Coriolis force on it due to Earth's rotation is

$$\mathsf{F}_{c} = -2m(\mathbf{\Omega} \times \mathbf{v}) = -2m\Omega \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -\cos\lambda & \mathbf{0} & \sin\lambda \\ \mathbf{0} & \mathbf{0} & -\mathbf{v} \end{vmatrix} = 2mv\Omega\cos\lambda\hat{\mathbf{j}}$$

- Thus, the object will experience a force towards east, and will get deviated in that direction
- Another example: away from equator, wind flow becomes circular due to Coriolis force
- Note $F_c \perp v_{rot}$, so it will lead to a circular motion

- The Foucault pendulum (FP) is a fine example of Coriolis Force
- It clearly demonstrates that we on earth are located in a rotating frame
- That is, a non-inertial frame
- Very good information on FP is available on Wikipedia with all the history
- Check out the Wikipedia page here
- The following simplified treatment is based on a solved example in Kleppner and Kolenkow.

- If consider a large enough pendulum, we will see that its plane of oscillations rotates
- That is the pendulum doesn't keep oscillating in the same plane
- This rotation and its period can be explained mathematically in terms of the Coriolis force

• Consider the following figure showing a pendulum on Earth's surface

PH111: Introduction to Classical Mechanics Chapter 4: No

- ullet In the figure, λ denotes the latitude angle
- (r, θ) denote the plane polar coordinates of the bob of the pendulum
- the coordinate system is supposed to be attached to the earth
- the earth is supposed to be flat
- A good approximation given that bob doesn't move over large distances
- We further assume that the length of the pendulum is I
- Let us setup the equations of motion of the bob

- Clearly, the bob is moving along the r direction
- ullet If its motion were in a plane, $m{ heta}$ will not change with time
- Then $\dot{ heta}=0$
- ullet The frequency of oscillations w of the pendulum will be

$$\omega = \sqrt{\frac{l}{g}}$$

• Therefore, r(t) will be given by

$$r(t)=r_0\sin\omega t,$$

where r_0 is the amplitude

 \bullet Assume, as before, the angular velocity of the rotation of earth is $\pmb{\Omega}$

$$\mathbf{\Omega} = \Omega \sin \lambda \,\hat{k} - \Omega \cos \lambda \,\hat{r},$$

where \hat{k} denotes the perpendicular to earth's surface at the lattitude λ

• If the mass of the bob is *m*, the Coriolis force acting on the bob is

$$F_c = -2m(\mathbf{\Omega} \times v)$$

• Given that to a good approximation $\mathbf{v}=\dot{r}\hat{\mathbf{r}},$ we obtain from above

$$F_{c} = -2m(\Omega \sin \lambda \hat{k} + \Omega \cos \lambda \hat{r}) \times (\dot{r}\hat{r})$$
$$= -2m\dot{r}\Omega \sin \lambda \hat{\theta}$$

- Thus Coriolis force is strictly in the tangential $(\hat{oldsymbol{ heta}})$ direction
- So we set up the equation of motion in the tangential direction

$$m(2\dot{r}\dot{\theta}+r\ddot{ heta})=-2m\dot{r}\Omega\sin\lambda$$

Leading to

$$2\dot{r}\dot{\theta} + r\ddot{\theta} = -2\Omega\sin\lambda\dot{r}$$

- Although, this equation can be solved quite precisely, but we will use an approximate approach
- Reasonable to assume $\dot{\theta}$ (angular speed of precession) to be constant
- Implying that $\ddot{\theta} = 0$

• This leads to the equation

$$2\dot{r}\dot{ heta} = -2\Omega\sin\lambda\dot{r}$$

• Thus we obtain the solution of the problem

$$\dot{ heta} = -\Omega \sin \lambda$$

• With $|\dot{\theta}| = \Omega \sin \lambda$, we obtain the period of the precession to be

$$T = \frac{2\pi}{|\dot{\theta}|} = \frac{2\pi}{\Omega \sin \lambda} = \frac{24 \text{ hr}}{\sin \lambda}$$

- For Paris, $\lambda \approx 49^{\circ}$, so that $T_{Paris} \approx 32$ hr which is very close to the observed value of 31 hr 50 minutes!
- Clearly, at the north pole $T_{north-pole} \approx 24$ hr