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Introduction

Question: What is a central force?

Answer: Any force which is directed towards a center, and

depends only on the distance between the center and the

particle in question.

Question: Any examples of central forces in nature?

Answer: Two fundamental forces of nature, gravitation, and

Coulomb forces are central forces

Question: But gravitation and Coulomb forces are two body

forces, how could they be central?

Answer: Correct, these two forces are indeed two-body forces,

but they can be reduced to central forces by a mathematical

trick.



Aim and Scope

Kepler took the astronomical data of Tycho Brahe, and

obtained three laws by clever mathematical �tting

Law 1: Every planet moves in an elliptical orbit, with sun on

one of its foci.

Law 2: Position vector of the planet with respect to the sun,

sweeps equal areas in equal times.

Law 3: If T is the time for completing one revolution around

sun, and A is the length of major axis of the ellipse, then

T 2 ∝ A3.

We will be able to derive all these three laws based upon the

mathematical theory we develop for central force motion



Reduction of a two-body central force problem to a

one-body problem

Gravitational force acting on mass m1 due to mass m2 is

F12 =−Gm1m2

r2
12

r̂12,

i.e., it acts along the line joining the two masses
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Similarly, the Coulomb force between two charges q1 and q2 is

given by

F12 =
q1q2

4πε0r
2

12

r̂12.



Reduction of two-body problem....

An ideal central force is of the form

F(r) = f (r )̂r,

i.e., it is a one-body force depending on the coordinates of

only the particle on which it acts

But gravity and Coulomb forces are two-body forces, of the

form

F(r12) = f (r12)̂r12

Can they be reduced to a pure one-body form?

Yes, and this is what we do next



Reduction of two-body problem...
Relevant coordinates are shown in the �gure

We de�ne

r = r1− r2

=⇒ r = |r|= |r1− r2|

Given F12 = f (r )̂r, we have

m1r̈1 = f (r )̂r

m2r̈2 =−f (r )̂r



Decoupling equations of motion

Both the equations above are coupled, because both depend

upon r1 and r2.

In order to decouple them, we replace r1 and r2 by r = r1− r2
(called relative coordinate), and center of mass coordinate R

R=
m1r1+m2r2
m1+m2

Now

R̈=
m1r̈1+m2r̈2
m1+m2

=
f r̂− f r̂

m1+m2

= 0

=⇒ R= R0+Vt,

above R0 is the initial location of center of mass, and V is the

center of mass velocity.



Decoupling equations of motion...

This equation physically means that the center of mass of this

two-body system is moving with constant velocity, because

there are no external forces on it.

We also obtain

r̈1− r̈2 = f (r)

(
1

m1

+
1

m2

)
r̂

=⇒ r̈ =

(
m1+m2

m1m2

)
f (r )̂r

µ r̈ = f (r )̂r,

where µ = m1m2

m1+m2
, is called reduced mass.



Reduction of two-body problem to one body problem

Note that this �nal equation is entirely in terms of relative

coordinate r

It is an e�ective equation of motion for a single particle of

mass µ , moving under the in�uence of force f (r )̂r.

There is just one coordinate (r) involved in this equation of

motion

Thus the two body problem has been e�ectively reduced to a

one-body problem

This separation was possible only because the two-body force

is central, i.e., along the line joining the two particles

In order to solve this equation, we need to know the nature of

the force, i.e., f (r).



Two-body central force problem continued

We have already solved the equation of motion for the

center-of-mass coordinate R

Therefore, once we solve the �reduced equation�, we can

obtain the complete solution by solving the two equations

R=
m1r1+m2r2
m1+m2

r = r1− r2

Leading to

r1 = R+

(
m2

m1+m2

)
r

r2 = R−
(

m1

m1+m2

)
r

Next, we discuss how to approach the solution of the reduced

equation



General Features of Central Force Motion

Before attempting to solve µ r̈ = f (r )̂r, we explore some

general properties of central force motion

Let L= r×p be angular momentum corresponding to the

relative motion

Then clearly

dL

dt
=

d r

dt
×p+ r× dp

dt
= v×p+ r×F

But v and p= µv and parallel, so that v×p= 0

And for the central force case, r×F= f (r)r× r̂ = 0, so that

dL

dt
= 0

=⇒ L= constant

Thus, in case of central force motion, the angular momentum

is conserved, both in direction, and magnitude



Conservation of angular momentum

Conservation of angular momentum implies that the relative

motion occurs in a plane

Direction of L is �xed, and because r ⊥ L, so r must be in the

same plane

So, we can use plane polar coordinates (r ,θ) to describe the

motion



Equations of motion in plane-polar coordinates

We know that in plane polar coordinates

a= r̈ = (r̈ − r θ̇2)̂r+(2ṙ θ̇ + r θ̈)θ̂

Therefore, the equation of motion µ r̈ = f (r )̂r, becomes

µ(r̈ − r θ̇2)̂r+µ(2ṙ θ̇ + r θ̈)θ̂ = f (r )̂r

On comparing both sides, we obtain following two equations

µ(r̈ − r θ̇2) = f (r)

µ(2ṙ θ̇ + r θ̈) = 0

By multiplying second equation on both sides by r , we obtain

d

dt
(µr2θ̇) = 0



Equations of motion

This equation yields

µr2θ̇ = L (constant),

we called this constant L because it is nothing but the angular

momentum of the particle about the origin. Note that L= Iω ,

with I = µr2.

As the particle moves along the trajectory so that the angle θ

changes by an in�nitesimal amount dθ , the area swept with

respect to the origin is shown in the �gure



Constancy of Areal Velocity

Thus the swept area will be that of a triangle of height r and

base rdθ

dA=
1

2
r2dθ

Which leads to

dA

dt
=

1

2
r2θ̇ =

L

2µ
= constant,

because L is constant.

Thus constancy of areal velocity is a property of all central

forces, not just the gravitational forces.

And it holds due to conservation of angular momentum



Conservation of Energy

Kinetic energy in plane polar coordinates can be written as

K =
1

2
µv · v

=
1

2
µ

(
ṙ r̂+ r θ̇ θ̂

)
.
(
ṙ r̂+ r θ̇ θ̂

)
=

1

2
µ ṙ2+

1

2
µr2θ̇

2

Potential energy V (r) can be obtained by the basic formula

V (r)−V (rO) =−
∫ r

rO

f (r ′)dr ′,

where rO denotes the location of a reference point.



Conservation of Energy...
Total energy E from work-energy theorem

E =
1

2
µ ṙ2+

1

2
µr2θ̇

2+V (r) = constant

We have

L= µr2θ̇

=⇒ 1

2
µr2θ̇

2 =
L2

2µr2

So that

E =
1

2
µ ṙ2+

L2

2µr2
+V (r)

We can write

E =
1

2
µ ṙ2+Ve� (r)

with Ve� (r) =
L2

2µr2
+V (r)



Conservation of energy contd.

This energy is similar to that of a 1D system, with an e�ective

potential energy Ve� (r) =
L2

2µr2
+V (r)

In reality L2

2µr2
is kinetic energy of the particle due to angular

motion

But, because of its dependence on position, it can be treated

as an e�ective potential energy



Integrating the equations of motion

Energy conservation equation yields

dr

dt
=

√
2

µ
(E −Ve� (r))

Leading to the solution∫ r

r0

dr ′√
2

µ
(E −Ve� (r ′))

= t− t0, (1)

which will yield r as a function of t, once f (r) is known, and
the integral is performed



Integration of equations of motion...

Once r(t) is known, to obtain θ(t), we use conservation of

angular momentum

dθ

dt
=

L

µr2

θ −θ0 =
L

µ

∫ t

t0

dt

r2

We can obtain the shape of the trajectory r(θ), by combining

these two equations

dθ

dr
=

(
dθ

dt
dr
dt

)
=

L
µr2√

2

µ
(E −Ve� (r))

Leading to

θ −θ0 = L

∫ r

r0

dr ′

r2
√
2µ(E −Ve� (r ′))

(2)



Integration of equations of motion contd.

Thus, by integrating these equations, we can obtain r(t), θ(t),
and r(θ)

This will complete the solution of the problem

But, to make further progress, we need to know what is f (r)

Next, we will discuss the case of gravitational problem such as

planetary orbits



Case of Planetary Motion: Keplerian Orbits

We want to use the theory developed to calculate the orbits of

di�erent planets around sun

Planets are bound to sun because of gravitational force

Therefore

f (r) =−GMm

r2

So that

V (r) =−
∫ r

∞

f (r ′)dr ′ = GMm

∫ r

∞

dr ′

r ′2
=−GMm

r
=−C

r
, (3)

above, C = GMm, where G is gravitational constant, M is

mass of the Sun, and m is mass of the planet in question.



Derivation of Keplerian orbits
On substituting V (r) from Eq. 3 into Eq. 2, we have

θ −θ0 = L

∫ r

r0

dr ′

r ′2
√
2µ(E − L2

2µr ′2
+ C

r ′ )

= L

∫
dr ′

r ′
√
2µEr ′2+2µCr ′−L2

(4)

We converted the de�nite integral on the RHS to an inde�nite

one, because θ0 is a constant of integration in which the

constant contribution of the lower limit r = r0 can be absorbed.

This orbital integral can be done by the following substitution

r ′ =
1

s−α
(5)

=⇒ dr ′ =− ds

(s−α)2

=⇒ dr ′

r ′
=− ds

(s−α)
(6)



Orbital integral....

Substituting Eqs. 5 and 6, in Eq. 4, we obtain

θ −θ0 =−L
∫

ds

(s−α)
√

2µE

(s−α)2
+ 2µC

s−α
−L2

=−L
∫

ds√
2µE +2µC (s−α)−L2(s−α)2

=−L
∫

ds√
2µE +2µCs−2µCα −L2s2+2L2αs−L2α2

The integrand is simpli�ed if we choose α =− µC

L2
, leading to

θ −θ0 =−L
∫

ds√
2µE +2 (µC)2

L2
−L2s2− (µC)2

L2

=−L
∫

ds√
2µE + (µC)2

L2
−L2s2



Orbital integral contd.

Finally, the integral is

θ −θ0 =−L2
∫

ds√
2µEL2+(µC )2−L4s2

=−
∫

ds√
2µEL2+(µC)2

L4
− s2

On substituting s = a sinφ , where a =
√

2µEL2+(µC)2

L4
, the

integral transforms to

θ −θ0 =−φ =−sin−1
( s
a

)
s =−a sin(θ −θ0)

=⇒ 1

r
+α =−a sin(θ −θ0)

=⇒ r =
1

−α −a sin(θ −θ0)
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Keplerian Orbit

We de�ne r0 =− 1

α
= L2

µC
, to obtain

r =
r0

1−
√
1+ 2EL2

µC2 sin(θ −θ0)

Conventionally, one takes θ0 =−π/2, and we de�ne

ε =

√
1+

2EL2

µC 2

To obtain the �nal result

r =
r0

1− ε cosθ

We need to probe this expression further to �nd which curve it

represents.
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A Brief Review of Conic Sections

Curves such as circle, parabola, ellipse, and hyperbola are

called conic sections

We will show that the curve r = r0
1−ε cosθ

in plane polar

coordinates, denotes di�erent conic sections for various values

of ε , which is nothing but the eccentricity
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Nature of orbits: parabolic orbit

Using the fact that r =
√
x2+ y2, and cosθ = x

r
= x√

x2+y2
,

we obtain √
x2+ y2 =

r0

1− εx√
x2+y2

=⇒
√
x2+ y2 = r0+ εx

=⇒ x2(1− ε
2)−2r0εx+ y2 = r20

Case I: ε = 1, which means E = 0, we obtain

y2 = 2r0x+ r20

which is nothing but a parabola. This is clearly an open or

unbound orbit. This is typically the case with comets.
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Nature of orbits: hyperbolic and circular orbits

Case II: ε > 1 =⇒ E > 0, let us de�ne A= ε2−1>. With

this, the equation of the orbit is

y2−Ax2−2r0
√
1+Ax = r20

Here, the coe�cients of x2 and y2 are opposite in sign,

therefore, the curve is unbounded, i.e., open. It is actually the

equation of a hyperbola. Therefore, whenever E > 0, the

particles execute unbound motion, and some comets and

asteroids belong to this class.

Case III: ε = 0, we have

x2+ y2 = r20

which denotes a circle of radius r0, with center at the origin.

This is clearly a closed orbit, for which the system is bound.

ε =
√
1+ 2EL2

µC2 = 0 =⇒ E =− µC2

2L2
< 0. Satellites launched by

humans are put in circular orbits many times, particularly the

geosynchronous ones.
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Nature of orbits: elliptical orbits

Case IV: 0< ε < 1 =⇒ E < 0, here we de�ne

A= (1− ε2)> 0, to obtain

Ax2−2r0
√
1−Ax+ y2 = r20

Because coe�cients of x2 and y2 are both positive, orbit will

be closed (i.e. bound), and will be an ellipse.

To summarize, when E ≥ 0, orbits are unbound, i.e., hyperbola

or parabola

When E < 0, orbits are bound, i.e., circle or ellipse.
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Time Period of Elliptical orbit

There are two ways to compute the time needed to go around

its elliptical orbit once

First approach involves integration of the equation

tb− ta =
∫ rb

ra

dr ′√
2

µ

(
E − L2

2µr ′2
+ C

r ′

)
= µ

∫ rb

ra

r ′dr ′√
(2µEr ′2+2µCr ′−L2)

When this is integrated with the limit rb = ra, one obtains that

time period T satis�es

T 2 =
π2µ

2C
A3,

where A is the major axis of the elliptical orbit. This result is

nothing but Kepler's third law.



Time period of the elliptical orbit...

Now we use an easier approach to calculate the time period

We use the constancy of angular momentum

L= µr2
dθ

dt

=⇒ L

2µ
dt =

1

2
r2dθ

R.H.S. of the previous equation is nothing but the area

element swept as the particle changes its position by dθ

Now, the integrals on both sides can be carried out to yield

LT

2µ
= area of ellipse = πab.
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Time period of the orbit contd.

a and b in the equation are semi-major and semi-minor axes of

the ellipse as shown

Now, we have

Therefore

a =
A

2
=

(rmin+ rmax)

2
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Time period of the orbit....

Using the orbital equation r = r0
1−ε cosθ

, we have

a=
1

2

(
r0

1− ε cosπ
+

r0

1− ε cos0

)
=
r0

2

(
1

1+ ε
+

1

1− ε

)
=

r0

1− ε2

Calculation of b is slightly involved. The following diagram is

helpful

PH111: Introduction to Classical Mechanics Chapter 5: Motion Under the In�uence of a Central Force



Calculation of time period...

x0 is the distance between the focus and the center of the

ellipse, thus

x0 = a− rmin =
r0

1− ε2
− r0

1+ ε
=

r0ε

1− ε2

In the diagram b =
√
r2− x2

0
, and for θ , we have cosθ = x0

r
,

which on substitution in orbital equation yields

r =
r0

1− ε cosθ
=

r0

1− εx0
r

=⇒ r = r0+ εx0 = r0+
r0ε2

1− ε2
=

r0

1− ε2

So that

b =
√
r2− x2

0
=

√
r2
0

(1− ε2)2
−

r2
0

ε2

(1− ε2)2
=

r0√
1− ε2
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Time period....

Now

1− ε
2 = 1−

(
1+

2EL2

µC 2

)
=−2EL2

µC 2

Using r0 =
L2

µC
, we have

A= 2a =
2r0

1− ε2
=

2L2

µC
×
(
− µC 2

2EL2

)
=−C

E

b =
r0√
1− ε2

=
L2

µC
×
√

− µC 2

2EL2
= L

√
− 1

2µE

Using this, we have

T =
2πµ

L
ab=

2πµ

L
×
(
− C

2E

)
×L

√
− 1

2µE
= π

√
µ

2C

(
−C

E

)3/2
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Kepler's Third Law

Which can be written as

T = π

√
µ

2C
A3/2

=⇒ T 2 =
π2µ

2C
A3,

which is nothing but Kepler's third law.


