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Reference Books

Two very good books on the subject are:

1 An Introduction to Mechanics, by Daniel Kleppner and
Robert Kolenkow, Second Edition, Cambridge University Press
(the same book which we have used for previous chapters)

2 Introduction to Special Relativity, by R. Resnik; Wiley
Eastern (New Delhi) 1968



Problems with Newtonian Mechanics

Austrian physicist/philosopher wrote a book named �Science
of Mechanics� in 1883

In that he carefully examined Newton's explanations of
dynamical laws

According to Mach, there are fundamental weaknesses in
Newton's conception of space and time

Newton wrote in Principia �Absolute, true and mathematical
time, of itself and by its own true nature, �ows uniformly on,
without regard to anything external�

That is, according to Newton, time �ows uniformly and
absolutely (i.e. not relatively)



Problems with Newtonian Mechanics...

Mach argued strongly against this view point

He wrote �it would appear as though Newton in the remarks
cited here still stood under the in�uence of medieval
philosophy, as though he had grown unfaithful to his resolve to
investigate only actual facts.�

Mach argued that because time is measured using some
physical device such as a pendulum-based clock

Therefore, time also must depend upon physical laws

That is, time cannot have an absolute, purely mathematical,
de�nition



Ernst Mach's ideas...

Mach similarly disagreed with Newton's absolute views of
space

He argued that because spatial distances are measured using
meter sticks

Therefore, the properties of space can be understood by
understanding the properties of meter sticks

Actually, Mach's ideas in�uenced the young Einstein while he
was a student in Zurich.



Examining Newton's law

We know that the velocity is a frame-dependent quantity

It is di�erent in di�erent inertial frames

But, acceleration is independent of the frames

It is the same in all inertial frames

The Newton's law
F=ma,

depends on the acceleration and force

Force, clearly is not frame dependent



Examining Newton's law...

Therefore, Newton's law should be the same in all inertial
frames

Thus, we can integrate it to obtain the velocity in any inertial
frame

Of course, we must specify the inertial frame to get the
velocity w.r.t it

We also have velocity dependent forces such as the Lorentz
force experienced by a charged particle in a magnetic �eld

F= qE+q (v×B)

This force is clearly frame dependent because v is frame
dependent

That means the force is not the same in all inertial frames - a
contradiction



Speed of light

Speed of light c is related to fundamental constants µ0 and ε0

c =
1

√
µ0ε0

Does the value of fundamental constants depend on the frame
of reference?

Does the speed of light depend on the speed of the frame of
reference with respect to which we measure it?



Relative velocities of Objects

Suppose, w.r.t. a frame two objects A and B move in opposite
directions

Clearly, their relative speed will be larger |vrel |= |vA+ vB |
If the two objects move in the same direction

In this case, the relative velocity is smaller |vrel |= |vA− vB |



Is the speed of light frame dependent?

So we agree that velocity is frame dependent

But, what about the speed of light?

For the light beam and observer moving in opposite directions

Is |vrel |= |c+ vO |?
And for the light beam and observer moving in the same
direction

Is |vrel |= |c− vO |?



Speed of light...

If the speed of light c is frame dependent, then so should be
fundamental constants

Because, as we wrote earlier

c =
1

√
µ0ε0

,

in which ε0 and µ0 are fundamental constants.

Is this equation also frame dependent?

And, if µ0 and ε0 are frame dependent, the electromagnetic
forces will also be frame dependent

This will imply that all inertial frames are equivalent from a
mechanical point of view

but, not from an electromagnetic point of view

Perhaps, there exists a special reference frame called �absolute
rest frame� relative to which all motions are de�ned

Early physicists believed in this special frame of reference



The notion of ether...

Sound waves require a medium to travel

That is sound waves cannot be created in vacuum

However, light doesn't require a medium to travel

It also travels without problems through vacuum

This was considered impossible earlier

Therefore, scientists believed in the concept of an invisible
medium which �lls the whole space

and light travels through that medium

And that medium was called ether.



Ether continued...

And scientists believed that ether is present in the entire
universe

All celestial bodies such as stars, planets, and galaxies �oat in
ether

Ether can be thought of as signifying the absolute rest frame

And speed of light is c only with respect to ether

And in other frames of references it could take di�erent values

And that the speed of light can be determined by measuring it
in di�erent frames

We can also try to determine the absolute speeds of objects
like, sun, moon, earth...



Speed of light

Therefore, one can try to measure the speed of light in
di�erent frames

Once done, this issue of relative speed of light will be settled
once and for all

But, how to experimentally measure the speed of light in
di�erent frames?

American physicists Michelson and Morley came up with a
clever experiment to do so

That is the famous Michelson-Morley experiment discussed
next



Origins of Michelson-Morley Experiment

The initial idea to test the ether hypothesis was given by
Maxwell

The motion of Jupiter with respect to earth should change the
speed at which its light reaches earth

Whenever Jupiter moves towards earth its light should move
faster towards earth

But, when it moves away from earth, its light will move slower
towards earth

The eclipses of moons of Jupiter are periodic

But eclipses will become aperiodic depending on the relative
motion of Jupiter relative to earth

However, this e�ect was too tiny and the experiment couldn't
be performed

Nevertheless, it inspired Michelson to develop his
interferometer to test similar e�ects



Michelson-Morley Experiment

Schematic diagram of Michelson-Morley interferometer



Michelson Interferometer

Another schematic of the interferometer



Michelson Interferometer...

The instrument was invented by Michelson in 1881

It is a highly sensitive instrument designed to see the
interference of light

Such an instruments is called an interferometer

Even though it was invented by Michelson for di�erent
purposes

The instrument is so sensitive that it is used in modern times

For example, modern LIGO experiment for detecting
gravitational waves uses them



Michelson Interferometer...

In the instrument, light from a source is split into two beams
using a semi-transparent mirror (Msemi )

Msemi roughly transmits half the beam along path 1

While the other half is re�ected by it along path 2

The transmitted beam gets re�ected back along reverse of
path 1 by mirror M1

The re�ected beam also gets re�ected by mirror M2 along the
reverse of path 2

The re�ected beam 1, again gets partly re�ected by Msemi and
reaches the observer

The re�ected beam 2 gets partly transmitted by Msemi and
reaches the observer

Thus both the beams reaching the observer have 1/4 intensity
of the original beam



Michelson Interferometer...

If the two beams reaching the observer travel the same
distance, they will be in phase

And the observer will see a bright spot due to constructive
interference

Beams arriving in phase (i.e. zero path di�erence)



Michelson Interferometer...

If they have a path di�erence which is an odd-integer multiple
of λ/2, i.e., (m+1/2)λ

The two beams will be 180°out of phase, and we will see a
dark spot due to destructive interference

Beams arriving out of phase (i.e. (m+1/2)λ path di�erence)



Michelson Interferometer...

If we slightly misalign the beams by tilting one of the mirrors,
we will observe an interference pattern

It will have alternating bright and dark fringes as shown

If the length of one of the arms is altered slowly

The fringe pattern will move...



Michelson-Morley Experiment

As the earth moves through the ether, the relative velocity of
light in one of the arms will be di�erent compared to the other

Therefore, time taken for the light to travel back and forth
through two arms will be di�erent

This will e�ectively introduce a small path di�erence between
the two beams

Which will shift the fringe pattern by a small amount

Suppose the lab moves through the ether with a speed v

And arm A of the interferometer is along the direction of
motion



Michelson-Morley Experiment...

Let the length of arm A be l

Then the time taken by light beam to travel from Msemi and
back, τA will be

τA =
l

c+ v
+

l

c− v
=

2l

c

(
1

1− v2/c2

)
Because v ≪ c , we have

τA ≈ 2l

c

(
1+

v2

c2

)
Because arm B is perpendicular to earth's motion, so the
speed of light will not change along path 2

But, there will be a time delay as Msemi moves through the
ether during beam's back and forth journey



Michelson-Morley Experiment...

The following �gure explains the time delay

Assuming that the length of arm B is also l , clearly now the
light travels along the hypotenuse of a right triangle of length

lH =

√
l2+

v2τ2B

4



Michelson-Morley Experiment...

Thus

τB =
2lH
c

=
2

√
l2+

v2τ2
B

4

c

=⇒ τB =
2l

c

√√√√ 1(
1− v2

c2

)
Or

τB ≈ 2l

c

(
1+

v2

2c2

)
Thus, the time di�erence between the travel times of light
along the two paths is

∆τ1 = τA− τB ≈ l

c

(
v2

c2

)



Michelson-Morley Experiment

Now if we rotate the apparatus by 90°, the time di�erence
turns out to be

∆τ2 =−∆τ1

Therefore, with respect to the previous con�guration the time
delay will be

∆τ =∆τ1−∆τ2 =∆τ1− (−∆τ1)≈ 2∆τ1 ≈
2l

c

(
v2

c2

)
This extra time di�erence will lead to an extra path di�erence

which should lead to a shift in the fringe patternif ν is the
frequency of light, the number of fringe shifts due to this extra
path di�erence is

∆N = ν∆τ ≈ c

λ

2l

c

(
v2

c2

)
≈ 2l

λ

(
v2

c2

)



Michelson-Morley Experiment...

Orbital speed of earth around sun v is such that v/c ≈ 10−4

And for the sodium light that was used in the experiment
λ ≈ 590×10−9m

By making l ≈ 11 m, one gets ∆N ≈ 0.4 fringes, which was
well within the sensitivity of the apparatus

Alternatively, realizing that every six months, earth reverses its
direction of motion

So the fringe shift should be opposite every six months



Michelson-Morley Experiment

Various other variations of this experiment were tried by
Michelson and Morley

But in all the cases no fringe shift was observed!

That is ∆N = 0 in all the cases

Once, everyone was convinced of this observation

Physicists of the time were truly puzzled and worried

It shook the physics world of that time!

Because this result implies that there is no ether in the
universe!

How to solve this problem? What do we do now?
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Lorentz-Fitzgerald Contraction Hypothesis

To explain the null result of MM experiment, Lorentz and
Fitzgerald gave the hypothesis of length contraction

They said all bodies are contracted when moving through ether

If the original length of the body is l0, and if the body moves
with speed v through ether, its contracted length l will be

l = l0

√
1− v2

c2

This hypothesis explained the null result of the MM
experiment for the wrong reasons

But, Einstein later on using his special theory of relativity
proved that Lorentz contraction is a correct result

There were many other consequences of Einstein's theory such
as time dilation

Next, we begin the discussion of Einstein's theory by
understanding some basic concepts
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A note on synchronization of clocks

Suppose we have two observers, one on Moon and the other
one on Earth

Both the observers want to synchronize their clocks with each
other

They will use light signals to communicate with each other

It takes about 1 second for the light to travel between Moon
to Earth

Keeping this in mind, the observer on Moon advances their
clock by 1 second

With this, for an observer on Earth, the clock on Earth is
synchronized with the clock on Moon

But, for an observer on Moon, the clock on Earth will always
be two seconds behind the Moon clock!

So what is the correct procedure for synchronizing clocks?
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Einstein's way of Clock Synchronization

Note that the problem above wouldn't arise if the light
traveled at an in�nite speed

Because then the transmission of signals will be instantaneous

Keeping the �nite nature of the speed of light in mind,
Einstein proposed a procedure for clock synchronization

Let there be two observers A and B

Observer A sends a light signal to observer B at time TA

Observer B immediately sends back a light signal to A, when
their clock read TB

A receives this signal at time T ′
A = TA+∆T

Clearly, the two clocks will be synchronized if
TB = TA+∆T/2

Note that TB ̸= TA when the clocks are synchronized

Let us now discuss two fundamental postulates given by
Einstein
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Einstein's Two Postulates

Postulate # 1: Laws of physics have the same form with
respect to all the inertial frames of references

Postulate # 2: The speed of light is a universal constant,
which is the same for all observers

Both the laws are quite remarkable

The �rst one is also called the Principle of Relativity and was
even proposed by Galileo

However, the mathematical equations of Einstein embodying
the �rst law are quite di�erent from those of Galileo

Regarding the second postulate, Einstein was possibly inspired
by the fact that light needs no medium to propagate

Therefore, its speed must be same everywhere

Before exploring the mathematical consequences of Einstein's
postulates, let us understand the meaning of simultaneity of
events



Simultaneity of Events

Consider a railwayman standing in the middle of a �at wagon
of length 2L as shown

When he lights his lantern, the light travels in all directions
with the speed c

It will arrive at the two ends after an interval of L/c

This system, in which the wagon is at rest, the light reaches
the ends A and B, simultaneously

Thus, these two events are simultaneous in this frame.



Simultaneity of Events...

Let us observe the same event from a frame which moves to
the right with speed v

Clearly, in this frame the wagon moves to the left with speed
v , as do its ends A and B

Light in this frame is also traveling with the speed c

However, because the wagon is moving, during the transit time
of light

Ends A/B would have reached positions A∗/B∗

Thus, light will reach B before it reaches A

So, these events are not simultaneous in this moving frame!



Time as a coordinate?

Now we realize the importance of time after the previous
discussion of simultaneity

We note that just like space coordinates, it is also frame
dependent

Perhaps we need to take time (t) on the same footing as the
space coordinates (x ,y ,z)

Let us start treating time t as a coordinate in addition to
(x ,y ,z)

We will collectively call this quadruplet of (x ,y ,z , t) as
space-time coordinates

Henceforth, instead of operating in a three-dimensional (3D)
space, we will work in a four-dimensional (4D) space-time

Hence the universe will now become a 4D entity for us

No absolute and independent �ow of time in this approach,
everything is relative!



Galilean Relativity

Now we explore as to how the space-time coordinates related
to each other in Newtonian physics, but called Galilean
transformations

Because this was �rst mathematically explored by Galileo

Let us consider our usual frames of references S and S' as
shown

S and S' are de�ned by space-time coordinates (x ,y ,z , t) and
(x ′,y ′,z ′, t ′), respectively



Galilean Transformations

Clearly, the two sets of coordinates are related by the equation,
also called transformation

r′ = r−R= r− vt,

where R= vt.

Because v = v î , is in the x direction, we can write

x ′ = x− vt

y ′ = y

z ′ = z

t ′ = t

The fourth equation above is actually a fundamental
assumption of Newtonian dynamics as discussed earlier

These equations are also called Galilean transformation



Lorentz Transformations

Let us now examine the relationship between space-time
coordinates in two inertial frames (S and S') in light of
Einstein's two postulates

This relationship was derived by Albert Einstein

But, somehow they are known as Lorentz transformations

The most general Lorentz transformation equations will be

x ′ = a11x+a12y +a13z+a14t

y ′ = a21x+a22y +a23z+a24t

z ′ = a31x+a32y +a33z+a34t

t ′ = a41x+a42y +a43z+a44t

If we use the notations (x ,y ,z , t)≡ (x1,x2,x3,x4) and
(x ′,y ′,z ′, t ′)≡ (x ′

1
,x ′

2
,x ′

3
,x ′

4
)



Lorentz Transformations...

The previous transformation equations can be written in the
compact form

x ′i =
4

∑
j=1

aijxj , for i = 1, ...4

Clearly, this of the form of matrix multiplication involving 4D
vectors (x ′i and xi ) and a 4×4 transformation matrix with
matrix elements aij

There's another convention called Einstein convention in which
it is implied that the repeated indices (j above) are summed
over. Under this convention we need to just write

x ′i = aijxj ,

above even i = 1, ...4 is implied.

But we will hardly ever use Einstein's conventions unless
mentioned



Lorentz Transformations...
For the sake of simplicity, we consider again the case when S'
frame moves along the x direction with velocity v with respect
to S

We also assume that the origins of S and S' coincide at
t = t ′ = 0

Clearly, for this case y and z coordinates will be una�ected

Therefore, the following must be true

aij = 0, for i ̸= j , and i , j = 2,3,

aii = 1, for i = 2,3



Lorentz Transformations...

And we further adopt the notations

a11 = A

a14 = B

a41 = C

a44 = D

Leading to the transformation equations for this case

x ′ = Ax+Bt

y ′ = y

z ′ = z

t ′ = Cx+Dt

Equations above have four unknowns A,B,C , and D.

We need four conditions to determine them



Lorentz Transformation Equations...

Condition 1: Suppose at time t (according to S), the origin of
frame S is observed from frame S', clearly the space-time
coordinates in two frames will be
in S: (0, t), and in S' (−vt ′, t ′)
So the �rst and the fourth equations yield

−vt ′ = Bt

t ′ = Dt

we can satisfy both these equations only if

B =−vD



Lorentz Transformation Equations...

Now our (x , t) transformation equations are

x ′ = Ax− vDt

t ′ = Cx+Dt

Condition 2: The origin of frame S' is observed from frame S,
clearly the space-time coordinates in two frames will be
in S: (vt, t), and in S' (0, t ′)
Now the transformation equations yield

0= Avt− vDt

t ′ = Cvt+Dt

from the �rst equality we obtain

A= D



Lorentz Transformation Equations...

Now our (x , t) transformation equations become

x ′ = A(x− vt)

t ′ = Cx+At

Condition 3: A light pulse is emitted from the origin at
t = t ′ = 0 and is observed later along x and x ′ directions
In S: (ct, t) and in S': (ct ′, t ′). From above equations we have

ct ′ = A(ct− vt)

t ′ = Cct+At

which implies

A

c
(ct− vt) = Cct+At

=⇒ C =−(v/c2)A



Lorentz Transformation Equations...

Now the (x , t) equations have only one unknown A

x ′ = A(x− vt)

t ′ = A
(
− v

c2
x+ t

)
Condition 4: A light pulse is sent at t = t ′ = 0, and is observed
along the y/y ′ axes.
In S (0,ct, t), in S' (−vt ′,y ′, t ′). From equations above we
have

x ′ =−Avt
y ′ = y = ct

t ′ = At



Lorentz Transformation Equations...

Now the distance traveled by light in S' is
d ′ =

√
x ′2+ y ′2 = t

√
A2v2+ c2. But, the speed of light is also

c in S', therefore,

c =
d ′

t ′
=

t
√
A2v2+ c2

At

=⇒ c2 =
A2v2+ c2

A2

=⇒ A=± 1√
1− v2/c2



Lorentz Transformations

Only the positive sign is acceptable for A, leading to the �nal
equations called Lorentz transformations

x ′ = γ(x− vt)

y ′ = y

z ′ = z

t ′ = γ

(
t− v

c2
x
)

where

γ =
1√

1− v2/c2



The inverse Lorentz transformation

The inverse transformation can be obtained by interchanging
(x ,y ,z , t)↔ (x ′,y ′,z ′, t ′) and v →−v
The inverse transformation is about an observer in the S'
frame, observing frame S

x = γ(x ′+ vt ′)

y = y ′

z = z ′

t = γ

(
t ′+

v

c2
x ′
)



Behavior of γ function
Note that γ = 1, for v = 0 and ∞ for v = c , thus 1≤ γ ≤ ∞,
for 0≤ v ≤ c , or equivalently for 0≤ v/c ≤ 1.

If we plot γ as a function of the dimensionless quantity v/c ,
we obtain



Galilean Relativity as a limiting case...

Let us assume that the speed of light becomes in�nite, i.e.,
c = ∞

Physically, that means that now observers can communicate
with each other instantaneously

Clearly, γ → 1, as c → ∞. In this limit the Lorentz
transformation equations become

x ′ = x− vt

y ′ = y

z ′ = z

t ′ = t.

which are precisely the equations of Galilean transformation

Thus, Galilean transformation can be seen as a limiting case (
c → ∞) of the Lorentz transormation

Or the Galilean relativity as a limiting case of Special Theory
of Relativity (STR)



Lorentz Contraction

Let us explore some interesting consequences of STR

The �rst one is Lorentz contraction which implies that moving
objects as seen from a stationary frame appear shorter

This e�ect is also called length contraction

Let us assume that a rod of length L0 and ends A and B is at
rest in frame S

We observe the length of the rod from the frame S' moving at
speed −v along the direction of the rod

The length of the rod, L0 (say), in S can be computed using
the space-time coordinates of its ends (xa, t) and (xb, t)

L0 = xb− xa

How do we determine its length, L′
0
, as seen by an observer in

S'?



Length contraction...

For that, the observer in S' must measure the coordinates of
the two ends simultaneously

Let the space-time coordinates be (x ′a, t
′) and (x ′b, t

′)

So L′
0
= x ′b− x ′a

Using inverse the Lorentz transformations for velocity −v we
have

xa = γ(x ′a− vt ′)

xb = γ(x ′b− vt ′)

=⇒ L0 = xb− xa = γ(x ′b− x ′a) = γL′0

=⇒ L′0 =
L0

γ
= L0

√
1− v2/c2

Thus for v > 0, L′
0
< L0, that is length of the rod as seen from

the moving frame is smaller as compared to the one in its rest
frame

This is the famous Lorentz/length contraction phenomenon



Time Dilation

Now we explore how the time interval between two events as
measured from two di�erent frames is related

Suppose a clock is at rest at position x with respect to the
frame S

and the time interval between its successive ticks is τ0

measured by an observer in S

What is the time interval between its ticks measured by an
observer in S' moving with speed v with respect to S

In S' the clock moves with speed −v
With respect to frame S let event 1 be tick # 1 at time t

Even 2 is tick # 2 at time t+ τ0



Time dilation...

Let the corresponding time coordinates in S' be t ′ and t ′+ τ ′
0
,

respectively

t ′ = γ(t− vx/c2)

t ′+ τ
′
0 = γ(t+ τ0− vx/c2)

=⇒ τ
′
0 = γτ0 =

τ0√
1− v2

c2

Which implies for v ≥ 0, τ ′
0
≥ τ0

This means that time interval as seen from a moving frame is
larger as compared to the rest frame

This phenomenon is called time dilation



Proper Time and Proper Length

Quantities L0 and τ0 in the previous discussion are called
proper length and proper time, respectively

How does de�ne these �proper� quantities?

The de�nitions are quite simple

The length of a body measured in a frame in which it is at
rest, is called its proper length

Similarly, the time interval of an event by a clock in a frame in
which it is at rest is called proper time.



Observation of Relativistic E�ects

There are several phenomenon which can be explained only by
using the concept of time dilation

For example, several measurements have revealed that the
lifetime of negative muons, µ− is 2.2×10−6s or 2.2 µs when
at rest

However, fast moving µ− have been observed with the lifetime
of 440 µs

Such huge di�erence (200 times) can only be explained in
terms of time dilation



Calculation of Relative velocities

Let us consider the usual two frames S (x ,y ,z , t) and
S'(x ′,y ′,z ′, t), with S' moving with speed v along +ve x
direction

If an object is found to be moving with velocity (ux ,uy ,uz)
with respect to S, and (u′x ,u

′
y ,u

′
z) with respect to S', what is

the relationship between the two?

According to the Galilean relativity, it will be

u′x = ux − v

u′y = uy

u′z = uz

Let us explore what will be the relationship according to the
special theory of relativity.



Relative velocities...

Clearly the de�nition of velocity components in S is

ux = lim
∆t→0

∆x

∆t

uy = lim
∆t→0

∆y

∆t

uz = lim
∆t→0

∆z

∆t

And in S'

u′x = lim
∆t ′→0

∆x ′

∆t ′

u′y = lim
∆t ′→0

∆y ′

∆t

u′z = lim
∆t ′→0

∆z ′

∆t ′



Relative velocities

Using the equations of Lorentz transformation, we have

∆x ′ = γ(∆x− v∆t)

∆y ′ =∆y

∆z ′ =∆z

∆t ′ = γ

(
∆t− v

c2
∆x

)
Using these we have

u′x = lim
∆t ′→0

∆x ′

∆t ′
= lim

∆t ′→0

(∆x− v∆t)(
∆t− v

c2
∆x

) =
ux − v(
1− v

c2
ux
)

Similarly, we obtain for the remaining two components

u′y =
uy

γ
(
1− v

c2
ux
)

u′z =
uz

γ
(
1− v

c2
ux
)



Relative velocities

In order to obtain the inverse transformation, i.e., (ux ,uy ,uz)
in terms of (u′x ,u

′
y ,u

′
z), we just interchange primed and

unprimed quantities and v →−v in the previous equations

ux =
u′x + v(
1+ v

c2
u′x
)

uy =
u′y

γ
(
1+ v

c2
u′x
)

uz =
u′z

γ
(
1+ v

c2
u′x
)

Note that these formulas di�er from the Galilean formulas
presented earlier by a nontrivial denominator

This has very important consequences as we shall see

Noteworthy point is that the relative velocities in the y and z

directions also aren't unchanged any more, in complete
disagreement with the Galilean relativity



Doppler E�ect of Light

Before deriving the formula for the Doppler e�ect of light, let
us review the two formulas for the Doppler e�ect of sound

When the source of sound moves towards the observer with
speed v

If the frequency of the sound is ν0, and its speed in that
medium is w

Clearly, the sound pulses arrive with gap of time τ0 = 1/ν0

The distance between successive crests is the wavelength
λ = w/ν0



Doppler E�ect...

For the moving source the distance between successive crests,
i.e., Doppler shifted wavelength λD , reduces

λD = λ − vτ0 = λ − v

ν0

If the Doppler shifted frequency is ν ′
0
, we have

w

ν ′
0

=
w

ν0
− v

ν0

Leading to the well-known result

ν
′
0 = ν0

(
1

1− v/w

)
The change in frequency ∆ν = ν ′

0
−ν0 is called the Doppler

shift



Doppler shift...

Suppose, instead, the observer is moving towards the source
with speed v

Now the wave length of the sound wave doesn't change

But, the e�ective sound velocity becomes w + v

This causes change in frequency

ν
′
0 =

w + v

λ
=
(w

λ
+

v

λ

)
=
(

ν0+
vν0

w

)
= ν0

(
1+

v

w

)
The two results agree to the �rst order in ν/w



Relativistic Doppler Shift of Light
Suppose the light source is moving towards the observer at a
speed v

If the light has frequency ν0, then the time period between
pulses is τ0 = 1/ν0.
Because the source is moving, this time period will undergo
time dilation with respect to the observer, leading to a new
time period

τ = γτ0

As in case of the sound wave, the distance between the two
successive crests in observer's frame will be

λD = cτ − vτ



Relativistic Doppler Shift

Now Doppler-shifted frequency νD will be

νD =
c

λD

=
c

(c− v)τ
=

c

γ(c− v)τ0

= ν0

√
1− v2/c2

(1− v/c)
= ν0

√
1+ v/c

1− v/c



Some solved problems

Problem 1: Consider a railway wagon of length 2L, with its
two ends A and B, and the origin located at the center O. If a
light pulse is emitted at O at time t = 0, calculate the time of
arrival of the pulses at the two ends with respect to an
observer: (a) at rest on the wagon, and (b) in frame S' moving
with respect to the wagon with speed v along the direction of
the wagon (x direction)

Soln 1: (a) If the x coordinates of the ends A and B of wagon
are ∓L, we have time of arrival at A t1 = L/c = T , and at B
also t2 = L/c = T . So in S frame the two events are
simultaneous with t1 = t2 = L/c = T

(b) In order to get the times with respect to the S' frame, we
use the Lorentz transformation equations

t ′1 = γ

(
t1−

v

c2
x1

)
= γ

(
L

c
+

v

c2
L

)



Solved problems...

or

t ′1 = T
1+ v/c√
1− v2/c2

= T

√
1+ v/c

1− v/c

and

t ′2 = γ

(
t2−

v

c2
x2

)
= γ

(
L

c
− v

c2
L

)
= T

1− v/c√
1− v2/c2

= T

√
1− v/c

1+ v/c

Clearly, as expected t ′
2
< t ′

1
, i.e., according to and observer in S',

the pulse arrives at the end B earlier than at A.



Solved Problems...
Problem 2: A spaceship A is moving with speed 0.9c with
respect to an observer. Another spaceship B is moving in a
direction exactly opposite of A with the speed 0.8c . Calculate
the speed of B with respect to A. What will be the speed of A
with respect to B?

Soln: Here we use the relative velocity formula

u′x =
ux − v(
1− v

c2
ux
)

Above v is the speed of S' (spaceship A) with respect to S,
and ux is the speed of spaceship B with respect to S. If we
take the +ve x direction to be that of A, we have

v = 0.9c

ux =−0.8c

so that speed of B with respect to A is

u′x =
−0.8c−0.9c

1− (0.9c)(−0.8c)/c2
=

−1.7c

1.72
=−0.988c



Solved problems...

If we compute the relative velocity of A with respect to B, only the
sign will be opposite for obvious reasons. Note that the result is so
di�erent compared to the Galilean result of 1.7c!



Solved Problems...

Problem 3: With respect to the S frame two events A and B
occur at distinct space-time coordinates (xA, tA), and (xB , tB),
respectively. For what conditions in frame S', moving with
speed v with respect to S: (a) can the events be made
simultaneous, i.e, t ′A = t ′B , and (b) made to occur at the same
place, i.e., x ′A = x ′B?

Soln: Let us de�ne the spatial distance between the events
L= xB − xA, and the temporal distance to be T = tB − tA.
Using the equations of Lorentz transformation, the
corresponding quantities with respect to S', L′ and T ′ are

L′ = γ (L− vT )

T ′ = γ

(
T − v

c2
L
)

(a) if L> cT , clearly L′ > 0, that means that the events
cannot be made to occur at the same place in S'.



Solved problems...

However, when S' moves with a speed v > c2T/L

T ′ < 0

if S' moves with speed v = c2T/L< c

T ′ = 0

and if it moves with speed v < c2T/L

T ′ > 0

Thus, for L> cT , we can make the two events simultaneous, or we
can reverse their order of occurence in S'. But, we cannot make
them occur at the same point in space. Such intervals are called
space-like intervals.



Solved problems...

(b) if L< cT , we have

T ′ > γ

(
T − v

c2
(cT )

)
> γT (1− v/c)> 0

Therefore, for this case, we can never make the two events
simultaneous in S'. However, space interval in S' can take
positive, negative or zero values

L′ = γ (L− vT )

For v < L/T , i.e., L> vT we have L′ > 0
For v = L/T < c , we have L′ = 0
For v > L/T , we have L′ < 0.
Thus for L< cT , by choosing the speed v of S' appropriately,
we can make two events occur at the same point in S', which
are spatially separated in S. Or even can reverse their spatial
order. Such intervals are called time-like intervals.


