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TISE for One-dimensional Systems

A one-dimensional (1D) system is one in which the particle is
con�ned to move only in one spatial dimension

Conventionally, we take that dimension to be the x axis

Thus, for a general 1D system, the Schrödinger Equation will
be of the form

i h̄
∂ψ(x , t)

∂ t
=− h̄2

2m
∂ 2ψ(x , t)

∂x2
+V (x , t)ψ(x , t), (1)

where V (x , t) is a general 1D time-dependent potential to
which the particle is exposed



TISE in 1D...

However, at present we want to restrict ourselves to
time-independent problems for which the potential is of the
form V = V (x)

We know from the previous chapter that for the
time-independent potentials, the problem reduces to
time-independent Schrödinger equation (TISE)

− h̄2

2m
d2ψ(x)

dx2
+V (x)ψ(x) = Eψ(x), (2)

where ψ(x) = ψ(x , t = 0), with ψ(x , t) = ψ(x)e−iEt/h̄

Let us �rst discuss a few important points related to the TISE



TISE in 1D: Important Assumptions

We will assume that ψ(x) is continuous everywhere in space

This is a postulate, because there is no mathematical
guarantee that the solutions of the TISE are continuous

The regions in which V (x) = ∞, ψ(x) = 0, or else the TISE
will be divergent in those regions

We will also show an important result that the �rst derivative

of ψ(x), i.e.,
dψ

dx
will be continuous across a �nite

discontinuity of V (x)

We prove this important result next



Continuity of the �rst-derivative of the wave function

Let us assume that V (x) is discontinuous at x = x0

But, everywhere the potential is �nite

We assume that

lim
ε→0

V (x0− ε) = V (x−0 ) = V1

lim
ε→0

V (x0+ ε) = V (x+0 ) = V2,

with V1 ̸= V2 ̸= ∞



1D discontinuous potential
An example of a �nite discontinuous potential in the limit
ε → 0

When limit ε → 0 is taken, the potential looks like



1D Discontinuous potentials...

There can be more complicated potentials such as square well,
�nite barrier, etc.

Let us integrate the TISE for this potential with a
discontinuity at x = x0 in the region x ∈ (x0− ε,x0+ ε)

∫ x0+ε

x0−ε

(
− h̄2

2m
d2ψ(x)

dx2
+V (x)ψ(x)

)
dx = E

∫ x0+ε

x0−ε

ψ(x)dx

dψ(x)

dx

∣∣∣∣
x0+ε

− dψ(x)

dx

∣∣∣∣
x0−ε

=
2m

h̄2

∫ x0+ε

x0−ε

(V −E )ψ(x)dx



1D discontinuous potential...

As long as V (x) is bounded in the range of integration

lim
ε→0

2m

h̄2

∣∣∣∣∫ x0+ε

x0−ε

(V −E )ψ(x)dx

∣∣∣∣≤ lim
ε→0

2m

h̄2
|(2ε)(Vmax −E )ψmax |→ 0

This means that limε→0
2m

h̄2

∫ x0+ε

x0−ε
(V −E )ψ(x)dx = 0, implying

that dψ(x)
dx

is continuous across x0

dψ(x)

dx

∣∣∣∣
x+0

=
dψ(x)

dx

∣∣∣∣
x−0

(3)

Next, we solve the 1D-TISE for potentials that are
discontinuous, starting with the case of particle in a box



Particle in a 1D Box

Let us consider a particle exposed to the potential shown in
the picture below

Above V (x) = ∞, for x ≤ 0 and x ≥ a, and V (x) = 0 for
0< x < a

Therefore, ψ(x) = 0, x ≤ 0 and x ≥ a



Particle in a box...

For 0< x < a, the particle satis�es the free-particle TDSE

− h̄2

2m
d2ψ(x)

dx2
= Eψ(x)

=⇒ d2ψ(x)

dx2
+k2ψ(x) = 0

where k =

√
2mE

h̄2
.

Clearly, the most general solution is

ψ(x) = Asinkx+B coskx (4)

But this solution must satisfy the boundary conditions on the
wave function

ψ(x = 0) = ψ(x = a) = 0



Particle in a box...

On imposing ψ(x = 0) = 0 on Eq. 4, we have

B = 0

While, on imposing ψ(x = a) = 0 on Eq. 4, we obtain

Asinka = 0

=⇒ ka = nπ

=⇒ k ≡ kn =
nπ

a
(5)

above n = 1,2,3,4, . . .

Now the eigenfunctions are

ψn(x) = An sin
nπx

a
,

where An is the normalization constant we will determine
shortly



Particle in a box...

Using k =

√
2mE

h̄2
, we immediately get the energy eigenvalues

kn =

√
2mEn
h̄2

=
nπ

a

=⇒ En =
h̄2n2π2

2ma2
(6)

Next, we normalize the eigenfunctions to determine Ans∫
∞

−∞

ψ
2
n(x)dx = A2

n

∫ a

0
sin2

nπx

a
dx = 1

=⇒ A2
n

2

∫ a

0

(
1− cos

2nπx

a

)
dx = 1

A2
n

2
a = 1

=⇒ An =

√
2
a



Particle in a box...

Thus, our �nal expression for the energy eigenvalues, and the
normalized energy eigenfunctions is

En =
h̄2n2π2

2ma2

ψn(x) =

√
2
a
sin

nπx

a
,

for n = 1,2,3,4, . . ..

The reason n = 0 is excluded because the wave function
ψn=0(x) = 0.

Clearly, the lowest-energy state, i.e., the ground state of the
system corresponds to n = 1

While all higher values of n, i.e., n = 2,3,4, . . . correspond to
the excited states of the system



Particle in a box

Plots of a few wave functions are given in the �gure below

Note that boundary conditions ψn(0) = ψn(a) = 0 are satis�ed
for all n



Particle in a box...

Also note that the number of nodes in ψn(x) in the interior
region (0< x < a) is n−1

What if the box is two dimensional, i.e., V (x ,y) = 0 for
0< x < a and 0< y < b, and in�nite everywhere else

Or three dimensional with V (x ,y ,z) = 0 for 0< x < a,
0< y < b, and 0< z < c , and in�nite everywhere else

Both the problems can be easily solved using the method of
separation of variables

The results for the 2D case are

En1,n2 =
h̄2π2

2m

(
n21
a2

+
n22
b2

)
ψn1,n2(x ,y) =

√
4
ab

sin
n1πx

a
sin

n2πy

b
.



Particle in a box...

And for the 3D case, we obtain

En1,n2,n3 =
h̄2π2

2m

(
n21
a2

+
n22
b2

+
n23
c2

)
ψn1,n2,n3(x ,y ,z) =

√
8
abc

sin
n1πx

a
sin

n2πy

b
sin

n3πz

c
.

Next, we consider the problem of a particle exposed to a step
potential



The case of a Step Potential
Let us consider a particle exposed to a step potential

This potential is given by

V (x) = 0 for x ≤ 0
V (x) = V0 for x ≥ 0

Clearly, the potential has a �nite discontinuity at x = 0

Therefore, the wave function and its �rst derivative will be
continuous at x = 0



1D step potential...

Let us call region x ≤ 0 region I and x ≥ 0 as region II

Clearly, in region I, TISE will be that of a free particle
(V (x) = 0) , therefore, its solutions will be

ψI (x) = Ae ik1x +Be−ik1x , (7)

where k1 =

√
2mE

h̄2
, where E is the energy of the incident

particle

Clearly, the �rst term on the RHS of Eq. 7 denotes the
incident wave, and the second one the re�ected wave as also
shown in the �gure



1D step potential...

In region II, the TISE is

− h̄2

2m
d2ψII (x)

dx2
+V0ψII (x) = EψII (x)

=⇒ d2ψII (x)

dx2
+k22ψII (x) = 0

where k2 =

√
2m(E −V0)

h̄2
(8)

Thus, the possible solution in region II is

ψII (x) = Ce ik2x , (9)

which denotes the transmitted wave traveling to the right

In region II, there is no possibility of a left moving wave



1D step potential...

What are the quantities of interest which we should calculate

They are the transmission coe�cient T and re�ection
coe�cient R de�ned as

T =
k2|C |2

k1|A|2

R =
|B|2

|A|2
,

(10)

where k1 and k2 must be real.

These coe�cients, respectively, quantify the probabilities of
transmission or re�ection of a particle at the step

In order to compute R and T , we need A, B , and C

How do we compute those?



1D step potential

To determine A, B , and C , we use the continuity conditions

on ψ(x) and ψ ′(x) =
dψ

dx
, at x = 0

This means

ψI (0) = ψII (0)

ψ
′
I (0) = ψ

′
II (0)

Using Eqs. 7 and 9, and using the fact that
de±ikx

dx
=±ike±ikx , we obtain

A+B = C

ik1(A−B) = ik2C
(11)



1D Step potential...

Here we will only consider the cases when E > 0, so that

k1 =

√
2mE

h̄2
is always real

There are two possibilities regarding the value of the
eigenenergy E of the particle: (a) case I E > V0, and (b) case
II, E < V0

For case I, clearly, k2 =
√

2m(E−V0)

h̄2
is real, which we solve next



1D Step Potential, Case I: E > V0

We can easily solve Eqs. 11 to obtain

A=
1
2

(
1+

k2

k1

)
C

B =
1
2

(
1− k2

k1

)
C

From these equations we immediately get the re�ection and
transmission coe�cients

R =
|B|2

|A|2
=

(k1−k2)
2

(k1+k2)2

T =
k2|C |2

k1|A|2
=

4k21k2
k1(k1+k2)2

=
4k1k2

(k1+k2)2

(12)

Easy to verify that R+T = 1, as expected



1D step potential, case I...

How does our quantum mechanical result compare with the
classical one

If we compute the transmission probability for classical waves,
we will obtain complete transmission

That is

R = 0

T = 1

However, from Eqs.12 it is obvious that we will obtain that
result in quantum mechanics only for the trivial case when
k1 = k2, that is no potential barrier

Thus quantum mechanical result predicting both R > 0 and
T < 1 is quite remarkable!



1D Step Potential, Case II: E < V0

It is obvious that for this case, the only di�erence as compared
to the previous case is the nature of the solution in region II
(x > 0), because

k2 =

√
2m(E −V0)

h̄2
=±iρ

where

ρ =

√
2m(V0−E )

h̄2
> 0 and real



1D step potential, case II...
With this, the most general wave function in region II will be
of the form

ψII (x) = Ce−ρx +Deρx

But limx→∞ e
ρx → ∞, therefore, for the normalizability of the

wave function in region II, D = 0, leading to

ψII (x) = Ce−ρx

Note that ψII (x) is a decaying function of x , and not a
wave-like function

This implies that the probability of �nding the particle in region
II will decay exponentially with the distance inside the barrier

Because Re(k2) = 0, we immediately get the expected results
from Eqs. 12

R = 1

T = 0



1D step potential, case II...

This result is in full agreement with classical mechanics

Because if a particle were to penetrate region II, for the �xed
E its kinetic energy will become negative, leading to an
imaginary speed!

Therefore, region II is classically strictly forbidden!

In quantum mechanics, it is not strictly forbidden, but the
probability of a particle being there falls o� rapidly with the
increasing penetration depth.

Next, we discuss the case of a particle in a �nite potential well



A particle in a �nite potential well

Let us consider a potential shown below

This potential can be written as

V (x) = 0 for −∞ ≤ x ≤−a/2
V (x) =−V0 for −a/2≤ x ≤ a/2
V (x) = 0 for a/2≤ x ≤ ∞



Finite potential well...

Clearly, this potential has two �nite discontinuities at x =±a

2
Therefore, in order to solve this problem, we will have to apply
boundary conditions at both these points

We consider the case of when particle has the energy E in the
range 0≥ E ≥−V0

In such a case, a classical particle will be completely bound
inside the well

That is it will not be able to escape the well

Let us see what happens when the problem is solved quantum
mechanically



Finite potential well...

In regions I (x ≤−a/2) and III (x ≥ a/2) the particle is a free
particle, however, with E < 0.

Taking E =−|E |, in regions I and II, the value of k is

k =

√
−2m|E |

h̄2
=±iρ

with ρ =

√
2m|E |
h̄2

Therefore, in those regions wave functions will be of the form

ψI (x) = Aeρx +Be−ρx

ψIII (x) = Feρx +Ee−ρx

However, e−ρx term is unbounded in region I, as x →−∞

And eρx term is unbounded in region III, as x → ∞



Finite potential well...

Therefore, to have bounded wave function, we must set
B = F = 0, to yield the �nal forms in I and III

ψI (x) = Aeρx

ψIII (x) = De−ρx

In region II, the TISE is

− h̄2

2m
d2ψII (x)

dx2
−V0ψII (x) =−|E |ψII (x)

=⇒ d2ψII (x)

dx2
+k2ψII (x) = 0,

where

k =

√
2m(V0−|E |)

h̄2
(13)



Finite Potential well...
Because V0 > |E |, clearly k will be real, leading to oscillatory
solutions in regions II

ψII (x) = Be ikx +Ce−ikx

Finally, putting the expressions of the wave function in all the
three regions

ψI (x) = Aeρx

ψII (x) = Be ikx +Ce−ikx

ψIII (x) = De−ρx

(14)

Unknown coe�cients A, B, C , and D are determined from the
four continuity equations

ψI (−a/2) = ψII (−a/2)
ψ

′
I (−a/2) = ψ

′
II (−a/2)

ψII (a/2) = ψIII (a/2)

ψ
′
II (a/2) = ψ

′
III (a/2)



Finite Potential well...

Boundary conditions at x =−a/2 are

Ae−ρa/2 = Be−ika/2+Ce ika/2

ρAe−ρa/2 = ik(Be−ika/2−Ce ika/2)

which lead to

B =
1
2

(
1− i

ρ

k

)
e(ika−ρa)/2A (15)

C =
1
2

(
1+ i

ρ

k

)
e−(ika+ρa)/2A (16)

Boundary conditions at x = a/2 are

Be ika/2+Ce−ika/2 = De−ρa/2

ik(Be ika/2−Ce−ika/2) =−ρDe−ρa/2



Finite Potential well...

which can be solved as

B =
1
2

(
1+ i

ρ

k

)
e−(ika+ρa)/2D (17)

C =
1
2

(
1− i

ρ

k

)
e(ika−ρa)/2D (18)

On dividing Eq. 17 by 15, we get

k+ iρ

k− iρ
e−ikaD

A
= 1

=⇒ D

A
=

k− iρ

k+ iρ
e ika (19)

Similarly, by dividing 18 by 16, we have

D

A
=

k+ iρ

k− iρ
e−ika (20)



Finite well potential...

Equating Eqs. 19 and 20, we get the quantization condition(
k+ iρ

k− iρ

)2

= e2ika

=⇒ k+ iρ

k− iρ
=±e ika (21)

We will consider both the cases of Eq. 21 one by one. Let us
start with

k+ iρ

k− iρ
= e ika

=⇒ k+ iρ = ke ika− iρe ika

=⇒ ρ

k
=

(e ika−1)
i(e ika+1)

=
(e ika/2− e−ika/2)

i(e ika/2+ e−ika/2)

=⇒ ρ

k
= tan

(
ka

2

)
(22)



Finite well potential...

Let us de�ne

k0 =

√
2mV0

h̄2
=
√
k2+ρ2 (23)

Using Eqs. 22 and 23, we have

sec2
(
ka

2

)
= 1+tan2

(
ka

2

)
= 1+

ρ2

k2
=

k20
k2

Which can be written as{ ∣∣cos(ka
2

)∣∣= k
k0

tan
(
ka
2

)
> 0

(24)



Finite well potential...

Now we consider the second possibility, i.e., Eq. 21 with the
negative sign on the RHS

k+ iρ

k− iρ
=−e ika

=⇒ k+ iρ =−ke ika+ iρe ika

=⇒ ρ

k
=

(e ika+1)
i(e ika−1)

=
(e ika/2+ e−ika/2)

i(e ika/2− e−ika/2)

=⇒ ρ

k
=−cot

(
ka

2

)
(25)

This leads to the condition{ ∣∣sin(ka
2

)∣∣= k
k0

tan
(
ka
2

)
< 0

(26)



Finite well potential...

We recall that for the case of particle-in-a-box, analytical
solutions for its energy eigenvalues were available

However, in the present case, that is not possible

One has to obtain numerical or graphical solutions of Eqs. 24
and 26 to obtain the k values, corresponding to which the
eigenenergies −|E |, can be determined.

Next, we try to obtain the graphical solutions of Eqs. 24 and
26

For the purpose, we plot
∣∣cos(ka

2

)∣∣, ∣∣sin(ka
2

)∣∣, and k

k0
as

functions of k in the same plot

The points of intersection of the curves will be the k values
corresponding to various energy eigenvalues



Finite well potential...

These are shown in the �gure below

Points labeled P are solutions of Eq. 24, while those labeled I
are solutions of Eq. 26

Note that the allowed values of k satisfy 0≤ k ≤ k0

The above plot is for a chosen value of V0 for which �ve
bound states are possible



Finite well potential...

If we increase the depth of the well V0, more bound solutions
will be possible

Because for larger values of V0, k0 will be larger leading to
more intersection points of the curves

∣∣cos(ka
2

)∣∣ , ∣∣sin(ka
2

)∣∣ and
k

k0
Next, we consider the case of a �nite potential barrier



One-dimensional Potential Barrier of Finite Width

Here we consider a potential barrier of a �nite height V0 and
width a as shown

We can write this potential as

V (x) = 0 for −∞ ≤ x ≤ 0
V (x) = V0 for 0≤ x ≤ a

V (x) = 0 for a ≤ x ≤ ∞



Finite potential barrier...

This potential also has two �nite discontinuities in the
potential at x = 0 and x = a

If the wave functions in regions I (x ≤ 0), II (0≤ x ≤ a), and
III (x ≥ a) are ψI (x), ψII (x), and ψIII (x), respectively

The continuity conditions on the wave function and its �rst
derivative will be

ψI (0) = ψII (0)

ψ
′
I (0) = ψ

′
II (0)

ψII (a) = ψIII (a)

ψ
′
II (a) = ψ

′
III (a)



Finite potential barrier...

In regions I and III, the particle is a free particle. Assuming
that it is incident from the left, we have

ψI (x) = Ae ikx +Be−ikx

ψIII (x) = Fe ikx ,
(27)

where k =

√
2mE

h̄2

The wave function in region II, ψII (x), depends on whether
the energy E of the incident particle is larger than the height
of the barrier ( E > V0) or smaller (E < V0)



Finite potential barrier...

Let us �rst consider when E > V0, in which case ψII (x) will be
of the oscillatory form

ψII (x) = Ce ik
′x +De−ik ′x , (28)

where k ′ =

√
2m(E −V0)

h̄2

Continuity conditions on ψ(x) and ψ ′(x) at x = 0 yield

A+B = C +D

ik(A−B) = ik ′(C −D)
(29)

While the continuity conditions at x = a are

Ce ik
′a+De−ik ′a = Fe ika

ik ′(Ce ik
′a−De−ik ′a) = ikFe ika

(30)



Finite potential barrier...

Eqs. 29 yield

A=
C

2

(
1+

k ′

k

)
+
D

2

(
1− k ′

k

)
B =

C

2

(
1− k ′

k

)
+
D

2

(
1+

k ′

k

) (31)

While from Eqs. 30, we obtain

C =
F

2

(
1+

k

k ′

)
e i(k−k ′)a

D =
F

2

(
1− k

k ′

)
e i(k+k ′)a

(32)



Finite potential barrier...

On substituting Eqs. 32 in 31, we have

A=
F

4

(
1+

k ′

k

)(
1+

k

k ′

)
e i(k−k ′)a

+
F

4

(
1− k ′

k

)(
1− k

k ′

)
e i(k+k ′)a

and

B =
F

4

(
1− k ′

k

)(
1+

k

k ′

)
e i(k−k ′)a

+
F

4

(
1+

k ′

k

)(
1− k

k ′

)
e i(k+k ′)a



Finite potential barrier...

These equations can be simpli�ed to

A=
Fe ika

2

{
2cosk ′a− i

(
k ′

k
+

k

k ′

)
sink ′a

}
(33)

And

B = i
Fe ika

2

(
k ′

k
− k

k ′

)
sink ′a (34)

The transmission coe�cient is

T =
|F |2

|A|2
=

4{
4cos2 k ′a+

(
k ′

k
+ k

k ′

)2
sin2 k ′a

}



Finite potential barrier...

Using cos2 k ′a = 1− sin2 k ′a, we obtain

T =
4{

4+
((

k ′

k
+ k

k ′

)2−4
)
sin2 k ′a

}
=

4{
4+
(
k ′

k
− k

k ′

)2
sin2 k ′a

}
Which simpli�es to

T =
4k ′2k2{

4k ′2k2+(k2−k ′2)2 sin2 k ′a
} . (35)

Using the expressions for k and k ′, we have

k2−k
′2 =

2mE

h̄2
− 2m(E −V0)

h̄2
=

2mV0

h̄2



Finite potential barrier...

On substituting these in Eq. 35, we obtain

T =
4E (E −V0)

4E (E −V0)+V 2
0 sin

2
√
2m(E −V0)a/h̄

(36)

And the re�ection coe�cient R will be

R = 1−T =
V 2
0 sin

2 k ′a

4E (E −V0)+V 2
0 sin

2 k ′a

We can verify that we will get the same result if we compute it

as R =
|B|2

|A|2
, using the expressions of A and B derived in Eqs.

33 and 34.



Finite potential barrier...

Let us look at the plot of the transmission coe�cient of Eq.
36 as a function of barrier width a. In the �gure k ′ and a are
denoted as k2 and l , respectively.

We note that T shows resonances (maxima) for k ′a = nπ



Finite potential barrier...

Using k ′ = 2π/λ ′, where λ ′ is the de Broglie wavelength inside
the barrier, we obtain the condition of resonances to be

a = n

(
λ ′

2

)
That is, we get the resonances, when the barrier width is a
multiple of half de Broglie wavelength

Which is nothing but the condition for formation of standing
de Broglie waves inside the barrier!

Next, we consider the case when E < V0, which leads to the
amazing phenomenon of quantum mechanical tunneling.



Finite potential barrier with E < V0: Tunneling
The only di�erence as compared to the previous case is in the
nature of wave function in region II, which is classically
forbidden because there E < V0

Therefore

k ′ =

√
2m(E −V0)

h̄2
= i

√
2m(V0−E )

h̄2
= iρ (37)

We can obtain ψII (x) by substituting Eq. 37 in Eq. 28, which
is now of exponential type

ψII (x) = Ce−ρx +Deρx (38)

However, we need not repeat all the previous steps to obtain
the re�ection/transmission coe�cients.
All we need to do is substitute k ′ = iρ in the earlier
expressions, and using in Eq. 36

sin(k ′a) = sin(iρa) =
e−ρa− eρa

2i
= i sinhρa,



Tunneling...

We obtain the expression for the transmission coe�cient for
the present case to be

T =
4E (V0−E )

4E (V0−E )+V 2
0 sinh

2
√
2m(V0−E )a/h̄

(39)

An important special case is ρa≫ 1

For this

sinh2
√
2m(V0−E )a/h̄ ≈ 1

4
e2
√

2m(V0−E)a/h̄

Leading to

T ≈ 16E (V0−E )

V 2
0

e−2
√

2m(V0−E)a/h̄

Clearly, T is large when a ≤ h̄√
2m(V0−E )

=
1.96√
V0−E

Å for

electrons



Tunneling...

Clearly, if we take V0 = 2 eV and E = 1 eV, for electrons the
width of the barrier for large tunneling condition will be 1.96Å.

For these value T = 0.78, i.e., 78% of the electrons will be
able to tunnel through

This is quite amazing because in classical mechanics tunneling
is forbidden

Fine example of a tunneling based device is a Josephson
junction

Next, we solve the TISE of 1D simple harmonic oscillator
(1D-SHO).



One-dimensional Simple Harmonic Oscillator

The study of simple harmonic oscillator (SHO) occupies an
important place in classical mechanics (CM).

It serves as an important model system which illustrates
several important concepts in CM

In quantum mechanics also the SHO enjoys a similar status.

The microscopic behavior of several systems much as
molecules, solids, and quantum dots can be described using a
quantum mechanical harmonic oscillator model.

For molecules and solids, the vibrational dynamics can be
described reasonably well using an oscillator model

For quantum dots, energy levels of electrons can be described
using this model.



1D SHO

The energy of a classical SHO is conserved, and given by (in
1D)

E = T +V =
p2

2m
+
1
2
kx2, (40)

above T =
p2

2m
denotes the kinetic energy of a particle of mass

m, while V =
1
2
kx2 is its potential energy.

Therefore, using the rules of quantization in the r-represenation

p →−i h̄∇ ≡−i h̄ d

dx
for a 1D system

E → H

Now

H =
p2

2m
+
1
2
kx2 =

1
2m

(
−i h̄ d

dx

)2

+
1
2
kx2 =− h̄2

2m
d2

dx2
+
1
2
kx2



1D-SHO...

Because potential V = 1
2
kx2 is time independent, we will solve

the TISE of this system given by

− h̄2

2m
d2ψ

dx2
+
1
2
kx2ψ = Eψ (41)

Using the relation ω =

√
k

m
⇒ k =mω2, we rewrite the

previous equation as

d2ψ

dx2
+

(
2mE

h̄2
− m2ω2

h̄2
x2
)

ψ = 0 (42)

We can check that the quantity

√
h̄

mω
has the dimensions of

length

So we de�ne a dimensionless length variable x̃ as

x̃ =

√
mω

h̄
x (43)



1D-SHO...

Denoting the normalization integral by ⟨ψ|ψ⟩, we have

⟨ψ|ψ⟩=
∫

∞

−∞

ψ
∗(x)ψ(x)dx = 1 (44)

From this equation it is obvious that ψ(x) has the dimensions
of length−1/2

Therefore, we de�ne a dimensionless wave function ψ̃(x̃),
expressed in terms of x̃ as

ψ̃(x̃) =

(
h̄

mω

)1/4

ψ(x = x̃) (45)

So that

⟨ψ | ψ⟩= 1⇒ ⟨ψ̃ | ψ̃⟩=
∫

∞

−∞

ψ̃
∗(x̃)ψ̃(x̃)dx̃ = 1

Next, we transform the TISE (Eq. 42) to express it in terms of
x̃ and ψ̃(x̃).



1D-SHO...

By substituting the following in Eq. 42

d

dx
=

dx̃

dx

d

dx̃
=

√
mω

h̄

d

d x̃

⇒ d2

dx2
=

mω

h̄

d2

dx̃2

We obtain(mω

h̄

)
×
(mω

h̄

)1/4 d2ψ̃

dx̃2
+

(
2mE

h̄2
− mω

h̄
x̃2
)(mω

h̄

) 1/4
ψ = 0

⇒
(mω

h̄

)5/4{d2ψ̃

dx̃2
+

(
2E
h̄ω

− x̃2
)

ψ̃

}
= 0



Dimensionless TISE of 1D-SHO

Since h̄ω has the units of energy, we de�ne a dimensionless
energy

Ẽ =
E

h̄ω

to �nally obtain the TISE of 1D-SHO in terms of the
dimensionless quantities

d2ψ̃

dx̃2
+
(
2Ẽ − x̃2

)
ψ̃ = 0 (46)

In the asymptotic limit x̃ →±∞, one can neglect Ẽ term
above to yield

d2ψ̃

dx̃2
− x̃2ψ̃ = 0

which has the solutions

lim
x→∞

ψ̃(x̃)−→ e±x̃2/2



1D-SHO...

But limx→∞ ψ̃(x̃) = e x̃
2/2 → ∞, making it unnormalizable.

Therefore, we reject it.

We, instead try the solution of the form

ψ̃(x̃) = e−x̃2/2H(x̃), (47)

where H(x̃) is an unknown function to be determined

Since
d ψ̃

dx̃
=
{
−x̃e−x̃2/2H(x̃)+ e−x̃2/2H ′(x̃)

}
,

we obtain

d2ψ̃

dx̃2
=
{
−e−x̃2/2H(x̃)+ x̃2e−x̃2/2H(x̃)− x̃e−x̃2/2H ′(x̃)

−x̃e−x̃2/2Ḣ ′(x̃)+ e−x̃2/2Ḣ ′′(x̃)
}



1D-SHO: Hermite Di�erential Equation

On substituting these in Eq. 46, we have

e−x̃2/2

{
d2H

dx̃2
−2x̃

dH

dx̃
+(2Ẽ −1)H

}
= 0

Finally, we obtain the di�erential equation satis�ed by H(x̃)

d2H

dx̃2
−2x̃

dH

dx̃
+(2Ẽ −1)H = 0 (48)

This second-order linear di�erential equation is nothing but the
famous Hermite di�erential equation of mathematics written as

d2y

dx2
−2x

dy

dx
+λy = 0, (49)

which admits several solutions.



1D-SHO: Hermite Polynomials

One can solve it using the power-series expansion approach in
which we plug in the solution of the form

H(x̃) =
∞

∑
m=0

amx
m+α (50)

in Eq. 48, and obtain the expressions for am and α

But, we are not interested in in�nite series solutions for H(x̃)
because it will lead to unnormalizable ψ̃(x̃) when plugged into
Eq. 47.

This problem can be solved by requiring that Eq. 50 terminates
for some value of m, leading to a polynomial form for H(x̃)



Hermite Polynomials

It can be shown that the polynomial form for H(x̃) is obtained
if the following condition is satis�ed

2Ẽ −1= 2n, with n = 0,1,2,3, . . .

Ẽ ≡ Ẽn =

(
n+

1
2

)
, with n = 0,1,2,3, . . .

Using the fact that E = Ẽ h̄ω , we obtain the famous expression
for the energy eigenvalues of 1D-SHO

En =

(
n+

1
2

)
h̄ω. (51)



Hermite Polynomials...

And the corresponding polynomials H(x̃)≡ Hn(x̃), are given
by the expression

Hn(x) = n!
[n/2]

∑
m=0

(−1)m(2x)n−2m

(n−2m)!m!
, (52)

where [n
2

]
=

n

2
for even n[n

2

]
=

n−1
2

for odd n

(53)

The polynomials Hn(x) de�ned by equations above are called
Hermite polynomials

Noteworthy point is that Hn(x) is a polynomial of degree n,
i.e., the highest power of x in it will be n



1D-SHO: wave function

Easy to verify that for even (odd) values of n, Hn(x) is an
even (odd) function of x

Hn(−x) = (−1)nHn(x)

For a few values of n, we list the Hn(x) below

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2−2

H3(x) = 8x3−12x

H4(x) = 16x4−48x2+12



1D-SHO: Wave function...
The wave function ψ̃(x̃) of Eq. 47 acquires the form

ψ̃n(x̃) = Cne
−x̃2/2Hn(x̃)

where Cn's are determined by the normalization condition

⟨ψ̃n|ψ̃n⟩=
∫

∞

−∞

ψ̃
∗
n(x̃)ψ̃n(x̃)dx̃ = |Cn|2

∫
∞

−∞

e−x̃2H2
n(x̃)dx̃ = 1

Using the orthonormality of the Hermite polynomials∫
∞

−∞

e−x̃2Hn(x̃)Hm(x̃)dx̃ = 2n
√

πn!δnm

and the phase choice that Cn's are real, we obtain

Cn =
1

2n/2
√
n!π1/4

leading to

ψ̃n(x̃) =
1

2n/2
√
n!π1/h

e−x̃2/2Hn(x̃)



1D-SHO: Wave function

Finally, using Eqs. 43 and 45, we can obtain the expression for
ψn(x).

Thus, the eigenvalues and eigenvectors of the TISE for
1D-SHO are

En =

(
n+

1
2

)
h̄ω

ψn(x) = 2−n/2(n!)−1/2
(mω

h̄π

)1/4
e−

mω

2h̄ x2Hn

(√
mω

h̄
x

) (54)

Note that ψn's are completely real, and form an orthonormal
basis set

⟨ψn | ψm⟩=
∫

∞

−∞

ψ
∗
n(x)ψm(x)dx = δnm.



Plots of wave functions of 1D-SHO

Plots of ψn(x̃), for n = 0,1,2, and 3. In the plot ξ denotes x̃



SHO in 2D and 3D

Next, the question arises, what are the solutions for the TISE
for the SHOs in higher dimensions, i.e., 2D and 3D

The TISE for the most general SHO in 2D will be

− h̄2

2m

(
∂ 2ψ(x ,y)

∂x2
+

∂ 2ψ(x ,y)

∂y2

)
+
1
2
m
(
ω
2
x x

2+ω
2
y y

2
)

ψ(x ,y)

= E (2)
ψ(x ,y)

(55)

And in 3D

− h̄2

2m

(
∂ 2ψ(x ,y ,z)

∂x2
+

∂ 2ψ(x ,y ,z)

∂y2
+

∂ 2ψ(x ,y ,z)

∂z2

)
+
1
2
m
(
ω
2
x x

2+ω
2
y y

2+ω
2
z z

2
)

ψ(x ,y ,z) = E (3)
ψ(x ,y ,z) (56)



2D-3D SHO...

How do we solve the TISE in 2D and 3D?

From Eqs. 55 and 56 it is obvious that they are uncoupled in
variables x ,y , and z .

Therefore, the method of separation of variables should work.

And it indeed does, leading to the solutions for the 2D and 3D
cases, respectively

E
(2)
nx ,ny =

(
nx +

1
2

)
h̄ωx +

(
ny +

1
2

)
h̄ωy

ψnx ,ny (x ,y) = ψnx (x ,ωx)ψny (y ,ωy )

where nx ,ny = 0,1,2,3, . . .

(57)

E
(3)
nx ,ny ,nz =

(
nx +

1
2

)
h̄ωx +

(
ny +

1
2

)
h̄ωy +

(
nz +

1
2

)
h̄ωz

ψnx ,ny ,nz (x ,y ,z) = ψnx (x ,ωx)ψny (y ,ωy )ψnz (z ,ωz)

where nx ,ny ,nz = 0,1,2,3, . . .
(58)



2D-3D SHO...

Above, the wave functions corresponding to various dimensions
are de�ned as

ψnx (x ,ωx) = 2−nx/2(nx !)
−1/2

(mωx

h̄π

)1/4
e−

mωx
2h̄ x2Hnx

(√
mωx

h̄
x

)
ψny (y ,ωy ) = 2−ny/2(ny !)

−1/2
(mωy

h̄π

)1/4
e−

mωy
2h̄ y2Hny

(√
mωy

h̄
y

)
ψ

nz
(z ,ωz) = 2−nz/2(nz !)

−1/2
(mωz

h̄π

)1/4
e−

mωz
2h̄ z2Hnz

(√
mωz

h̄
z

)



Symmetry and Degeneracy

So far we have considered the general cases of 2D and 3D
SHO's assuming ωx ̸= ωy ̸= ωz .

In such cases the oscillators are said to be anisotropic

Let us consider a 2D isotropic SHO, satisfying ωx = ωy = ω0

Isotropic 2D SHO is also called a circular SHO, because of the
circular symmetry obvious in its potential energy

V (x ,y) =
1
2
mω

2
0

(
x2+ y2

)
If we use plane polar coordinates (r ,θ), and substitute
x = r cosθ and y = r sinθ , above

V (x ,y) = V (r) =
1
2
mω

2
0 r

2



The Circular SHO

Actually, we can solve the TISE of a 2D circular oscillator also
using the plane polar coordinates, leading to the same solution

However, for now let us consider the eigenenergies of this
oscillator which can be written as

E
(2)
nx ,ny =

(
nx +

1
2

)
h̄ω0+

(
ny +

1
2

)
h̄ω0 = (nx +ny +1)h̄ω0

These energy levels are highly degenerate as is obvious from
the following table



Degeneracies of a circular SHO

Recall that in quantum mechanics, when there are several
eigenvectors corresponding to a given eigenvalue, it is said to
be degenerate

The degeneracy table for the �rst three energy levels of the
circular SHO is given below
Sr. # nx ny E

(2)
nx ,ny Degeneracy

1 0 0 h̄ω0 1
2 1 0 2h̄ω0 �
3 0 1 2h̄ω0 2
4 2 0 3h̄ω0 �
5 1 1 3h̄ω0 �
6 0 2 3h̄ω0 3

It is obvious that the level with energy eigenvalue nh̄ω will be
n-fold degenerate



Symmetries and Degeneracies

One can similarly perform a degeneracy analysis for the 3D
isotropic SHO, also called the spherical SHO

For an anisotropic oscillator in any dimension there will be no
degeneracies

While for circular and spherical oscillators levels are
degenerate, why?

For a particle in a square box (a = b) or a cubic box
(a = b = c), similar degeneracies will be found. But, why?

Actually, there is a deep connection between the symmetries
and degeneracies.

Systems which are symmetric will always exhibit degeneracies

However, a deeper study of this topic is outside the scope of
this course


