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TISE for One-dimensional Systems

@ A one-dimensional (1D) system is one in which the particle is
confined to move only in one spatial dimension

o Conventionally, we take that dimension to be the x axis

@ Thus, for a general 1D system, the Schrédinger Equation will
be of the form
HOVlot) B y(xt)

ot _2m 0x2 +V(X7t)W(Xat)a (1)

where V(x,t) is a general 1D time-dependent potential to
which the particle is exposed



TISE in 1D...

@ However, at present we want to restrict ourselves to
time-independent problems for which the potential is of the
form V = V(x)

@ We know from the previous chapter that for the
time-independent potentials, the problem reduces to
time-independent Schrédinger equation (TISE)

2 2 x
I V) 4 V(wix) = Evl), o)
where y(x) = w(x,t = 0), with y(x,t) = y(x)e Et/"

@ Let us first discuss a few important points related to the TISE



TISE in 1D: Important Assumptions

o We will assume that y(x) is continuous everywhere in space

@ This is a postulate, because there is no mathematical
guarantee that the solutions of the TISE are continuous

@ The regions in which V(x) =00, y(x) =0, or else the TISE
will be divergent in those regions

o We will also show an important result that the first derivative
of y(x), i.e, v will be continuous across a finite
discontinuity of V/(x)

@ We prove this important result next



Continuity of the first-derivative of the wave function

@ Let us assume that V/(x) is discontinuous at x = xp
o But, everywhere the potential is finite

@ We assume that
lim V(xo—€) = V(x3) =
lim V(xo—€)=V(x)=W
lim V(xo+¢€)=V(xy) = Va,
e—0

with V4 75 Vo 7500



1D discontinuous potential

@ An example of a finite discontinuous potential in the limit
e—=0




1D Discontinuous potentials...

@ There can be more complicated potentials such as square well,
finite barrier, etc.

@ Let us integrate the TISE for this potential with a
discontinuity at x = xp in the region x € (xg — €,xp + €)

X0+€ 2 g2 X X0+€
[ ( LML )+V(x)w(x)> = [ "y

o—€ T 2m dx?
dy(x dy(x 2m [XotE
P IR S i AL
Xo+€ Xo—E& Xo—¢€




1D discontinuous potential...

@ As long as V(x) is bounded in the range of integration

. 2m
im —-

2m |
£—0 K2 2

Xo+E€
/X (V — E)w(x)dx

< lim
0—€ e—0

(2€)(Vimax — E)Wmax| =0

o This means that limg 0 27 [XF¢(V — E)y(x)dx = 0, implying

F Xp—&
that d‘g)(f) is continuous across xg
dy(x)| _ dy(x)
dx o  dx % (3)

@ Next, we solve the 1D-TISE for potentials that are
discontinuous, starting with the case of particle in a box



Particle in a 1D Box

@ Let us consider a particle exposed to the potential shown in
the picture below

a0 o0

VTE

—>

p~]

x=0 x=a
@ Above V/(x) = oo, for x <0 and x > a, and V(x) =0 for
0<x<a
@ Therefore, y(x) =0, x<0and x> a



Particle in a box...

@ For 0 < x < a, the particle satisfies the free-particle TDSE

W d?y(x)
2m dx2 (x)
d2‘l/(X) 2
— 12 +ky(x)=0
where k = %
fi

@ Clearly, the most general solution is
y(x) = Asin kx + B cos kx (4)

@ But this solution must satisfy the boundary conditions on the
wave function

Y(x=0)=y(x=2) =0



Particle in a box...

@ On imposing y(x =0) =0 on Eq. 4, we have
B=0

e While, on imposing y(x = a) =0 on Eq. 4, we obtain

Asinka=20
= ka=n7m
=>kzk,,:% (5)

above n=1,2,3,4,...

@ Now the eigenfunctions are

Wn(x) = Apsin B,
a

where A, is the normalization constant we will determine
shortly



Particle in a box...

2mE
@ Using k=4 / % we immediately get the energy eigenvalues

kn = 2m2En = Lﬂ
\/ bl a

K n? 2

2ma?

:}En:

@ Next, we normalize the eigenfunctions to determine Aps




Particle in a box...

@ Thus, our final expression for the energy eigenvalues, and the
normalized energy eigenfunctions is

£ A n? 12
T 2ma?

) \/5 nmx
x)=14/—sin—
Wn 3 3 ’
forn=1,2,3,4,....

@ The reason n =0 is excluded because the wave function
l[/n:()(X) =0.

@ Clearly, the lowest-energy state, i.e., the ground state of the
system corresponds to n =1

e While all higher values of n, i.e., n=2,3,4,... correspond to
the excited states of the system



Particle in a box

@ Plots of a few wave functions are given in the figure below

o Note that boundary conditions y,(0) = y,(a) = 0 are satisfied
for all n



Particle in a box...

@ Also note that the number of nodes in y,(x) in the interior
region (0 <x < a)isn—1

e What if the box is two dimensional, i.e., V(x,y) =0 for
0<x<aand 0<y<b, and infinite everywhere else

@ Or three dimensional with V(x,y,z) =0 for 0 < x < a,
0<y<b, and 0 < z < c, and infinite everywhere else

@ Both the problems can be easily solved using the method of
separation of variables

@ The results for the 2D case are

KWr2 (n? n?
o= T (8,2)
' 2m \ a b2

( ) 4 sin marx sin namy
X,y) =4/ —-si i .
Vi (XY \V ab a b




Particle in a box...

o And for the 3D case, we obtain

s K 2 n? n3 n
men = om \@2 TR

( ) 8 . mAX . mmy . n3nz
X,y,Z) =1\ ——sin sin sin .
Wn17n2,n3 7.)/’ abc a3 b c

@ Next, we consider the problem of a particle exposed to a step
potential




The case of a Step Potential

@ Let us consider a particle exposed to a step potential

V(x)
A
___________ E
Vo
Be—i.’qx
e — Celkox
Ael‘kgx
e o x
0

@ This potential is given by

V(x)=0 forx<0
Vix)=Vy forx>0

@ Clearly, the potential has a finite discontinuity at x =0

@ Therefore, the wave function and its first derivative will be
continuous at x =0



1D step potential...

@ Let us call region x <0 region | and x > 0 as region |l

@ Clearly, in region |, TISE will be that of a free particle
(V(x) =0) , therefore, its solutions will be

Vi(x) = Aek* 4 Be k¥, (7)

2mE
where ky = “ME - \here E is the energy of the incident

K
particle
o Clearly, the first term on the RHS of Eq. 7 denotes the
incident wave, and the second one the reflected wave as also
shown in the figure



1D step potential...

@ In region Il, the TISE is

K d2
A v (x) + Vo (x) = Eyy(x)

2m dx?
d? X
— 21'2()+k22111/l(><) =0
2m(E — V,
where ky = m( 2 0) (8)
@ Thus, the possible solution in region Il is
i (x) = Ce', (9)

which denotes the transmitted wave traveling to the right

@ In region Il, there is no possibility of a left moving wave



1D step potential...

@ What are the quantities of interest which we should calculate

@ They are the transmission coefficient T and reflection
coefficient R defined as

 k|CP
~ kAP
_|BP

= [AF

(10)
R

where k; and k> must be real.

o These coefficients, respectively, quantify the probabilities of
transmission or reflection of a particle at the step

@ In order to compute R and T, we need A, B, and C
@ How do we compute those?



1D step potential

@ To determine A, B, and C, we use the continuity conditions

on y(x) and ¥/(x) = il—w at x=0
x

@ This means
vi(0) = v (0)
v;(0) = v,(0)

e Using Eqs. 7 and 9, and using the fact that
deiikx

dx

= +iket ™ we obtain

A+B=C

iki(A— B) = ik, C (11)



1D Step potential...

@ Here we will only consider the cases when E > 0, so that

2mE .
ki = —r is always real

@ There are two possibilities regarding the value of the
eigenenergy E of the particle: (a) case | E > Vy, and (b) case
I, E <V

@ For case |, clearly, k» = w is real, which we solve next



1D Step Potential, Case |: E > V)

@ We can easily solve Egs. 11 to obtain
1 ko
A==-(1+—-)C
2<+h>

1 ko
B3 (1-2)c

@ From these equations we immediately get the reflection and
transmission coefficients

p_ [BI? _ (ki —k)
A2 (ki + ko)?
(12)
Ck|CP ak2k 4kiky

kAR ki(k k)2 (ki k)2

o Easy to verify that R+ T =1, as expected



1D step potential, case |...

@ How does our quantum mechanical result compare with the
classical one

@ If we compute the transmission probability for classical waves,
we will obtain complete transmission

@ Thatis

R=0
T=1

o However, from Eqs.12 it is obvious that we will obtain that
result in quantum mechanics only for the trivial case when
ki = ko, that is no potential barrier

@ Thus quantum mechanical result predicting both R > 0 and
T < 1 is quite remarkable!



1D Step Potential, Case II: E < V

@ It is obvious that for this case, the only difference as compared
to the previous case is the nature of the solution in region Il
(x > 0), because

where

2m(Vy —
p= m(h%E)>Oand real



1D step potential, case Il...

e With this, the most general wave function in region Il will be
of the form
Vi (x) = Ce P+ De*

@ But limy_ . eP* — oo, therefore, for the normalizability of the
wave function in region Il, D =0, leading to

Yy (X) = Ce_px

o Note that yj(x) is a decaying function of x, and not a
wave-like function

@ This implies that the probability of finding the particle in region
[l will decay exponentially with the distance inside the barrier

@ Because Re(kz) =0, we immediately get the expected results
from Egs. 12



1D step potential, case Il...

@ This result is in full agreement with classical mechanics

o Because if a particle were to penetrate region Il, for the fixed
E its kinetic energy will become negative, leading to an
imaginary speed!

@ Therefore, region Il is classically strictly forbidden!

@ In quantum mechanics, it is not strictly forbidden, but the
probability of a particle being there falls off rapidly with the
increasing penetration depth.

o Next, we discuss the case of a particle in a finite potential well



A particle in a finite potential well

@ Let us consider a potential shown below

M)
a a
"2 o0 '3
3 > X
0 @ @
-V,

@ This potential can be written as

V(x)=0for —eo<x < —a/2
V(x)=—Vp for —a/2<x<a/2
V(x)=0fora/2 <x <



Finite potential well...

@ Clearly, this potential has two finite discontinuities at x = i§
@ Therefore, in order to solve this problem, we will have to apply
boundary conditions at both these points

@ We consider the case of when particle has the energy E in the
range 0> E> -V

@ In such a case, a classical particle will be completely bound
inside the well

@ That is it will not be able to escape the well

@ Let us see what happens when the problem is solved quantum
mechanically



Finite potential well...

@ In regions | (x < —a/2) and Ill (x > a/2) the particle is a free
particle, however, with E < 0.

Taking E = —|E|, in regions | and I, the value of k is

—2m|E| :
k= e, ==ip
with p = 2:‘25

@ Therefore, in those regions wave functions will be of the form

Y (x) = AeP* + Be P~
l/////(X) = FeP* 4 Ee™P*

However, e P* term is unbounded in region |, as x — —oo

And eP* term is unbounded in region Ill, as x — oo



Finite potential well...

@ Therefore, to have bounded wave function, we must set
B =F =0, to yield the final forms in | and Il

i(x) = AeP*
Vi (x) = De P~

@ In region Il, the TISE is

izdzllfu(x)

—Vowi(x) = —|E|wu(x)

T 2m dx?
yi(x) | o
= 4 +k*yy(x) =0,
where



Finite Potential well...

@ Because V > |E|, clearly k will be real, leading to oscillatory
solutions in regions I

vy (X) = Beikx + Ceiikx

e Finally, putting the expressions of the wave function in all the
three regions
i(x) = AeP*
v (x) = Be* 4 Ce ik (14)
Vi (X) = De_px
@ Unknown coefficients A, B, C, and D are determined from the
four continuity equations

vi(—a/2) =yu(-a/2)
vi(—a/2) = wy(—a/2)
vi(a/2) = y(a/2)
vi(a/2) = yiy(a/2)



Finite Potential well...

e Boundary conditions at x = —a/2 are

Ae™ paj2 _ — Be™ ika/2 + Celka/2
pAe—pa/2 — I-k(Be—lka/2 _ Celka/2)

@ which lead to

_ L PN (ka—pa))2
3_2(1 1k>e A (15)
_1 P .~ (ika+pa)/2
C—2(1+lk>e A (16)

e Boundary conditions at x = a/2 are

Belka/2 +Ce™ ika/2 __ — De™ pa/2
I-k(Belka/2 _ Ce—lka/2) — _pDe—pa/Q



Finite Potential well...

@ which can be solved as

_1! P\ —(ika+pa)/2
B_2<Lﬂk>e D (17)
_ L (1P alikapa)/2
C—2(11k>e D (18)

@ On dividing Eq. 17 by 15, we get

ktip D _

k—ip A

D k_ip eika (19)

A k+ip

@ Similarly, by dividing 18 by 16, we have
D k+ip

—ika 2
A k—ip® (20)




Finite well potential...

o Equating Egs. 19 and 20, we get the quantization condition

k+ip 2:e2ika
k—ip

k+i -
+Ip ::l:elka (21)
k—ip
o We will consider both the cases of Eq. 21 one by one. Let us
start with
k+ip ik
— — €
k—ip

— k+lp kelka P lka

p (e:ka _ 1) (eika/2 _ efika/2)

Tk i(eRrl)  i(ekal2 4 e Hal2)

— % — tan <l§) (22)




Finite well potential...

@ Let us define

omV,
ko = m°

=+ k?+p? (23)

e Using Egs. 22 and 23, we have
k.
sec? (k;> =1+4tan? <2a>

@ Which can be written as



Finite well potential...

@ Now we consider the second possibility, i.e., Eq. 21 with the
negative sign on the RHS

k—ip
= k+ip=—ke™+ipe
p (eika_|_1) (eika/2_|_efika/2)

T kT i(eRe_1) ez — e al2)

k+ip oika

ika

P__ ik
= = cot<2> (25)
@ This leads to the condition
sin(9)] =%
26
{ tan (%) < 0 (26)



Finite well potential...

@ We recall that for the case of particle-in-a-box, analytical
solutions for its energy eigenvalues were available

@ However, in the present case, that is not possible

@ One has to obtain numerical or graphical solutions of Eqgs. 24
and 26 to obtain the k values, corresponding to which the
eigenenergies —|E|, can be determined.

@ Next, we try to obtain the graphical solutions of Egs. 24 and
26

’

,andlfoas

@ For the purpose, we plot ‘COS(%)

sin (%)

functions of k in the same plot

@ The points of intersection of the curves will be the k values
corresponding to various energy eigenvalues



Finite well potential...

@ These are shown in the figure below

4y

\
\
n/a 2n/a 3nja 4nfa

kn 5?{,’(]

@ Points labeled P are solutions of Eq. 24, while those labeled |
are solutions of Eq. 26

o Note that the allowed values of k satisfy 0 < k < kg

@ The above plot is for a chosen value of V4 for which five
bound states are possible



Finite well potential...

@ If we increase the depth of the well V, more bound solutions
will be possible

@ Because for larger values of Vg, ko will be Iarger Ieading to

more intersection points of the curves |cos (42)],[sin (&)| and
k

ko
@ Next, we consider the case of a finite potential barrier



One-dimensional Potential Barrier of Finite Width

@ Here we consider a potential barrier of a finite height V4 and
width a as shown

Vix)
Region | Region I Region 11
I'G
Ad® nrrr )
-~ . ik
Be B anAn e Fe
‘
0 a

@ We can write this potential as

V(x)=0for —eo<x <0
Vix)=Vofor0<x<a
V(x)=0fora<x <oo



Finite potential barrier...

o This potential also has two finite discontinuities in the
potential at x =0 and x =2

o If the wave functions in regions | (x <0), Il (0 <x < a), and
I (x > a) are yi(x), yi(x), and yy(x), respectively

@ The continuity conditions on the wave function and its first
derivative will be

vi(0) = vy (0)
v;(0) = y;,(0)
vi(a) =y (a)
vii(a) = yi(a)



Finite potential barrier...

@ In regions | and lll, the particle is a free particle. Assuming
that it is incident from the left, we have

v (x) = Aex 4 Be~ikx

ikx

I//[[/(X) = Fe s (27)

2mE
[
@ The wave function in region I, yy(x), depends on whether

the energy E of the incident particle is larger than the height
of the barrier ( E > Vg) or smaller (E < Vp)

where k =



Finite potential barrier...

@ Let us first consider when E > Vj, in which case yy;(x) will be
of the oscillatory form

win(x) = Ce* ™+ De~ %, (28)

2m(E— Vo)
h2
e Continuity conditions on y(x) and y/(x) at x =0 yield

where k' =

A+B=C+D

29

ik(A— B) = ik'(C— D) (29)
@ While the continuity conditions at x = a are
Ceik'a+ Defik’a _ Feika

(30)

ik'(Ce'a — De~'a) = jkFe'*



Finite potential barrier...

e Egs. 29 yield

C k/ k/ (31)
— (1= 14—
o= (%) 2 (1+%)
@ While from Egs. 30, we obtain
C = f (1_1_/[:/) i(k—k')a
; (32)



Finite potential barrier...

@ On substituting Eqgs. 32 in 31, we have

F k' k ; /
_ " " i(k—k")a
A 4<1+k><1+k/>e
F k' k : /
o AN _® i(k+k')a
+ 2 <1 k> (1 k’) e

kK k : /
A " i(k—k")a
(1 k) <1+ k’> e

and



Finite potential barrier...

@ These equations can be simplified to

Fe'ka (K k
A= 5 {2cosk’a—l<k+k/>smk’} (33)

lka /
B:/ <k—k> sink’a (34)

e And

2 k kK
@ The transmission coefficient is
FI*
A2 {4cos2 k'a+ (% + %)2sin2 k’a}

T—



Finite potential barrier...

@ Using cos® k'a=1—sin? k'a, we obtain
4
{4—|— ((% + %)2 —4) sin? k’a}
4
- {4—|— (% - %)2sin2 k’a}

@ Which simplifies to

T —

T_ 4k/2k2
4Kk 4 (K2 — K2)2sin? k'a}

(35)

@ Using the expressions for k and k', we have

2mE  2m(E—Vo) _ 2mV

2 2
K=kt ="p 72 72




Finite potential barrier...

@ On substituting these in Eq. 35, we obtain

- AE(E — Vp) (36)

 4E(E— Vo) + V2sin® \/2m(E — Vp)a/h

o And the reflection coefficient R will be

2cin L/
Ro1_T-— Vg sin ka.2
4E(E—Vp)+ V§sin® K a

@ We can verify that we will get the same result if we compute it

’ 2
aSsz,

33 and 34.

using the expressions of A and B derived in Egs.



Finite potential barrier...

@ Let us look at the plot of the transmission coefficient of Eq.
36 as a function of barrier width a. In the figure k" and a are
denoted as k» and /, respectively.

4E(E — Vp)
4E(E — V,) +V}

0 1 | p— ."

@ We note that T shows resonances (maxima) for k'a = nx



Finite potential barrier...

@ Using k' =21 /A’, where 1’ is the de Broglie wavelength inside
the barrier, we obtain the condition of resonances to be

(3)

@ That is, we get the resonances, when the barrier width is a
multiple of half de Broglie wavelength

@ Which is nothing but the condition for formation of standing
de Broglie waves inside the barrier!

@ Next, we consider the case when E < Vj, which leads to the
amazing phenomenon of quantum mechanical tunneling.



Finite potential barrier with E < Vf: Tunneling
o The only difference as compared to the previous case is in the
nature of wave function in region Il, which is classically
forbidden because there E < V

@ Therefore

K= \/2m(Eh2_ o) _ i\/zm(‘;oz_ D_ip @

@ We can obtain yy(x) by substituting Eq. 37 in Eq. 28, which
is now of exponential type

l[///(X) = Ce P* + DeP* (38)

@ However, we need not repeat all the previous steps to obtain
the reflection/transmission coefficients.

@ All we need to do is substitute K" = ip in the earlier
expressions, and using in Eq. 36

e P3P

_ isinh
¥ isinhpa,

sin(k'a) =sin(ipa) =



@ We obtain the expression for the transmission coefficient for
the present case to be

4E(Vhy— E
T= (Vo 5 ) (39)
4E(Vo — E) + V§sinh®\/2m(Vo — E)a/h
An important special case is pa>1
For this

sinh? \/2m(Vp — E)a/hi ~ %ezma/ﬁ

Leading to

T~ We—zmvﬁ
0

h 1.9
V2m(Vo—E) VVo—E

A for

Clearly, T is large when a <

electrons



@ Clearly, if we take Vp =2 eV and E =1 ¢V, for electrons the
width of the barrier for large tunneling condition will be 1.96A.

@ For these value T =0.78, i.e., 78% of the electrons will be
able to tunnel through

@ This is quite amazing because in classical mechanics tunneling
is forbidden

@ Fine example of a tunneling based device is a Josephson
junction

o Next, we solve the TISE of 1D simple harmonic oscillator
(1D-SHO).



One-dimensional Simple Harmonic Oscillator

@ The study of simple harmonic oscillator (SHO) occupies an
important place in classical mechanics (CM).

@ It serves as an important model system which illustrates
several important concepts in CM
@ In quantum mechanics also the SHO enjoys a similar status.

@ The microscopic behavior of several systems much as
molecules, solids, and quantum dots can be described using a
quantum mechanical harmonic oscillator model.

@ For molecules and solids, the vibrational dynamics can be
described reasonably well using an oscillator model

@ For quantum dots, energy levels of electrons can be described
using this model.



1D SHO

@ The energy of a classical SHO is conserved, and given by (in
1D)

P2 1,5
E:T+V:%+§kx, (40)
2

above T = ;; denotes the kinetic energy of a particle of mass
m

1
m, while V = Ekx2 is its potential energy.

o Therefore, using the rules of quantization in the r-represenation

d
p— —ihV = —if— for a 1D system
dx

E—H

o Now

om 2 T 2m



1D-SHO...

@ Because potential V = %kx2 is time independent, we will solve
the TISE of this system given by

S T (41)

: : | k .
o Using the relation @ = {/ — = k = mw?, we rewrite the
m

previous equation as

2 22
d 1//+<2mE_m ® x2>l//:O (42)

dx2 h2 h2

|k
@ We can check that the quantity 5 has the dimensions of
m

length
@ So we define a dimensionless length variable X as
ma

X = X (43)



1D-SHO...

e Denoting the normalization integral by (y|y), we have

00

wiv) = [ v vix)d =1 (44)

e From this equation it is obvious that y(x) has the dimensions
of length—1/2

@ Therefore, we define a dimensionless wave function (%),
expressed in terms of X as

1/4
(%) = () Wix=%) (45)
@ So that

(Wly)=1= (| §) = / 7 () () d5 = 1

—o0

@ Next, we transform the TISE (Eq. 42) to express it in terms of
X and y(X).



1D-SHO...

@ By substituting the following in Eq. 42

d did [mod

dx  dxdx VB dx
42 mo d*
dx2 B dx2

o We obtain
()= () G (- 20) () Vo

moN\S/4 (d2§  (2E )\ .
= (%) {d>”<2 (m‘x )"’}:0

_l’_



Dimensionless TISE of 1D-SHO

@ Since fim has the units of energy, we define a dimensionless
energy
=~ E
E=—
ho

to finally obtain the TISE of 1D-SHO in terms of the
dimensionless quantities

ig +(2E-52) =0 (46)

@ In the asymptotic limit X — 4oo, one can neglect E term
above to yield

d>\y D~
dx? —Xv=
which has the solutions
lim §(%) — e/

X—yo0



1D-SHO...

o But limy_,.. /(%) = e¥/2 — oo, making it unnormalizable.
Therefore, we reject it.
@ We, instead try the solution of the form

W(%) = e X 2H(%), (47)

where H(X) is an unknown function to be determined

@ Since

X

@ we obtain
d>
dx?
xe FRE(R) + e**2/2H“(;<)}

- {—e”?z/zH()”() FR2e T RH(R) - ke 12 H (%)



1D-SHO: Hermite Differential Equation

@ On substituting these in Eq. 46, we have

e—%2/2{‘zx’z j’j (2E—1)H} =0

e Finally, we obtain the differential equation satisfied by H(X)

d’H dH
— —2%—+(2E—1)H=0 43
dx? dx * ) (48)
@ This second-order linear differential equation is nothing but the
famous Hermite differential equation of mathematics written as
d’y , dy

which admits several solutions.



1D-SHO: Hermite Polynomials

@ One can solve it using the power-series expansion approach in
which we plug in the solution of the form

H(%) = io amxM T (50)

in Eq. 48, and obtain the expressions for a,,; and o

@ But, we are not interested in infinite series solutions for H(X)
because it will lead to unnormalizable (%) when plugged into
Eq. 47.

@ This problem can be solved by requiring that Eq. 50 terminates
for some value of m, leading to a polynomial form for H(X)



Hermite Polynomials

@ It can be shown that the polynomial form for H(X) is obtained
if the following condition is satisfied

2FE—1=2n, with n=0,1,2,3,...

- 1
E=E, = <n+2>, with n=0,1,2,3,...

@ Using the fact that E = Efw, we obtain the famous expression
for the energy eigenvalues of 1D-SHO

E, = (n+ ;) hio. (51)



Hermite Polynomials...

@ And the corresponding polynomials H(X) = Hp(X), are given
by the expression

[”/2] 1) (2X)" 2m

—pnl
Hi(x) = ! Z (n—2m)Im! ’ (52)
where
n n
[f} = — for even n
2 2
! —1 for odd 53)
b} = or odd n

@ The polynomials H,(x) defined by equations above are called
Hermite polynomials

e Noteworthy point is that Hy(x) is a polynomial of degree n,
i.e., the highest power of x in it will be n



1D-SHO: wave function

e Easy to verify that for even (odd) values of n, H,(x) is an
even (odd) function of x

Ha(=x) = (=1)"Ha(x)

@ For a few values of n, we list the H,(x) below

Ho(x) =1
Hi(x) =2x
Hy(x) = 4x> -2

Hs(x) = 8x® —12x
Hy(x) = 16x* —48x% +12



1D-SHO: Wave function...

@ The wave function y(X) of Eq. 47 acquires the form
§in(%) = Coe™ /2 Hy(3)
where C,’s are determined by the normalization condition
nlin) = | 500005 =G [ e F HE(R)dx =1
@ Using the orthonormality of the Hermite polynomials
/w e % Hy(%)Hpn (%) d% = 2"\/Tn! S

and the phase choice that C,’s are real, we obtain
1

Cn = on/2\/pil/4

leading to

1 2
~ A /2 ~
V(%) 202/l /h Hn(%)



1D-SHO: Wave function

e Finally, using Eqgs. 43 and 45, we can obtain the expression for
Vn(x).

@ Thus, the eigenvalues and eigenvectors of the TISE for
1D-SHO are

1
En = <n—|— 2) ha)
/4 me /
Wa(x) =27"2(n1)~1/2 (%7(:)) e WX H, ( mhwx>

@ Note that y,’s are completely real, and form an orthonormal
basis set

(54)

Wi ¥im) = | V() ¥m(x)dx = Som.



Plots of wave functions of 1D-SHO
@ Plots of y,(X), for n=0,1,2, and 3. In the plot £ denotes X
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SHO in 2D and 3D

o Next, the question arises, what are the solutions for the TISE
for the SHOs in higher dimensions, i.e., 2D and 3D

@ The TISE for the most general SHO in 2D will be

w [ %y(x, *y(x, 1
( v(xy)  Ow y)>+m(w3x2+w§y2)w(w)

" 2m dx?2 dy? 2
= ECy(x,y)
(55)
@ And in 3D
B (Pulxy.z)  Pyloyz)  Py(xy.2)
2m dx? dy? dz?

1
+5m (02 + 022 + 022%) y(x.y.2) = EOy(x.y.2) (56)



2D-3D SHO...

@ How do we solve the TISE in 2D and 3D?

@ From Egs. 55 and 56 it is obvious that they are uncoupled in
variables x,y, and z.

@ Therefore, the method of separation of variables should work.

@ And it indeed does, leading to the solutions for the 2D and 3D
cases, respectively

2 1 1
Ergx,)ny = <nx + 2> hoy + <ny + 2> ho,
lllnxany(xﬂy) = an(x7wx)‘//ny(y7wy)
where n,n, =0,1,2,3,...

1 1 1
E'Si)nwnz = (nX+ 2) ﬁwX+ <ny + 2> h(i)y‘i‘ <nz+ 2) ha)z

anany:nz(X7y’Z) = an(x’wx)wny (y’ wy)‘l’nz(z’wz)
where n.,n,,n, =0,1,2,3,...

(57)

(58)



2D-3D SHO...

@ Above, the wave functions corresponding to various dimensions
are defined as

1/4 mox »

hr K
_ _ ma 1/4 _moy o mao

/4 ey .
woten) =2 () e (7



Symmetry and Degeneracy

@ So far we have considered the general cases of 2D and 3D
SHQ'’s assuming @, # 0, # ©;.

@ In such cases the oscillators are said to be anisotropic
@ Let us consider a 2D isotropic SHO, satisfying @, = @, = g

@ Isotropic 2D SHO is also called a circular SHO, because of the
circular symmetry obvious in its potential energy

1
V(x,y)= Ema)g (x2 +y2)

o If we use plane polar coordinates (r,60), and substitute
x=rcos@ and y = rsin 6, above

1
V(x,y)=V(r)= §mco§r2



The Circular SHO

o Actually, we can solve the TISE of a 2D circular oscillator also
using the plane polar coordinates, leading to the same solution

@ However, for now let us consider the eigenenergies of this
oscillator which can be written as

1 1
Exih, = <"x+2> fioo + <ny+2> fioo = (nx +ny +1)hig

@ These energy levels are highly degenerate as is obvious from
the following table



Degeneracies of a circular SHO

@ Recall that in quantum mechanics, when there are several
eigenvectors corresponding to a given eigenvalue, it is said to
be degenerate

@ The degeneracy table for the first three energy levels of the
circular SHO is given below

’ Sr. # ‘ Nx ‘ ny ‘ E,Sf?,,y ‘ Degeneracy ‘ ‘

1 0 0 hiag 1
2 1 0 | 2hay —
3 0 1 | 2hmyg 2
4 2 | 0 | 3fwg —
5 1 1 | 3fimyg —
6 0 2 | 3fimy 3

@ It is obvious that the level with energy eigenvalue nfiw will be
n-fold degenerate



Symmetries and Degeneracies

@ One can similarly perform a degeneracy analysis for the 3D
isotropic SHO, also called the spherical SHO

@ For an anisotropic oscillator in any dimension there will be no
degeneracies

o While for circular and spherical oscillators levels are
degenerate, why?

e For a particle in a square box (a = b) or a cubic box
(a= b= c), similar degeneracies will be found. But, why?

@ Actually, there is a deep connection between the symmetries
and degeneracies.

@ Systems which are symmetric will always exhibit degeneracies

@ However, a deeper study of this topic is outside the scope of
this course



